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Abstract
Using a fixed point theorem of cone expansion and compression of norm type and a
new method to deal with the impulsive term, we prove that the second-order
singular impulsive Neumann boundary value problem has denumerably many
positive solutions. Noticing thatM > 0, our main results improve many previous
results.
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1 Introduction
We are concerned with the existence of denumerably many positive solutions of the
second-order singular impulsive Neumann boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

–x′′(t) + Mx(t) = ω(t)f (t, x(t)), t ∈ J ,

–�x′|t=tk = Ik(x(tk)), k = , , . . . , m,

x′() = x′() = ,

(.)

where M is a positive constant, J = [, ], tk ∈ R, k = , . . . , m, m ∈ N, satisfy  = t < t <
t < · · · < tm < tm+ = , –�x′|t=tk denotes the jump of x′(t) at t = tk , that is, –�x′|t=tk =
x′((tk)+) – x′((tk)–), here x′((tk)+) and x′((tk)–), respectively, represent the right-hand limit
and left-hand limit of x′(t) at t = tk .

In addition, ω, f and Ik satisfy the following conditions:

(H) ω(t) ∈ Lp[, ] for some p ∈ [, +∞), and there exists N >  such that ω(t) ≥ N a.e.
on J ;

(H) f ∈ C(J × R+, R+), Ik ∈ C(R+, R+), where R+ = [, +∞);
(H) there exists a sequence {t′

i}∞i= such that t′
 < δ, where δ = min{t, 

 }, t′
i ↓ t∗ ≥  and

limt→t′i ω(t) = +∞ for all i = , , . . . .

For the case M =  and Ik =  (k = , , . . . , m), problem (.) reduces to the problem
studied by Kaufmann and Kosmatov in []. By using Krasnosel’skĭı’s fixed point theorem
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and Hölder’s inequality, the authors showed the existence of countably many positive so-
lutions. The other related results can be found in [–]. However, there are almost no
papers considering second-order impulsive Neumann boundary value problem with in-
finitely many singularities. To identify a few, we refer the reader to [–] and the refer-
ences therein.

The main reason is that M 	=  in problem (.), which shows that the solution of prob-
lem (.) has no concave properties. On the other hand, under the case M 	=  and ω(t)
with infinitely many singularities, the properties of the corresponding Green’s function
for problem (.) are more complicated.

Our plan of the paper is as follows: in Section , we collect some well-known results to
be used in the subsequent sections. In particular, we also present some new properties of
Green’s function under the case M 	=  and ω(t) with infinitely many singularities. In Sec-
tion , we obtain some new sufficient conditions for the existence of denumerably many
positive solutions for problem (.). In Section , we give an example of a family functions
ω(t) such that (H) holds.

2 Preliminaries
In this installment, we list some definitions and lemmas which are needed throughout this
paper.

Let J ′ = J \ {t, t, . . . , tm} and E = C[, ]. We define PC[, ] in E by

PC[, ] =
{

x ∈ E : x′(t) ∈ C(tk , tk+),∃x′(t–
k
)
, x′(t+

k
)
, k = , , . . . , m

}
. (.)

Then PC[, ] is a real Banach space with norm

‖x‖PC = max
{‖x‖∞,

∥
∥x′∥∥∞

}
, (.)

where ‖x‖∞ = supt∈J |x(t)|, ‖x′‖∞ = supt∈J |x′(t)|.
Suppose that G(t, s) is the Green’s function of the boundary value problem

–x′′(t) + Mu(t) = , x′() = x′() = ,

then

G(t, s) =


γ sinhγ

⎧
⎨

⎩

coshγ ( – t) coshγ s,  ≤ s ≤ t ≤ ,

coshγ ( – s) coshγ t,  ≤ t ≤ s ≤ .
(.)

Lemma . By the definition of G(t, s) and the properties of sinhx and coshx, we have the
following results.

(a) For any t, s ∈ J , there is

A =


γ sinhγ
≤ G(t, s) ≤ coshγ

γ sinhγ
= B. (.)

Then it follows from (.) that

A ≤ G(t, s) ≤ G(s, s) ≤ B.



Wang and Feng Boundary Value Problems  (2017) 2017:50 Page 3 of 12

(b) For any τ ∈ (, δ),

D′
k

γ sinhγ
≤ G(t, s) ≤ coshγ ( – τ ) coshγ τ ′

k
γ sinhγ

, ∀t ∈ [
τ , τ ′

k
]
, s ∈ J , (.)

where

τ ′
k = max{ – τ ,  – tk}, D′

k = max
{
coshγ τ , coshγ

(
 – τ ′

k
)}

, k = , , , . . . , m.

(c)

G′
t(t, s) =


sinhγ

⎧
⎨

⎩

– sinhγ ( – t) coshγ s,  ≤ s ≤ t ≤ ,

sinhγ ( – s) coshγ t,  ≤ t ≤ s ≤ ,
(.)

and

max
t,s∈J ,t 	=s

∣
∣G′

t(t, s)
∣
∣ ≤ sinhγ . (.)

Proof We can get equations (.)-(.) by the definition of G(t, s), so we omit it here. �

To establish the existence of positive solutions to problem (.), for a fixed τ ∈ (, δ), we
construct the cone Kτ in PC[, ] by

Kτ =
{

x ∈ PC[, ] : x(t) ≥ , t ∈ J , min
t∈[τ ,τ ′

k ]
x(t) ≥ σk‖x‖PC

}
, (.)

where

σk =
D′

k
ργ sinhγ

, k = , , . . . , m, (.)

ρ = max{B, sinhγ }. (.)

It is easy to see Kτ is a closed convex cone of PC[, ].
Let {τi}∞i= be such that t′

i+ < τi < t′
i , i = , , . . . . Then for any i ∈ N, we define the cone Kτi

by

Kτi =
{

x(t) ∈ PC[, ] : x(t) ≥ , t ∈ J , min
t∈[τi ,τ ′

ik ]
x(t) ≥ σik‖x‖PC

}
, (.)

where

τ ′
ik = max{ – τi,  – tk}, σik =

D′
ik

ργ sinhγ
, (.)

D′
ik = max

{
coshγ τi, coshγ

(
 – τ ′

k
)}

, i = , , . . . , k = , , . . . , m. (.)

It is easy to see Kτi is a closed convex cone of PC[, ].

Remark . For any i = , , . . . , k = , , . . . , m, it follows from the definition of σk and σik

that  < σk ,σik < .
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Lemma . If (H)-(H) hold, then problem (.) has a unique solution x given by

x(t) =
∫ 


G(t, s)ω(s)f

(
s, x(s)

)
ds +

m∑

k=

G(t, tk)Ik
(
tk , x(tk)

)
.

Proof The proof is similar to that of Lemma . in []. �

Definition . A function x(t) is said to be a solution of problem (.) on J if:
(i) x(t) is absolutely continuous on each interval (, t] and (tk , tk+], k = , , . . . , n;

(ii) for any k = , , . . . , m, x(t+
k ), x(t–

k ) exist;
(iii) x(t) satisfies ().
Define an operator T : Kτ → PC[, ] by

(Tx)(t) =
∫ 


G(t, s)ω(s)f

(
s, x(s)

)
ds +

m∑

k=

G(t, tk)Ik
(
tk , x(tk)

)
. (.)

From (.), we know that x(t) ∈ PC[, ] is a solution of problem (.) if and only if x is
a fixed point of the operator T . Also, for a positive number r, define 	r by

	r =
{

x ∈ PC[, ] : ‖x‖PC < r
}

.

Note that ∂	r = {x ∈ PC[, ] : ‖x‖PC = r} and 	̄r = {x ∈ PC[, ] : ‖x‖PC ≤ r}.

Definition . An operator is called completely continuous if it is continuous and maps
bounded sets into pre-compact sets.

Lemma . Assume that (H)-(H) hold. Then T(Kτ ) ⊂ Kτ and T : Kτ → Kτ is a com-
pletely continuous.

Proof For t ∈ J , x ∈ Kτ , it follows from ((.)) and (.) that

(Tx)(t) =
∫ 


G(t, s)ω(s)f

(
s, x(s)

)
ds +

m∑

k=

G(t, tk)Ik
(
tk , x(tk)

)

≤ B

[∫ 


ω(s)f

(
s, x(s)

)
ds +

m∑

k=

Ik
(
tk , x(tk)

)
]

. (.)

On the other hand, it follows from (.), (.) and (.) that

∣
∣(Tx)′(t)

∣
∣ =

∣
∣
∣
∣
∣

∫ 


G′

t(t, s)ω(s)f
(
s, x(s)

)
ds +

m∑

k=

G′
t(t, tk)Ik

(
tk , x(tk)

)
∣
∣
∣
∣
∣

≤
∫ 



∣
∣G′

t(t, s)
∣
∣ω(s)f

(
s, x(s)

)
ds +

m∑

k=

∣
∣G′

t(t, tk)
∣
∣Ik

(
tk , x(tk)

)

≤ sinhγ

[∫ 


ω(s)f

(
s, x(s)

)
ds +

m∑

k=

Ik
(
tk , x(tk)

)
]

. (.)
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For any t ∈ J , combined with (.) and (.), we have

‖Tx‖PC ≤ ρ

[∫ 


ω(s)f

(
s, x(s)

)
ds +

m∑

k=

Ik
(
tk , x(tk)

)
]

. (.)

Then, by (.), (.) and (.), we have

min
t∈[τ ,τk ]

(Tx)(t) = min
t∈[τ ,τk ]

[∫ 


G(t, s)ω(s)f

(
s, x(s)

)
ds +

m∑

k=

G(t, tk)Ik
(
tk , x(tk)

)
]

≥ D′
k

γ sinhγ

[∫ 


ω(s)f

(
s, x(s)

)
ds +

m∑

k=

Ik
(
tk , x(tk)

)
]

≥ D′
k

ργ sinhγ
ρ

[∫ 


ω(s)f

(
s, x(s)

)
ds +

m∑

k=

Ik
(
tk , x(tk)

)
]

≥ σk‖Tx‖PC . (.)

Evidently, T(Kτ ) ⊂ Kτ .
Next, we prove that the operator T : Kτ → Kτ is a completely continuous.
It is obvious that T is continuous.
Let Bd = {x ∈ PC[, ] | ‖x‖PC ≤ d} be bounded set. Then, for all x ∈ Bd , by the defini-

tion of ‖Tx‖∞, ‖Tx′‖∞, ‖Tx‖PC , we have

‖Tx‖∞ = sup
t∈J

∣
∣Tx(t)

∣
∣

≤ B

[∫ 


ω(s)f

(
s, x(s)

)
ds +

m∑

k=

Ik
(
tk , x(tk)

)
]

≤ B
(‖ω‖L + mL∗)

= �,
∥
∥Tx′∥∥∞ = sup

t∈J

∣
∣Tx′(t)

∣
∣

≤ sinhγ

[∫ 


ω(s)f

(
s, x(s)

)
ds +

m∑

k=

Ik
(
tk , x(tk)

)
]

≤ sinhγ
(‖ω‖L + mL∗)

= �,

and

‖Tx‖PC = max
{‖Tx‖∞,

∥
∥Tx′∥∥∞

} ≤ max{�,�},

where

L = max
t∈J ,x∈Kτ ,‖x‖PC ≤d

f (t, x), L∗ = max{Lk , k = , , . . . , m},
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Lk = max
t∈J ,x∈Kτ ,‖x‖PC ≤d

Ik
(
tk , x(tk)

)
.

Therefore T(Bd) is uniformly bounded.
On the other hand, for all t, t ∈ Jk with t < t, we have

∣
∣(Tx)(t) – (Tx)(t)

∣
∣ =

∣
∣
∣
∣

∫ t

t

(Tx)′(t) dt
∣
∣
∣
∣ ≤ �|t – t| →  (t → t).

Noting (.), we know that G′(t, s) is a constant and

∣
∣(Tx)′(t) – (Tx)′(t)

∣
∣ =

∣
∣
∣
∣
∣

∫ 



[
G′

t(t, s) – G′
t(t, s)

]
ω(s)f

(
s, x(s)

)
ds

+
n∑

k=

[
G′

t(t, tk) – G′
t(t, tk)

]
Ik

(
tk , x(tk)

)
∣
∣
∣
∣
∣

≤
∫ 



∣
∣G′

t(t, s) – G′
t(t, s)

∣
∣ω(s)f

(
s, x(s)

)
ds

+
n∑

k=

∣
∣G′

t(t, tk) – G′
t(t, tk)

∣
∣Ik

(
tk , x(tk)

) →  (t → t),

which shows that T(Bd) is equicontinuous. The Arzelà-Ascoli theorem implies that T is
completely continuous, and the lemma is proved. �

Lemma . (Hölder) Let e ∈ Lp[a, b] with p > , h ∈ Lq[a, b] with q >  and 
p + 

q = . Then
eh ∈ L[a, b] and

‖eh‖ ≤ ‖e‖p‖h‖q.

Let e ∈ L[a, b], h ∈ L∞[a, b]. Then eh ∈ L[a, b] and

‖eh‖ ≤ ‖e‖‖h‖∞.

Lemma . (See []; fixed point theorem of cone expansion and compression of norm
type) Let E be a Banach space, P be a cone in E. Assume that 	, 	 are bounded open
subsets in E with θ ∈ 	 and 	̄ ⊂ 	, where θ denotes zero operator. Suppose A : P ∩ (	̄ \
	) → P is completely continuous such that either

(i) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂	; ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂	;
(ii) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂	; ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂	.

Then A has a fixed point in P ∩ (	̄ \ 	).

3 Main results
In this section, using Lemmas .-., we give our main results in the case ω ∈ LP[, ];
p > , p =  and p = ∞.

For convenience, we write

D = max
{‖G‖q‖ω‖p,‖G‖‖ω‖∞, B‖ω‖

}
, ρ = min

{

,
A

sinhγ

}

.
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Firstly, we consider the case p > .

Theorem . Assume that (H)-(H) hold. Let {ri}∞i= and {Ri}∞i= be such that

Ri+ < σikri < ri < Lri < Ri, i = , , . . . , k = , , . . . , m,

where

L = max

{
γ sinhγ

A(N + m)D′
k

,
ρ

D + mB
, 

}

.

For each natural number i, we assume that f and Ik satisfy:

(H) For any t ∈ J , x ∈ [, Ri], f (t, x) ≤ MRi, and for any x ∈ [, Ri], k ∈ {, , . . . , m},
Ik(x(tk)) ≤ MRi, where

 < M ≤ ρ

D + mB
.

(H) For any t ∈ J , x ∈ [σikri, ri], f (t, x) ≥ Lri, and for any x ∈ [σikri, ri], k ∈ {, , . . . , m},
Ik(x) ≥ Lri.

Then problem (.) has denumerably many positive solutions {xi(t)}∞i= such that

ri ≤ ‖xi‖PC ≤ Ri, i = , , . . . .

Proof We consider the following open subset sequences {	,i}∞i= and {	,i}∞i= of PC[, ]:

{	,i}∞i= =
{

x ∈ PC[, ] : ‖x‖PC < Ri
}

;

{	,i}∞i= =
{

x ∈ PC[, ] : ‖x‖PC < ri
}

.

Let {τi}∞i= be as in the hypothesis and note that  < t′
i+ < τi < t′

i < δ, i = , , . . . .
For fixed i, we assume that x ∈ Kτi ∩ ∂	,i, then for any t ∈ J

ri = ‖x‖PC ≥ x(t) ≥ min
t∈[τi ,τ ′

i k]
x(t) ≥ σik‖x‖PC = σikri.

Noticing (.) and (.), for all x ∈ Kτi ∩ ∂	,i, by (H) and (H), we have

(Tx)(t) =
∫ 


G(t, s)ω(s)f

(
s, x(s)

)
ds +

m∑

k=

G(t, tk)Ik
(
x(tk)

)

≥ min
t∈[τ ,τ ′

k ]

[∫ 


G(t, s)ω(s)f

(
s, x(s)

)
ds +

m∑

k=

G(t, tk)Ik
(
x(tk)

)
]

≥ D′
k

γ sinhγ

[∫ 


ω(s)f

(
s, x(s)

)
ds +

m∑

k=

Ik
(
x(tk)

)
]

≥ D′
k

γ sinhγ

[

N
∫ τ ′

ik

τi

f
(
s, x(s)

)
ds + min

tk∈[τi ,τ ′
ik ]

m∑

k=

Ik
(
x(tk)

)
]
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≥ D′
k

γ sinhγ
L(N + m)ri

≥ ri = ‖x‖PC ,

which shows that

‖Tx‖PC ≥ ‖x‖PC , ∀x ∈ Kτi ∩ ∂	,i. (.)

On the other hand, for all t ∈ J , x ∈ Pi ∩ ∂	,i, we have x(t) ≤ ‖x‖PC = Ri.
Noticing (.) and (.), for all t ∈ J , x ∈ Kτi ∩ ∂	,i, by (H), we have

(Tx)(t) =
∫ 


G(t, s)ω(s)f

(
s, x(s)

)
ds +

m∑

k=

G(t, tk)Ik
(
x(tk)

)

≤ MRi

∫ 


G(s, s)ω(s) ds + MRi

m∑

k=

G(t, tk)

≤ MRi‖G‖q‖ω‖p + MRimB

≤ M(D + mB)Ri

≤ Ri = ‖x‖PC . (.)

Moreover, by (.), (.) and (H), we have

∣
∣(Tx)′(t)

∣
∣ ≤

∫ 



∣
∣G′

t(t, s)
∣
∣ω(s)f

(
s, x(s)

)
ds +

m∑

k=

∣
∣G′

t(t, tk)
∣
∣Ik

(
x(tk)

)

≤ sinhγ

[∫ 


ω(s)f

(
s, x(s)

)
ds +

m∑

k=

Ik
(
x(tk)

)
]

≤ sinhγ

A

[∫ 


G(s, s)ω(s)f

(
s, x(s)

)
ds +

m∑

k=

G(s, s)Ik
(
x(tk)

)
]

≤ sinhγ

A

[∫ 


‖G‖q‖ω‖pf

(
s, x(s)

)
ds + B

m∑

k=

Ik
(
x(tk)

)
]

≤ sinhγ

A
(
MRi‖G‖q‖ω‖p + BmMRi

)

≤ M
sinhγ

A
(D + mB)Ri

≤ Ri = ‖x‖PC . (.)

From (.) and (.), we have

‖Tx‖PC ≤ ‖x‖PC , ∀x ∈ Kτi ∩ ∂	,i. (.)

Applying Lemma . to (.) and (.) shows that the operator T has a fixed point xi ∈
Kτi ∩ (	̄,i/	,i) such that ri ≤ ‖xi‖ ≤ Ri. Since i ∈ N was arbitrary, the proof is complete. �

The following results deal with the case p = ∞.



Wang and Feng Boundary Value Problems  (2017) 2017:50 Page 9 of 12

Theorem . Assume that (H)-(H) hold. Let {ai}∞i= and {bi}∞i= be such that

ai+ < σikbi < bi < Lbi < ai, i = , , . . . , k = , , . . . , m.

For each natural number i, we assume that f and Ik satisfy (H) and (H), then problem
(.) has denumerably many positive solutions {xi(t)}∞i= such that

ri ≤ ‖xi‖PC ≤ Ri, i = , , . . . .

Proof Let ‖G‖‖ω‖∞ replace ‖G‖q‖ω‖p and repeat the previous argument. �

Finally, we consider the case of p = .

Theorem . Assume that (H)-(H) hold. Let {ai}∞i= and {bi}∞i= be such that

ai+ < σikbi < bi < Lbi < ai, i = , , . . . , k = , , . . . , m.

For each natural number i, we assume that f and Ik satisfy (H) and (H), then the prob-
lem (.) has denumerably many positive solutions {xi(t)}∞i= such that

ri ≤ ‖xi‖PC ≤ Ri, i = , , . . . .

Proof Similar to the proof of (.) and (.), for all t ∈ [τi, δ – τi], x ∈ Kτi ∩ ∂	,i, then
x(t) ≤ ‖x‖PC = Ri.

Since (.) and (.), for all x ∈ Kτi ∩ ∂	,i, by (H), we have

(Tx)(t) =
∫ 


G(t, s)ω(s)f

(
s, x(s)

)
ds +

m∑

k=

G(t, tk)Ik
(
tk , x(tk)

)

≤ B‖ω‖

∫ 


f
(
s, x(s)

)
ds + B

m∑

k=

Ik
(
tk , x(tk)

)

≤ MRiB‖ω‖ + mMRiB

≤ M(D + mB)Ri

≤ Ri = ‖x‖PC , (.)

and by (.), (.), (.) and (H),

∣
∣(Tx)′(t)

∣
∣ ≤

∫ 



∣
∣G′

t(t, s)
∣
∣ω(s)f

(
s, x(s)

)
ds +

m∑

k=

∣
∣G′

t(t, tk)
∣
∣Ik

(
tk , x(tk)

)

≤ sinhγ

[∫ 


ω(s)f

(
s, x(s)

)
ds +

m∑

k=

Ik
(
tk , x(tk)

)
]

≤ sinhγ

A

[∫ 


G(s, s)ω(s)f

(
s, x(s)

)
ds +

m∑

k=

G(s, s)Ik
(
tk , x(tk)

)
]
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≤ sinhγ

A

[∫ 


B‖ω‖f

(
s, x(s)

)
ds + B

m∑

k=

Ik
(
tk , x(tk)

)
]

≤ sinhγ

A
(
MRiB‖ω‖ + BmMRi

)

≤ M
sinhγ

A
B(D + m)Ri

≤ Ri = ‖x‖PC . (.)

From (.) and (.), we have

‖Tx‖PC ≤ ‖x‖PC , ∀x ∈ Kτi ∩ ∂	,i.

Similarly to the proof of Theorem ., we can finish the proof of Theorem .. �

4 An example
From Section , it is not difficult to see that (H) plays an important role in the proof
that problem (.) has denumerably many positive solutions. As an example, we consider
a family of functions ω(t) as follows.

Example . Let k = m = , t = 
 , and

t′
n = t –

n∑

i=


(i + )(i + )(i + )(i + )

, n = , , . . . .

It is easy to see that

t′
 =




<



,

t′
n – t′

n+ =


(n + )(n + )(n + )(n + )
, n = , , . . . ,

and

t∗ = lim
n→∞ tn = t –

∞∑

i=


(i + )(i + )(i + )(i + )

=



–



=




>



,

where
∑∞

i=


(i+)(i+)(i+)(i+) = 
 .

Let

ω(t) =
∞∑

i=

ωn(t), t ∈ J ,

where

ωn(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩


n(t′n+t′n+) , t ∈ [, t′n+t′n+

 ),
√
t′n–t

, t ∈ [ t′n+t′n+
 , t′

n),

√
t–t′n

, t ∈ [t′
n, t′n+t′n–

 ],


n(–t′n–t′n–) , t ∈ ( t′n+t′n–

 , ].
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From
∑∞

i=


n = π

 and
∑∞

i=


n = π

 , we have

∞∑

i=

∫ 


ωn(t) dt =

∞∑

i=

{∫ (t′n+t′n+)/




n(t′

n + t′
n+)

dt +
∫ 

(t′n–+t′n)/


n( – t′

n – t′
n–)

dt

+
∫ tn

(t′n+t′n+)/


√

t′
n – t

dt +
∫ (t′n–+t′n)/

tn


√

t – t′
n

dt
}

=
∞∑

i=


n +

√


∞∑

i=

(√(
t′
n – t′

n+
)

+
√(

t′
n– – t′

n
))

=
π


+

√


∞∑

i=

[


(n + )(n + )(n + )(n + )

] 


+
√


∞∑

i=

[


(n + )(n + )(n + )(n + )

] 


≤ π


+

√


∞∑

i=


n +

√


∞∑

i=


n

=
π


+

√

π


.

Thus, it is easy to see

∫ 


ω(t) dt =

∫ 



∞∑

i=

ωn(t) dt =
∞∑

i=

∫ 


ωn(t) dt < ∞.

Therefore, ω(t) ∈ L[, ], which satisfies condition (H).
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