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Abstract
We study the boundary value problems for the Laplacian on a sequence of domains
constructed by cutting level-n Sierpinski gaskets properly. Under proper assumptions
on these domains, we manage to give an explicit Poisson integral formula to obtain a
series of solutions subject to the boundary data. In particular, it is proved that there
exists a unique solution continuous on the closure of the domain for a given
sequence of convergent boundary values.
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1 Introduction
The study of boundary value problems on the domains of Sierpinski gasket (SG) was initi-
ated by []. Since then, two natural choices have been considered, namely the upper part of
SG cut by a horizontal line (cf. [, ]) and half Sierpinski gasket constructed by cutting SG
with a vertical line in the middle (cf. []). For more related works see, for example, [–].
This work is strongly motivated by [].

In this work, we will introduce a new class of domains on level-n Sierpinski gasket and
prove the exact form of the solution to the boundary value problems on these domains.
Note that these domains are new examples of non-p.c.f. (postcritically finite) type fractals
(can also be viewed as fractafold in [, ]) where harmonic functions can be well defined.

We follow [, ] by recalling that the fractal K is the invariant set for a finite iterated
function systems (IFS) of contractive similarities in the Euclidean space R

. We denote
the mappings {Fi}i=,....N– for some positive integer N . Then K is the unique nonempty
compact set satisfying

K =
N–⋃

i=

Fi(K). (.)

For m ≥ , we define the space of words of length m by

W N
m = {, , , . . . , N – }m =

{
ww . . . wm : wi ∈ {, , , . . . , N – }}.
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w ∈ W N
m is called a word of length m with symbols {, , , . . . , N – }. We also set W N∗ =⋃

m≥ W N
m and denote the length of w ∈ W N∗ by |w|.

Recall that K is called postcritically finite (p.c.f.) if K is connected and there exists a finite
set V ⊆ K called the boundary such that

FwK ∩ Fw′K ⊆ FwV ∩ Fw′V for w �= w′ with |w| =
∣∣w′∣∣, (.)

with the intersection disjoint from V. Set V = {q, q, . . . , qN} for N < N . We require
that each boundary point is the fixed point of one of the mappings {Fi} and that

Fi(qi) = qi for  ≤ i ≤ N. (.)

The standard SG is the unique nonempty compact set K satisfying (.) with the bound-
ary set V = {q, q, q}, where the contractive mappings {Fi}i=,, are given by

Fi(x) =



(x – qi–) + qi–.

Similarly, the level- Sierpinski gasket SG is the unique nonempty compact set K satisfy-
ing (.) with the boundary set V = {q, q, q}, where {Fi}i=..., are given by

Fi(x) =



(x – qi) + qi. (.)

Here q = q+q
 , q = q+q

 , q = q+q
 . See Figure  for an illustration.

As above, we can define level-n Sierpinski gasket in a similar way.
Inspired by [] we will construct a new class of domains in the following statement.

1.1 Description of the general domains
Let K = SGn and K̃ = 

n K , that is, shrinking K n times. Denote by Ẽ the compact triangular
domain with boundary set {q, q, q} which is constructed by gluing finite copies of K̃ at
boundary (see Example . below). Assume that the compact triangular domain Ẽ with
boundary {q, q′

, q′
} (as a part of Ẽ) satisfies Ẽ = F(̃E), where F(x) := q + x–q

L for some
constant L (see Figure (a)). Pick some point q̂ such that the contractive map

F̂(x) := q̂ +
x – q̂

L

Figure 1 General domain.
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satisfies F̂(q) = q. Set E = Ẽ\{q, q}, y = q, ym = F̂m(q), xm = F̂m–(q), Ym := F̂m–(E)
for integer m >  (see Figure (b)). Let X =

⋃∞
m={xm}. Set

∂Ym = {ym–, ym, xm}, Y m = Ym ∪ ∂Ym.

For each Y m define mapping Fm as

Fm(z) = ym +
z – ym

L
. (.)

Then by assumption Y m is self-similar with respect to Fm. Define

� :=
∞⋃

m=

Ym, � :=
∞⋃

m=

Y m. (.)

We say that the set � is a DCPB (domain of countable-point boundary) with boundary
∂� := X ∪ y ∪ q̂ for K = SGn.

Remark . In application, we need the constant L = nk with k >  to ensure that Ẽ is
self-similar with respect to the map F, and thus Fm(Y m) is exactly a copy of Y m+. This
property is useful in constructing harmonic functions on these domains in a sequel. The
description of those domains will be justified by the examples below.

1.2 Examples
Example . For K = SG, let Ẽ = F(K) be the compact triangular domain with boundary
set {q, p, p} (see Figure ). Let E = Ẽ/{q, p}, set y = q, ym = F(q), xm = Fm–

 (p) and
Ym = Fm–

 (E) for all positive integers m, where F is as defined in (.). Set F̂ = F, q̂ = q.
Then � (green part) can be well established as in (.) .

Example . For K = SG, Ẽ = F(K) ∪ F(K) ∪ F(K) is the compact triangular domain
with boundary set {q, p, p} (see Figure ). Let E = Ẽ/{q, p}, set y = q, ym = Fm

 (q),
xm = Fm–

 (p) and Ym = Fm–
 (E) for all positive integers m. Let X =

⋃∞
m={xm}. Setting

F̂ = F, q̂ = q, we obtain � (gray part) as a DCPB by (.).

Example . For K = SG, Ẽ = F(K) is the compact triangular domain with boundary
points {q, p, p} (see Figure ). Let q = p+q

 and define the contractive mapping

F(x) =
x – q


+ q. (.)

Figure 2 SG3.
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Figure 3 Domain in SG2.

Let E = Ẽ/{q, p}, set y = q, ym = Fm
 (q), xm = Fm–

 (p) and Ym = Fm–
 (E) for all m > .

Let X =
⋃∞

m={xm}. Set F̂ = F, q̂ = q. Now we can define the desired domain � by (.).
Note that F is not one of the contractive mappings for standard SG.

In the following section, we construct a solution to the boundary value problem using
harmonic extension algorithm. Denote by C(U) the space of all continuous functions on
some set U . We will see that the space of C(�)-solutions to the boundary value problem is
one-dimensional, but in general, the solution blows up at q̂. We show that if the boundary
data on X converges, there exists a unique C(�)-solution.

2 Main results
The Laplacian on the standard SG was first constructed as a generator of a stochastic pro-
cess by Goldstein [] and Kusuoka []. Kigami [, ] developed an analytical version
of the Laplacian for SG, and then generalized it to any p.c.f. self-similar set (see [], Def-
inition .., p.).

We now study the boundary value problems on � as a DCPB defined in Section .:

⎧
⎨

⎩
�u =  on �,

u(y) = a, u(xm) = am on ∂�,
(BVP)

where � denotes the Kigami’s Laplacian for K = SGn with respect to the standard self-
similar measure, u : � → R is the unknown, and {am}∞m= is the boundary data. Note that
the Laplacian � here is well defined for all cells Ym, hence the whole � by recalling that
every cell Y m of � can be viewed as a part of K = SGn or gluing several copies of it.

Harmonic extension algorithm is the simplest tool for constructing harmonic functions
subject to boundary value problems on SGn. In fact, we can apply this algorithm infinitely
many times and obtain a function harmonic on SGn.

Using this, we will give an explicit solution to (BVP) based on the following assumption.

Assumption  Let � be a DCPB for K = SGn. For each cell Ym with boundary set ∂Y m =
{ym–, ym, xm}, if some function u is harmonic on Ym and satisfies that

u(ym) = c, u(ym–) = c, u(xm) = c (.)
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Figure 4 Values for Assumption 0 in Example 1.3.

for some real constants c, c, c, then

⎡

⎢⎣
u(ym)

u(y′
m–)

u(x′
m)

⎤

⎥⎦ = M

⎡

⎢⎣
u(ym)

u(ym–)
u(xm)

⎤

⎥⎦ = M

⎡

⎢⎣
c

c

c

⎤

⎥⎦ , M =

⎡

⎢⎣
  
θ θ θ

θ θ θ

⎤

⎥⎦ (.)

for some positive constants θ, θ, θ satisfying that

θ + θ + θ = , (.)

where y′
m– = Fm(ym–), x′

m = Fm(xm) with Fm given by (.).

Note that this assumption can be easily verified by harmonic extension algorithm. In
Example ., we have (see Figure )

M =

⎡

⎢⎣
  


















⎤

⎥⎦ .

We set, for Assumption ,

� = θ + θ, � = ( – θ),

T+ =
� + K


, T– =

� – K


, K =
√

�
 – �.

Theorem . For every choice of the convergent boundary data {am} for some � as a DCPB
(defined in Section .) satisfying Assumption , there exists a one-dimensional space of
C(�) solutions to the (BVP). For each real constant λ, there exists a unique solution to the
(BVP) uλ such that uλ(y) = λ and that uλ(xm) = am for m ≥ . Furthermore, for m ≥ 

uλ(ym) = K–{Tm
+ φ+

m(λ) – Tm
– φ–

m(λ)
}

, (.)



Li Boundary Value Problems  (2017) 2017:47 Page 6 of 7

where

φ+
m(λ) = λ – T–

+ �(a + a) – (� + T+)
m∑

k=

T–k
+ ak ,

φ–
m(λ) = λ – T–

– �(a + a) – (� + T–)
m∑

k=

T–k
– ak .

Proof For fixed m ≥ , let u be a continuous piecewise harmonic function for (BVP). In
view of Assumption , it is easy to adapt the argument for [], proof of Lemma ., to
obtain that �u(ym) =  holds if and only if

u(ym) = �u(ym–) – �u(ym–) – am – �am–. (.)

The rest is trivial algebra as in [], proof of Theorem .. �

The theorem below can be obtained by following the argument in [], proof of Theo-
rem ., Corollary .. We include a brief proof for the readers’ convenience.

Theorem . If am → A as m → ∞ for some constant A, there exists a unique solution to
(BVP) u ∈ C(�) which satisfies that

u(y) = T–
+ �(a + a) + (� + T+)

∞∑

k=

T–k
+ ak , (.)

and for m ≥ 

u(ym) = K–(� + T+)
{ ∞∑

k=

T–k
+ am+k – Tm

–

∞∑

k=

T–k
+ ak

}

+ Tm
–

{
a + a + K–(� + T–)

m∑

k=

T–k
– ak

}
. (.)

Proof We first prove the theorem for the case A = .
Substituting (.) into (.) yields (.).
By using the triangle inequality, we have

∣∣u(ym)
∣∣ ≤ K–(� + T+)

{ ∞∑

k=

T–k
+ |am+k| – Tm

–

∞∑

k=

T–k
+ |ak|

}

+ Tm
–

{
|a| + |a| + K–(� + T–)

m∑

k=

T–k
– |ak|

}
. (.)

From this and am →  we can easily see that u(ym) → . Thus, by the definition of BVP,

lim
m→∞u(xm) = lim

m→∞u(ym) = .

It follows by [], Lemma ., that u ∈ C(�). Since harmonic functions that are continu-
ous to the boundary satisfy the maximum principle [], we obtain the uniqueness by the
standard argument for linear differential equations satisfying the maximum principle.
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For the case A �= , we consider the modified BVP:

⎧
⎨

⎩
�u =  on �,

u(y) = a – A, u(xm) = am – A on ∂�.

Noting that am – A → , the rest of the proof can be done by using the result from the last
part of the proof and the maximum principle. �

Remark . The results in [], Section , reduce to a special case of our theorems above
with parameters θ = /, θ = /, θ = /. Indeed, [] proved many more results on half
SG. Many of them are highly dependent on the fact that we can obtain SG from half SG
by reflection, and thus the top point enjoys many more nice properties than our domains.
We will touch on that elsewhere.
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