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Abstract
We investigate solutions to nonlinear operator equations which are difficult to
investigate with variational methods and obtain some abstract existence results by
topology degree methods. These results apply to ordinary differential systems with
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1 Introduction
We are interested in the problem

ẍ + V ′(t, x) = , (.)

x() = M
(
x(), x′(), x(), x′()

)
, (.)

x() = M
(
x(), x′(), x(), x′()

)
, (.)

where V ∈ C([, ] × Rn, R), V ′ denotes the gradient of V with respect to x and M, M :
Rn → Rn. When M ≡ x, M ≡ x are constants, Ekeland et al. [] investigated the prob-
lem in . Setting x = y + ( – t)x + tx, then (.)-(.) is equivalent to the problem

ÿ + V ′(t, y + ( – t)x + tx
)

= ,

y() =  = y(),

and its solutions are the critical points of the functional

I(y) ≡ 


∫ 



[∣∣ẏ(t)
∣∣ – V

(
t, y + ( – t)x + tx

)]
dt

defined on some suitable function space. However, if one of M and M is not constant,
(.)-(.) cannot be solved by variational methods generally. Note that the problem is
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equivalent to the integral equation

x(t) =
∫ 


G(t, s)V ′(s, x(s)

)
ds + (M – M)t + M, (.)

where G(t, s) = t( – s) as  ≤ t ≤ s ≤  and G(t, s) = s( – t) as  ≤ s ≤ t ≤ , Mi =
Mi(x(), x(), x′(), x′()) (i = , ).

Let X = L([, ], Rn), D(A) = H
([, ], Rn) = {x ∈ H([, ], Rn)|x() =  = x()},

A : D(A) → L([, ], Rn) by (Ax)(t) = –ẍ(t), N : C([, ], Rn) → L([, ], Rn) by
(Nx)(t) = V ′(t, x(t)), Y = C([, ], Rn), M : C([, ], Rn) → C([, ], Rn) by (Mx)(t) =
( – t)M(x(), x′(), x(), x′()) + tM(x(), x′(), x(), x′()). Then A is an unbounded self-
adjoint invertible operator in X with σ (A) = {kπ}∞i= = σd(A), and (.)-(.) turn to the
following operator equation:

x = A–N(x) + M(x). (.)

In this paper we also denote N(x) and M(x) by Nx and Mx, respectively, when there is no
confusion. We will first investigate (.), and then as applications we investigate ordinary
differential systems satisfying nonlinear boundary value conditions including (.)-(.).
In particular, we will investigate differential systems with impulsive effects.

Let X be a real infinite-dimensional separable Hilbert space with norm ‖ · ‖ and inner
product (·, ·). Let A : D(A) ⊂ X → X be an unbounded self-adjoint and invertible operator
satisfying σ (A) = σd(A). Assume that Y is a Banach space with the norm ‖ · ‖Y satisfying
D(A) ⊂ Y ⊂ X, the inclusion map from D(A) to Y is compact and the inclusion from Y
to X is continuous. Assume N : Y → X is continuous, M : Y → Y is compact and satisfies
‖M(x)‖Y ≤ ρ for all x ∈ Y and some ρ > .

We will also use the following assumptions:

(N) There exists B : Y → Ls(X), B, B ∈ Ls(X) with iA(B) = iA(B), νA(B) =  and there
is an ε >  such that B ≤ B(x) ≤ B, B ≥ εId and Nx = B(x)x + C(x), ‖C(x)‖ ≤ ρ for
all x ∈ Y and some ρ > .

(N) There exists B : Y → Ls(X), B, B ∈ Ls(X) with iA(B) = iA(B), νA(B) =  and
there is an ε >  and some r >  such that B ≥ εId, B ≤ B(x) ≤ B and Nx =
B(x)x for all x ∈ Y with ‖x‖Y ≤ r.

(M) M(x) = o(‖x‖Y ) as ‖x‖Y → .

Theorem . Assume N satisfies (N). Then (.) has one solution. If further (N) and (M)
hold, then (.) has a nontrivial solution provided iA(B) – iA(B) is odd.

We will give the proof in the next section, and now we return to a discussion of the
problem at the beginning of the paper. Let | · | denote the usual norm in Rm for positive
integer m. We need the following assumptions:

(V) There is a B̄ : [, ] × Rn → Ls(Rn) with B̄(·, x(·)) ∈ L∞([, ],Ls(Rn)) for all x ∈
C([, ], Rn) and there exists B̄, B̄ ∈ L∞([, ],Ls(Rn)) such that

V ′(t, x) = B̄(t, x)x + h(t, x), B̄(t) ≤ B̄(t, x) ≤ B̄(t)

for all (t, x) ∈ [, ] × Rn, h : [, ] × Rn → Rn is bounded.
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(V) There exists B̄ : [, ] × Rn → L∞(Rn) with B̄(·, x(·)) ∈ L∞([, ],Ls(Rn)) for all x ∈
C([, ], Rn) and there exists B̄, B̄ ∈ L∞([, ],Ls(Rn)) such that

V ′(t, x) = B̄(t, x)x, B̄(t) ≤ B̄(t, x) ≤ B̄(t)

for all (t, x) ∈ [, ] × Rn with |x| ≤ r for some r > .
(M) Mi(ξ ) = o(|ξ |) as |ξ | → , Mi (i = , ) are continuous and bounded.

We will also use the index (νs
,π (B̄), is

,π (B̄)) concerning the following systems:

ẍ(t) + B̄(t) = , (.)

x() =  = x(), (.)

where B̄ ∈ L∞([, ],Ls(Rn)).

Definition . (See Definition A.) For any B̄ ∈ L∞([, ],Ls(Rn)), we define

νs
,π (B̄) = the dimension of the solution space of (.)-(.),

is
,π (B̄) =

∑

λ<

νs
,π (B̄ + λIn).

Note that from Definition . for c ∈ R, νs
,π (cIn) =  as c �= kπ and νs

,π (cIn) = n as
c = kπ for k = , , . . . ; and is

,π (cIn) =  as c ≤ π and is
,π (cIn) = kn as kπ < c ≤ (k +)π

for k = , , . . . .

Theorem . If V satisfies (V) with is
,π (B̄) = is

,π (B̄), νs
,π (B̄) = , then (.)-(.) has one

solution. Furthermore, if (V) and (M) hold, then (.)-(.) has one nontrivial solution
provided is

,π (B̄) = is
,π (B̄), νs

,π (B̄) =  and is
,π (B̄) – is

,π (B̄) is odd.

Proof We only give the proof for the case that there exists ε >  such that B ≥ εIn, B ≥
εIn. The complete proof will be given in Section  as a special case of a more general re-
sult. Let X = L([, ], Rn), D(A) = {x ∈ H([, ], Rn)|x() =  = x()} and Y = C([, ], Rn).
The inclusion maps D(A) → Y , Y → X are compact and continuous, respectively. De-
fine A : D(A) → L([, ], Rn) by (Ax)(t) = –ẍ(t), then A is invertible. Define N : Y → X
and M : Y → Y by (Nx)(t) = V ′(t, x(t)) and (Mx)(t) = tM(x(), x(), x′(), x′()) + ( –
t)M(x(), x(), x′(), x′()), respectively. Then (.)-(.) is equivalent to (.) or (.). Be-
cause Mi is bounded, there exists c >  such that |Mi(ξ )| ≤ c for all ξ ∈ Rn, i = , .
Assume {xj} ⊂ Y is bounded. Then ‖Mxj‖Y ≤ c, and |(Mxj)(t) – (Mxj)(s)| ≤ c|t – s|,
|(Mxj)′(t) – (Mxj)′(s)| =  for all t, s ∈ [, ]. By Ascoli-Arzela’s theorem, {Mxj} has a con-
vergent subsequence in Y . Moreover, M : Y → Y is continuous via the continuity of Mi

(i = , ). So M is compact. Because assumptions (V), (V), (M) imply (N), (N), (M),
Theorem . follows Theorem . directly. �

Remark
. As in [], p., if we assume V ∈ C([, ] × Rn) and B̄(t) ≤ V ′′(t, x) ≤ B̄(t) for all

(t, x) ∈ [, ] × Rn with |x| ≥ r > , then (V) (with B̄, B̄ replaced by B̄ – εIn, B̄ + εIn
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for small ε > ) holds. In fact, for any ε > , there exists δ ∈ (, ) such that

B̄ –


εIn ≤ ( – δ)B̄ ≤ ( – δ)B̄ ≤ B̄ +



εIn,



εIn ≤

∫ δ


V ′′(t, θx) dθ ≤ 


εIn.

Set

B̄(t, x) =
∫ 


V ′′(t, θx) dθ , |x| ≥ rδ–

= B̄(t), |x| ≤ rδ–.

It follows that

B̄(t) – εIn ≤ B̄(t, x) ≤ B̄(t) + εIn

for all (t, x) ∈ [, ] × Rn. And h(t, x) = V ′(t, x) – B̄(t, x) = V ′(t, ) (as |x| > rδ–) is
bounded. If is

,π (B̄) = is
,π (B̄), νs

,π (B̄) = , then there exists ε >  such that
is
,π (B̄ – εIn) = is

,π (B̄ + εIn), νs
,π (B̄ + εIn) =  via Proposition A.(ii).

. In (.) and (V – V) if we replace V ′(t, x) by F ∈ C([, ] × Rn, Rn), the results in
Theorem . are also valid.

. Condition (N) is called the asymptotically linear condition; concerning other
conditions like superlinear or sublinear conditions for operator equations we refer
to [].

The proof of Theorem . will be given in Section  and in Sections - we will investigate
its other applications. Especially we will investigate differential systems with impulsive
effects [–], which is not easy to investigate by variational methods. In the Appendix
we recall some useful results concerning the index theory for linear self-adjoint operator
equations in [] which will be used in other sections.

2 Proof of Theorem 1.1
In this section we will prove Theorem .. We need two lemmas about the Leray-Schauder
degree. Suppose X is a Banach space and � ⊂ X is a bounded open set. T : � → X is
compact and x–Tx is not zero for all x ∈ ∂�, so the Leray-Schauder degree deg(Id–T ,�) ∈
Z is defined. We have the following well-known lemmas.

Lemma .
(i) If deg(Id – T ,�) is not zero, then there exists x ∈ � such that x – Tx = ,

(ii) If K is linear compact, ker(Id – K) =  and  ∈ �, then deg(Id – K ,�) �= ,
(iii) deg(Id – Tλ,�) is constant for λ ∈ [, ] provided x – Tλx is not zero for all x ∈ ∂�

and Tλx = ( – λ)Tx + λTx and T, T : � → X are compact.

Lemma . Assume K : X → X is a linear compact operator,  /∈ σ (K) the spectral of K .
Let � be an open bounded subset of X with  ∈ �. Then deg(Id – K ,�) = (–)β where
β =

∑
λj>,λj∈σ (K ) βj and βj = dim ker

⋃∞
m=(K – λj)m.
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Proof of Theorem . Since (N) holds, A–N + M is a compact operator on Y . Now we
want to prove deg(Id – (A–N + M), UR) �=  for some open ball UR in Y with center  and
radius R > . It suffices to show that the possible solutions of the following equations are
a priori bounded for λ ∈ (, ) with respect to the norm ‖ · ‖Y :

x – λ
(
A–N(x) + M(x)

)
– ( – λ)A–Bx = . (.)

If not, there exist {xj}∞j= ⊂ Y with ‖xj‖Y → +∞, and {λj}∞j= ⊂ (, ) such that

xj – λj
(
A–N(xj) + M(xj)

)
– ( – λj)A–Bxj = . (.)

Set yj = xj/‖xj‖Y . Then (.) turns to

yj – λj
(
A–N(xj) + M(xj)

)
/‖xj‖Y – ( – λj)A–Byj = . (.)

Because ‖yj‖Y = , {yj} is bounded in X. We may assume yj ⇀ y in Y and yj → y in X for
some y ∈ Y by going to subsequences if necessary. Further we claim

B(xj)y ⇀ Dy. (.)

in X for any given y ∈ X and some D ∈ Ls(X). In fact, by (N), {‖B(xj)‖} is bounded, so it
follows that

B(xj)(yj – y) →  (.)

in X. Because X is separable, there exists a countably orthonormal basis {ej}∞j=. Since
{B(xj)e} is bounded in X, we have B(xj(i))e ⇀ ξ in X, where j(i) is a subsequence
of the positive integer sequence. Now {B(xj(i))e} is also bounded, again there exist a
subsequence j(i) of j(i) and ξ ∈ X such that B(xj(i))e ⇀ ξ. Repeating this process
and using the standard diagonal process, there exists a subsequence jk = jk(k) such that
B(xjk )el ⇀ ξl for any given l. Define a linear operator D on X by Dej = ξj. Then B(xjk )x ⇀

Dx in X for any given x ∈ X. So (.) holds. By assumptions, A– : X → X is com-
pact, thus A–B(xj)yj → A–Dy, A–Byj → A–By in X via (.) and (.). By (N),
A–C(xj)
‖xj‖Y

+ M(xj)
‖xj‖Y

→  in X. And from (.),

(y, yj) = λj

(
y, A–B(xj)yj +

A–C(xj)
‖xj‖Y

+
M(xj)
‖xj‖Y

)
+ ( – λj)

(
y, A–Byj

)
(.)

for any y ∈ X. Further we assume λj → λ. Taking the limit in (.) and considering (.)
and (.) yield

(y, y) =
(
y,λA–Dy + ( – λ)A–By

)

for all y ∈ X and

Ay – By = ,
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where B = λD + ( –λ)B satisfying B ≤ B ≤ B. By Proposition A.(ii), νA(B) = . By
the above argument and (.), {yj} is convergent in Y by going to subsequence if necessary.
So ‖y‖Y =  and y = y is a nontrivial solution of Ay – By = , a contradiction. Thus,
there is R >  such that as ‖x‖Y ≥ R, x – λ(A–N(x) + M(x)) – ( – λ)A–Bx �=  for all λ ∈
(, ). So deg(Id – Tλ, UR) is well defined where Tλ = λ(A–N(x) + M(x)) + ( – λ)A–Bx. By
Lemma .(ii)-(iii), deg(Id – T, UR) = deg(Id – T, UR) �=  because of  ∈ UR and ker{Id –
A–B} = {} since νA(B). Hence, (.) has one solution.

Further assume (N) and (M) hold. To obtain a nontrivial solution of (.), we claim that
the following problem:

x – λ
(
A–N(x) + M(x)

)
– ( – λ)A–Bx = 

has no solution x satisfying  < ‖x‖Y ≤ r.
If not, there exist {xk}∞k= ⊂ Y such that ‖xk‖Y →  and {λk}∞k= ⊂ (, ) such that

xk – λk
(
A–N(xk) + M(xk)

)
– ( – λk)A–Bxk = .

We have

xk – λkM(xk) – A–B̃kxk = , (.)

where B̃k = λkB(xk) + ( – λk)B. Set yk = xk
‖xk‖Y

. Then ‖yk‖Y = , yk ⇀ y in X and (.)
turns to

yk –
λkM(xk)
‖xk‖Y

– A–B̃kyk = . (.)

By (M), M(xk )
‖xk‖ → ; and as before there exists a D ∈ Ls(X) satisfying B ≤ D ≤ B such

that A–B̃k(yk) → A–Dy in Y . Taking the limit in (.) yields

y – A–Dy = ,

where B ≤ D ≤ B, so νA(D) = . As above we have ‖y‖Y = , y = y is a nontrivial
solution of Ay – Dy = , a contradiction. Now we prove

deg
(
Id – A–B, Ur

)
= (–)I(,B). (.)

By Proposition A., setting K = A–B yields

∑

λ>,λ∈σ (K )

dim ker(K – λ) =
∑

λ>,λ∈σ (K )

νA

(

λ

B

)
=

∑

β∈(,)

ν(βB) = IA(, B).

By Lemma ., in order to prove (.) we need only to show that ker(K –λ) = ker(K –λ).
In fact, assume ker(K –λ)x = . Then x̄ ≡ (K –λ)x = (A– –λB–

 )Bx ∈ R(A– –λB–
 ) and

 = (K –λ)x̄ = (A– –λB–
 )Bx̄, so Bx̄ ∈ ker(A– –λB–

 ). Because A– –λB–
 is self-adjoint,

(Bx̄, c̄) = , and x̄ = .
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By Lemmas .-. and (.),

deg
(
Id –

(
A–N + M

)
, Ur

)
= deg

(
Id – A–B, Ur

)
= (–)IA(,B).

Similarly,

deg
(
Id –

(
A–N + M

)
, UR

)
= deg

(
Id – A–B, UR

)
= (–)IA(,B).

Hence

deg
(
Id –

(
A–N + M

)
, UR \ Ūr

)

= deg
(
Id –

(
A–N + M

)
, UR

)
– deg

(
Id –

(
A–N + M

)
, Ur

)

= (–)IA(,B) – (–)IA(,B) �= ,

since IA(, B) – IA(, B) = iA(B) – iA(B) (via Proposition A.(ii)) is odd. Therefore (.)
has one solution x with ‖x‖Y ∈ (r, R]. �

Remark As M(x) = , (.) reduces to the equation

Ax = N(x).

When Y = D(|A| 
 ), Theorem . reduces to [], Theorem .., as σ (A) = σd(A) is bounded

from below, and to [], Theorem .., as σ (A) = σd(A) is unbounded both from above and
below.

3 Applications to first order Hamiltonian systems
Consider the following problem:

ẋ = JH ′(t, x), (.)

x() cosα + x() sinα = M
(
x(), x()

)
, (.)

x() cosβ + x() sinβ = M
(
x(), x()

)
, (.)

where H ∈ C([, ] × Rn, Rn) and H ′(t, x) is the gradient of H with respect to x, x =
(x, x), x, x ∈ Rn, α ∈ [,π ), β ∈ (,π ], J is the standard symplectic matrix and Mi ∈
C(Rn × Rn, Rn) are bounded (i = , ). x : [, ] → Rn is said to be a solution of (.)-(.)
if x ∈ C([, ], Rn) and x = x(t) satisfies (.)-(.).

We also make the following assumptions:

(H) There exists B̄ : [, ] × Rn → Ls(Rn) with B̄(·, x(·)) ∈ L∞([, ],Ls(Rn)) for all x ∈
C([, ], Rn), B̄, B̄ ∈ L∞([, ],Ls(Rn)) such that

H ′(t, x) = B̄(t, x)x + h(t, x), B̄(t) ≤ B̄(t, x) ≤ B̄(t)

for all (t, x) ∈ [, ] × Rn, and h(t, x) : [, ] × Rn → Rn is bounded.
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(H) There exists B̄ : [, ] × Rn → Ls(Rn) with B̄(·, x(·)) ∈ L∞([, ],Ls(Rn)) for all
x ∈ C([, ], Rn), B̄, B̄ ∈ L∞([, ],Ls(Rn)) such that

H ′(t, x) = B̄(t, x)x, B̄(t) ≤ B̄(t, x) ≤ B̄(t)

for all (t, x) ∈ [, ] × Rn with |x| ≤ r for some constant r > .

Theorem . If H satisfies (H) with if
α,β (B̄) = if

α,β (B̄), ν
f
α,β (B̄) = , then (.)-(.) has

one solution. Furthermore, if (H) and (M) hold, then (.)-(.) has one nontrivial solu-
tion provided if

α,β (B̄) = if
α,β (B̄), ν f

α,β (B̄) =  and if
α,β (B̄) – if

α,β (B̄) is odd.

Proof Let X = L([, ], Rn), Y = C([, ], Rn), D(A) = {x ∈ H([, ], Rn)|x() cosα +
x() sinα = , x() cosβ + x() sinβ = }, A : D(A) ⊂ Y → X by (Ax)(t) = –Jẋ(t) –
μx(t) where μ < , μ �= β –α+kπ , k ∈ Z and B –μIn ≥ In, B –μIn ≥ In. Then A is
an unbounded self-adjoint and invertible operator in X with σ (A) = σd(A) = {β –α –μ +
kπ |k ∈ Z}. N : Y → Y by (Nx)(t) = H ′(t, x(t)) – μx(t), (B(x)y)(t) = B̄(t, x(t))y(t) – μy(t).
Hence (H), (H) imply (N), (N), respectively. Set (Ax)(t) = –Jẋ(t), (̃Bix)(t) = B̄i(t)–μx(t),
(̃Bix)(t) = B̄i(t) – μx(t) and (Bix)(t) = B̄i(t), (Bix)(t) = B̄i(t); then A = A – μId, B̃i =
Bi – μId, B̃i = Bi – μId (i = , ). By the definition in the Appendix, ν

f
α,β (B̄) = νA(B),

and

iA (B̃) – iA (B̃) =
∑

≤λ<

νA

(
( – λ)B̃ + λB̃

)
=

∑

≤λ<

νA
(
( – λ)B + λB

)

= if
α,β (B̄) – if

α,β (B̄).

Hence, if
α,β (B̄) = if

α,β (B̄) implies iA(B) = iA(B) and if
α,β (B̄) – if

α,β (B̄) is odd means that
iA(B) – iA(B) is odd. Therefore, in order to finish the proof we need only to show that
(.)-(.) can be written in the form of (.). Noticing that (.) is equivalent to

x′(t) – Jμx(t) = J
(
H ′(t, x) – μx(t)

) ≡ Jf(t).

Multiplying the equation with the integral factor e–Jμt and integrating over [, t], we can
get

x(t) = eJμtx() +
∫ t


eJμ(t–s)Jf(s) ds.

Considering (.)-(.) yields

x() =


�

(
In sin(μ – β) In sinα

In cos(μ – β) –In cosα

)(
M

M

)

–


�

(
In sinα

–In cosα

)
(

In cosβ In sinβ

)∫ 


eJμ(–s)Jf(s) ds,

where � = sin(μ – β + α). Then (.)-(.) is equivalent to

x(t) =
∫ 


G(t, s)f(s) ds + M(x) = A–

 N(x) + M(x), (.)
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where, as  ≤ s ≤ t ≤ ,

G(t, s) = eJμ(t–s)J –


�

(
In sinα

–In cosα

)
(

In cosβ In sinβ

)
eJμ(–s)J ;

as  ≤ t ≤ s ≤ ,

G(t, s) = –


�

(
In sinα

–In cosα

)
(

In cosβ In sinβ

)
eJμ(–s)J ;

and

(
Mx

)
(t) =


�

(
In sin(μ – β – μt) In sin(α + μt)
In cos(μ – β – μt) –In cos(α + μt)

)(
M

M

)

.

It is easy to see that M(x) is a compact operator satisfying ‖M(x)‖Y ≤ ρ for all x ∈ Y and
some ρ >  and (M) implies (M). Hence Theorem . follows from Theorem .. �

As an application of Theorem . we investigate the following second order Hamiltonian
systems:

ẍ + V ′(t, x) = , (.)

x() cosα – x′() sinα = M
(
x(), x(), x′(), x′()

)
, (.)

x() cosβ – x′() sinβ = M
(
x(), x(), x′(), x′()

)
, (.)

where V ∈ C([, ] × Rn, R), V ′ denotes the gradient of V with respect to x, α ∈ [,π ),
β ∈ (,π ], M, M : Rn → Rn are continuous and bounded. x : [, ] → Rn is said to be a
solution of (.)-(.) if x ∈ C([, ], Rn) and x = x(t) satisfies (.)-(.).

Corollary . If V satisfies (V) with is
α,β (B̄) = is

α,β (B̄), νs
α,β (B̄) = , then (.)-(.) has

one solution. Furthermore, if (V) and (M) hold, then (.)-(.) have one nontrivial so-
lution provided is

α,β (B̄) = is
α,β (B̄), νs

α,β (B̄) =  and is
α,β (B̄) – is

α,β (B̄) is odd.

Proof Define y = –ẋ, z = (x, y), H(t, z) = 
 |y| + V (t, x). Then (.)-(.) are equivalent to

(.)-(.). If (V) holds, then

H ′(t, z) = diag
{

B̄(t, x), In
}

z +
(
h(t, x), 

)
;

and if (V) holds, then

H ′(t, z) = diag
{

B̄(t, x), In
}

z

for all (t, z) ∈ [, ] × Rn with |z| ≤ r. By Proposition A., νs
α,β (B̄) = ν

f
α,β (diag{B̄, In}),

νs
α,β (B̄) = ν

f
α,β (diag{B̄, In}), and is

α,β (B̄i) = if
α,β (diag{B̄i, In}), is

α,β (B̄i) = if
α,β (diag{B̄i, In}) (i =

, ). Hence, the results follow from Theorem .. �
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Remark
. When α = , β = π , (.)-(.) reduce to (.)-(.), so that Corollary . contains

Theorem . as a special case.
. When M(ξ ) = , M(ξ ) =  for ξ ∈ Rn, the first part of Theorem . reduces [],

Theorem ...

Next we discuss the problem

ẋ = JH ′(t, x),

x() – Px() = M
(
x(), x()

)
, (.)

where P ∈ Sp(Rn), M : Rn × Rn → Rn is continuous and bounded. x : [, ] → Rn is
said to be a solution of (.) and (.) if x ∈ C([, ], Rn) and x = x(t) satisfies (.) and
(.). We will use the following assumption:

(M) M(ξ ) = o(|ξ |) as |ξ | → .

Theorem . If H satisfies (H) with if
P(B̄) = if

P(B̄), ν
f
P(B̄) = , then the problem (.)

and (.) has one solution. Furthermore, if (H) and (M) hold, then the problem (.) and
(.) has one nontrivial solution provided if

P(B̄) = if
P(B̄), ν f

P(B̄) =  and if
P(B̄) – if

P(B̄)
is odd.

Proof Let X = L([, ], Rn), Y = C([, ], Rn). Define D(A) = {x ∈ H([, ], Rn)|x() =
Px()}, and A : D(A) ⊂ Y → X by (Ax)(t) = –Jẋ(t) –μx(t) where we choose μ <  such
that the operator A is invertible, the matrix (eJμ –P) is also invertible and B –μIn ≥ In,
B – μIn ≥ In. Then A is an unbounded self-adjoint and invertible operator in X with
σ (A) = σd(A). N : Y → Y by (Nx)(t) = H ′(t, x(t)) – μx(t) ≡ f(t).

Similar to the proof of Theorem ., if x = x(t) is a solution of (.) and (.), then

x(t) = eJμtx() +
∫ t


eJμ(t–s)Jf(s) ds.

Considering the boundary value condition (.) yields

x() =
(
eJμ – P

)–
(

M –
∫ 


eJμ(–s)Jf(s) ds

)
.

Then the problem (.) and (.) is equivalent to

x(t) =
∫ 


G(t, s)f(s) ds + M(x) = A–

 Nx + M(x),

where

G(t, s) = –eJμt(eJμ – P
)–eJμ(–s)J + eJμ(t–s)J

for  ≤ s ≤ t ≤ ;

G(t, s) = –eJμt(eJμ – P
)–eJμ(–s)J
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for  ≤ t ≤ s ≤ ; and

(
Mx

)
(t) = eJμt(eJμ – P

)–M
(
x(), x()

)
.

M(x) is a compact operator and satisfies ‖M(x)‖Y ≤ ρ for some ρ > . Hence (H), (H),
(M) imply (N), (N), (M), respectively. Hence, Theorem . follows from Theorem .. �

Remark When M(ξ ) =  for ξ ∈ Rn, the first part of Theorem . reduces to [], The-
orem ...

4 Applications to second order Hamiltonian systems
We discuss the problem

ẍ + V ′(t, x) = , (.)

x() – Gx() = M
(
x(), x(), x′(), x′()

)
, (.)

x′() – Hx′() = M
(
x(), x(), x′(), x′()

)
, (.)

where Mi : Rn → Rn (i = , ) is continuous and bounded, G, H ∈ GL(n), GT H = In.
x : [, ] → Rn is said to be a solution of (.)-(.) if x ∈ C([, ], Rn) and x = x(t) satisfies
(.)-(.).

Theorem . If V satisfies (V) with is
M(B̄) = is

M(B̄), νs
M(B̄) = , then (.)-(.) have one

solution. Furthermore, if (V) and (M) hold, then (.)-(.) have one nontrivial solution
provided is

M(B̄) = is
M(B̄), νs

M(B̄) =  and is
M(B̄) – is

M(B̄) is odd.

Proof Let X = L([, ], Rn), D(A) = {x ∈ H([, ], Rn)|x() = Gx(), x′() = Hx′()}, Y =
C([, ], Rn). The inclusion maps D(A) → Y , Y → X are compact. Define A : D(A) →
L([, ], Rn) by (Ax)(t) = –ẍ(t) + x(t). So A is an unbounded self-adjoint operator in X
with σ (A) = σd(A). Define N : C([, ], Rn) → L([, ], Rn) by (Nx)(t) = V ′(t, x(t)) +
x(t) ≡ f(t). Then (.) is equivalent to

(
x′(t) – x(t)

)′ +
(
x′(t) – x(t)

)
= –f(t).

Multiplying the integral factor et and integrating over [, t], we can get

x′(t) – x(t) = e–t(x′() – x()
)

– e–t
∫ t


eτ f(τ ) dτ .

Multiplying the integral factor e–t and integrating over [, t] again yields

x(t) = etx() + sh t
(
x′() – x()

)
–

∫ t


sh(t – s)f(s) ds.

Considering (.)-(.), we get the following system:

⎧
⎨

⎩
sh x() + (ch In – H)x′() = M +

∫ 
 ch( – s)f(s) ds,

(ch In – G)x() + sh x′() = M +
∫ 

 sh( – s)f(s) ds.
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The system is equivalent to

(
K 
 K

)(
x()
x′()

)

=

(
sh In H – ch In

G – ch In sh In

)(
M +

∫ 
 ch( – s)f(s) ds

M +
∫ 

 sh( – s)f(s) ds

)

, (.)

where K = –In + ch (H + G) – HG, K = In + ch (H + G) – GH . Then

x() = K–


{
sh M +

∫ 



[
sh  ch( – s)In + sh( – s)(H – ch In)

]
f(s) ds

}
,

x′() = K–


{
(G – ch In)M +

∫ 



[
ch( – s)(G – ch In) + sh  sh( – s)In

]
f(s) ds

}
.

Then (.)-(.) are equivalent to

x(t) =
∫ 


G(t, s)f(s) ds + M(x) = A–

 Nx + M(x),

where

G(t, s) = ch t sh  ch( – s)K–
 – ch t sh( – s)K–

 (H – ch In)

+ sh t ch( – s)K–
 (G – ch In) + sh t sh  sh( – s)K–

 – sh(t – s)In

for  ≤ s ≤ t ≤ ;

G(t, s) = – ch t sh  ch( – s)K–
 + ch t sh( – s)K–

 (H – ch In)

– sh t ch( – s)(G – ch In) – sh t sh  sh( – s)K–


for  ≤ t ≤ s ≤ , and

M(x) =
[
ch tK–

 (H – ch In) + sh t sh K–


]
M

+
[
ch t sh K–

 + sh tK–
 (G – ch In)

]
M.

It is easy to check that M(x) is a compact operator and satisfies ‖M(x)‖Y ≤ ρ for some
ρ > . Because (V), (V), (M) imply (N), (N), (M), Theorem . follows from Theo-
rem .. �

5 Applications to first order Hamiltonian system with impulses
We first consider the following first order Hamiltonian system with impulses:

ẋ = JH ′(t, x), t ∈ (, ), t �= ti, i = , , . . . , p, (.)

�x(ti) = Ii
(
x(ti – )

)
, i = , , . . . , p, (.)

x() cosα + x() sinα = M
(
x(), x()

)
, (.)

x() cosβ + x() sinβ = M
(
x(), x()

)
, (.)
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where �x(ti) = x(ti + ) – x(ti – ), x = (x, x), x, x ∈ Rn and Ii : Rn → Rn, M, M :
Rn × Rn → Rn are continuous and bounded. x : [, ] → Rn is said to be a solution of
(.)-(.) if x ∈ C([, ]\{ti}p

i=, Rn), x(ti +), x(ti –) exist and x = x(t) satisfies (.)-(.).
We need the following assumption:n

(I) Ii(ξ ) = o(|ξ |) as |ξ | →  (i = , , . . . , p).

Theorem . If H satisfies (H) with if
α,β (B̄) = if

α,β (B̄), ν
f
α,β (B̄) = , then (.)-(.) have

one solution. Furthermore, if (H), (M) and (I) hold, then (.)-(.) have one nontrivial
solution provided if

α,β (B̄) = if
α,β (B̄), ν f

α,β (B̄) =  and if
α,β (B̄) – if

α,β (B̄) is odd.

Proof Let X = L([, ], Rn), Y = C(, , ti; Rn) = {x : [, ] → Rn|x(t) is continuous for t ∈
[, ] \ {ti}p

i=, x(ti + ), x(ti – ) exist, x(ti) = x(ti – ), i = , , . . . , p}, As in the proof of The-
orem ., (.)-(.) are equivalent to

x = A–
 Nx + M(x),

where A, N are defined as in Theorem . and

M(x) =
(
Mx

)
(t)

+


�
eJμt

(
In sinα

–In cosα

)(
In sinα

–In cosα

)(
In cosβ In sinβ

) p∑

i=

eJμ(–ti)Ii
(
x(ti)

)

+
∑

t>ti

eJμ(t–ti)Ii
(
x(ti)

)
.

Hence Theorem . follows from Theorem .. �

As an application of Theorem . we investigate the following second order Hamiltonian
systems with impulses:

ẍ + V ′(t, x) = , t ∈ (, ), t �= ti, i = , , . . . , p, (.)

�x(ti) = Ii
(
x(ti – )

)
, �x′(ti) = Ji

(
x′(ti – )

)
, i = , , . . . , p, (.)

x() cosα – x′() sinα = M
(
x(), x′(), x(), x′()

)
, (.)

x() cosβ – x′() sinβ = M
(
x(), x′(), x(), x′()

)
, (.)

where �x′(ti) = x′(ti + ) – x′(ti – ) and M, M : Rn → Rn, Ii, Ji : Rn → Rn (i = , , . . . , p)
are continuous and bounded. x : [, ] → Rn is said to be a solution of (.)-(.) if x ∈
C([, ] \ {ti}p

i=, Rn), x(ti + ), x(ti – ), x′(ti + ), x′(ti – ) exist, x(ti) = x(ti – ) and x = x(t)
satisfies (.)-(.). We need the following assumption:

(J) Ji(ξ ) = o(|ξ |) as |ξ | →  (i = , , . . . , p).

Corollary . If V satisfies (V) with is
α,β (B̄) = is

α,β (B̄), νs
α,β (B̄) = , then (.)-(.) have

one solution. Furthermore, if (V), (M), (I) and (J) hold, then (.)-(.) have one nontrivial
solution provided is

α,β (B̄) = is
α,β (B̄), νs

α,β (B̄) =  and is
α,β (B̄) – is

α,β (B̄) is odd.
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Proof Similar to the proof of Corollary .. Then we consider the problem

ẋ = JH ′(t, x), t ∈ (, ), t �= ti, i = , , . . . , p,

�x(ti) = Ii
(
x(ti – )

)
, i = , , . . . , p,

x() – Px() = M
(
x(), x()

)
, (.)

where Ii : Rn → Rn (i = , , . . . , p), M : Rn × Rn → Rn is continuous and bounded.
x : [, ] → Rn is said to be a solution of (.), (.) and (.) if x ∈ C([, ] \ {ti}p

i=, Rn),
x(ti + ), x(ti – ) exist, x(ti) = x(ti – ) and x = x(t) satisfies (.), (.) and (.). �

Theorem . If H satisfies (H) with if
P(B̄) = if

P(B̄), ν
f
P(B̄) = , then the system (.),

(.) and (.) has one solution. Furthermore, if (H), (M) and (I) hold, then the system
(.), (.) and (.) has one nontrivial solution provided if

P(B̄) = if
P(B̄), ν f

P(B̄) =  and
if
P(B̄) – if

P(B̄) is odd.

Proof Let X, Y be defined in the proof of Theorem ., and let D(A) and A be defined in
the proof of Theorem .. Then (.), (.) and (.) are equivalent to

x(t) = A–
 Nx + M(x),

where A, N are defined as in Theorem . and

M(x) = eJμt(eJμ – P
)–M – eJμt(eJμ – P

)–eJμ
∑

>ti

e–Jμti Ii

+ eJμt
∑

t>ti

e–Jμti Ii
(
x(ti)

)
.

It is easy to check that M(x) : Y → Y is a compact operator and satisfies ‖M(x)‖Y ≤ ρ

for some ρ > . �

6 Applications to second order Hamiltonian system with impulses
Consider the second order Hamiltonian system with impulses

ẍ + V ′(t, x) = , t ∈ (, ), t �= ti, i = , , . . . , p, (.)

�x(ti) = I
(
xi(ti – )

)
, �x′(ti) = Ji

(
x′(ti – )

)
, i = , , . . . , p, (.)

x() – Gx() = M
(
x(), x(), x′(), x′()

)
, (.)

x′() – Hx′() = M
(
x(), x(), x′(), x′()

)
, (.)

where �x(ti) = x(ti + ) – x(ti – ), �x′(ti) = x′(ti + ) – x′(ti – ), Ii, Ji : Rn → Rn (i =
, , . . . , p), Mi : Rn → Rn (i = , ) are continuous and bounded and G, H ∈ GL(n), GT H =
In. x : [, ] → Rn is said to be a solution of (.)-(.) if x ∈ C([, ] \ {ti}p

i=, Rn), x(ti + ),
x(ti – ), x′(ti + ), x′(ti – ) exist, x(ti) = x(ti – ) and x = x(t) satisfies (.)-(.).

Theorem . If V satisfies (V) with is
M(B̄) = is

M(B̄), νs
M(B̄) = , then (.)-(.) has one

solution. Furthermore, if (V), (M), (I) and (J) hold, then (.)-(.) has one nontrivial
solution provided is

M(B̄) = is
M(B̄), νs

M(B̄) =  and is
M(B̄) – is

M(B̄) is odd.
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Proof Let X = L([, ], Rn), Y = C(, , ti; Rn) = {x : [, ] → Rn|x′(t) is continuous for t ∈
[, ] \ {ti}p

i=, x′(ti + ), x′(ti – ) exist, x(ti) = x(ti – ), x′(ti) = x′(ti – ), i = , . . . , p}, and let
D(A), A be defined in the proof of Theorem .. Then (.)-(.) are equivalent to

x(t) =
∫ 


G(t, s)f(s) ds + M(x) = A–

 N(x) + M(x),

where G(t, x), f(s) are defined in the proof of Theorem .. We have

M(x) = M(x) +
(
sh tK–

 – sh  ch tK–


)
� +

[
sh  sh tK–

 – ch tK–
 (H – ch In)

]
�

+ et
∑

ti<t
eti Ii + et

∫ t


e–s

∑

ti<s
eti (Ji – Ii) ds

and

� = –
p∑

i=

 sh( – ti)Ii –
p∑

i=

e–+ti Ji –
∫ 


e–s

p∑

i=

eti (Ji – Ii) ds,

� =
p∑

i=

e–+ti Ii –
∫ 


e–s

p∑

i=

eti (Ji – Ii) ds.

Hence Theorem . follows from Theorem .. �

Appendix
In this section we will recall some results concerning index theory for self-adjoint operator
equations from Dong [, ]. For index theories for Hamiltonian systems and symplectic
paths we refer to [, ]. Let X be an infinite-dimensional Hilbert space, and let A be an
unbounded self-adjoint invertible operator satisfying σ (A) = σd(A). For any B, B ∈Ls(X),
we write B < B w.r.t. X (a subspace of X) if and only if (Bx, x) < (Bx, x) for all x ∈ X \{};
and write B ≤ B w.r.t. X if and only if (Bx, x) ≤ (Bx, x) for all x ∈ X. If X = X we just
write B < B or B ≤ B.

Definition A.
(i) For any B ∈Ls(X), the space of bounded self-adjoint operators on X , we define

νA(B) = dim ker(A – B), νA(B) is called the nullity of B.
(ii) For any B, B ∈Ls(X) with B < B, we define

IA(B, B) =
∑

λ∈[,)

νA
(
( – λ)B + λB

)

and for any B, B ∈Ls(X) we define

IA(B, B) = IA(B, kId) – IA(B, kId),

where Id : X → X is the identity map and kId > B, kId > B for some real number
k > .
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(iii) For any B ∈Ls(X), we define

iA(B) = iA(B) + IA(B, B),

where B ∈Ls(X) is fixed and iA(B) is a prescribed integer.

Proposition A.
(i) For any B ∈Ls(X), (νA(B), iA(B)) ∈ N × Z.

(ii) For any B, B ∈Ls(X), if B ≤ B, then iA(B) ≤ iA(B),
νA(B) + iA(B) ≤ νA(B) + iA(B); if B ≤ B, and B < B with respect to ker(A – B),
then νA(B) + iA(B) ≤ iA(B).

(iii) If infσ (A) ≥ λ for some λ ∈ R, we can choose B = λId and iA(B) = , then the
index defined by Definition A. satisfies

iA(B) =
∑

λ<

νA(B + λId).

Define X = L([, ], Rn),
D(A) = {x ∈ H([, ], Rn)|x() cosα + x() sinα = , x() cosβ + x() sinβ = }
and (Ax)(t) = –Jẋ(t) for all x ∈ D(A). For any B̄, B̄ ∈ L∞([, ],Ls(Rn)), we define
B̄ ≤ B̄ if and only if B̄(t) ≤ B̄(t) for a.e. t ∈ [, ]; and define B̄ < B̄ if and only if
B̄ ≤ B̄ and B̄(t) ≤ B̄(t) on a subset of (, ) with positive measure. For
B̄ ∈ L∞([, ],Ls(Rn)) we define (Bx)(t) = B̄(t)x(t) for all x ∈ X. It is easy to check
that B̄ ≤ B̄ means that B < B w.r.t. ker(A – B).

Definition A. For any B̄ ∈ L∞([, ],Ls(Rn)), we define

ν
f
α,β (B̄) = dim ker(A – B),

if
α,β (In) = is

α,β (In),

if
α,β (B̄) = if

α,β (In) + If
α,β (In, B̄),

where is
α,β (In) will be defined in Definition A., and as B̄ < B̄ and

If
α,β (B̄, B̄) =

∑

λ∈[,)

ν
f
α,β

(
( – λ)B̄ + λB̄

)
;

and for any B̄, B̄ ∈ L∞([, ],Ls(Rn)), we define

If
α,β (B̄, B̄) = If

α,β (B̄, kIn) – If
α,β (B̄, kIn),

where k ∈ R, kIn > B̄, kIn > B̄.
Define X = L([, ], Rn), D(A) = {x ∈ H([, ], Rn)|x() = Px()}, P ∈ Sp(n) and

(Ax)(t) = –Jẋ(t) for all x ∈ D(A).
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Definition A.
(i) For any B̄ ∈ L∞([, ],Ls(Rn)), we define

ν
f
P(B̄) = dim ker(A – B).

(ii) For any B̄, B̄ ∈ L∞([, ],Ls(Rn)) with B̄ < B̄, we define

If
P(B̄, B̄) =

∑

s∈[,)

ν
f
P
(
( – s)B̄ + sB̄

)
,

and if B̄ < B̄ does not hold, we define

If
P(B̄, B̄) = If

P(B̄, cIn) – If
P(B̄, cIn),

where c ∈ R such that cIn > B̄ and cIn > B̄.
(iii) For any B̄ ∈ L∞([, ],Ls(Rn)), we define

if
P(B̄) = if

P() + If
P(, B̄),

where if
P() ∈ Z is prescribed and depends only on P.

Define X = L([, ], Rn),
D(A) = {x ∈ H([, ], Rn)|x() cosα – x′() sinα = , x() cosβ – x′() sinβ = } for
some constants α ∈ [,π ), β ∈ (,π ] and (Ax)(t) = ẍ(t) for all x ∈ D(A).

Definition A. For any B̄ ∈ L∞([, ],Ls(Rn)), we define

νs
α,β (B̄) = dim ker(A – B),

is
α,β (B̄) =

∑

λ<

νs
α,β (B̄ + λIn),

where (Bx)(t) = B̄(t)x(t) for all x ∈ X.
Define X = L([, ], Rn), D(A) = {x ∈ H([, ], Rn)|x() = Mx(), x′() = Nx′()} where

M, N ∈ GL(n), MT N = In, and define (Ax)(t) = –ẍ(t).

Definition A. For any B̄ ∈ L∞([, ],Ls(Rn)), we define

νs
M(B̄) = dim ker(A – B),

is
M(B̄) =

∑

λ<

νs
M(B̄ + λIn).

Proposition A.
(i) For any B̄, B̄ ∈ L∞([, ],Ls(Rn)), if B̄ ≤ B̄, then is

α,β (B̄) ≤ is
α,β (B̄),

is
α,β (B̄) + νs

α,β (B̄) ≤ is
α,β (B̄) + νs

α,β (B̄); if B̄ < B̄, then is
α,β (B̄) + νs

α,β (B̄) ≤ is
α,β (B̄).

(ii) For any B̄ ∈ L∞([, ],Ls(Rn)),

νs
α,β (B̄) = ν

f
α,β

(
diag{B̄, In}

)
,

is
α,β (B̄) = if

α,β
(
diag{B̄, In}

)
.
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