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Abstract
In this paper, we investigate a global random attractor for a stochastic local modified
Swift-Hohenberg equation with multiplicative noise in Stratonovich sense. Through
the Ornstein-Uhlenbeck (O-U) transformation, we obtain the random dynamical
system associated with the stochastic local modified Swift-Hohenberg equation.
Using the properties of the O-U process, we derive the specific uniform a priori
estimates, using which we prove the existence of global random attractor for the
corresponding random dynamical system.
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1 Introduction
Swift and Hohenberg [] proposed a model for the convective instability in the Rayleigh-
Bénard convection, also known as the Swift-Hohenberg (S-H) equation, which is included
as an important equation in different branches of physics, such as Taylor-Couette flow [,
], the study of lasers [], and so on. After that, Doelman and Standstede [] proposed the
following modified Swift-Hohenberg equation for a pattern formation system near the
onset to instability:

ut + �u + �u + αu + b|∇u| + u = , (.)

where α and b are arbitrary constants. In the case of b = , it is the usual Swift-Hohenberg
equation. The additional term b|∇u| arises in the study of various pattern formation phe-
nomena involving some kind of phase turbulence or phase transition that breaks the sym-
metry u → –u. For more references, one can see [–] and the references therein. The
dynamical properties of the S-H equation are important for the studies of pattern forma-
tion and global attractors, and the stability of stationary solution and pattern selections of
the S-H equation have been extensively investigated; see [–].

It turns out that a stochastic equation can conform to physical phenomena better in
some cases. These random perturbations are intrinsic effects in a variety of settings and
spatial scales. In fact, when the Rayleigh number is near thermal equilibrium, the influence
of small noise or molecular noise is detected in various convection experiments [, ].
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As the effect of thermal fluctuations on the onset of convective motion into the Bénard
system is considered, the stochastic local S-H equation with additive noise [] is proposed:

ut = μu – ( + ∂xx)u – u + σξ . (.)

Furthermore, a local stochastic S-H equation driven by multiplicative noise arises when
the effects of small possible noise from μ is considered []:

ut = μu – ( + ∂xx)u – u + σu ◦ ξ , (.)

where σ > , and ξ = dW
dt is the generalized derivative of a real-valued Brownian motion.

There have been a lot of outstanding work and important results related to the existence
and uniqueness of solution and attractors for stochastic partial differential equations. For
research progress on these aspects, we refer to [–]. Until now, there are few results on
the dynamics behaviors of the stochastic local modified Swift-Hohenberg equation with
multiplicative noise in Stratonovich sense. This is our main purpose. After making use
of the O-U transform and changing the stochastic equation into the corresponding de-
terministic equation with random parameter, we obtain uniform a priori estimates under
some additional assumptions and prove the existence of global random attractor for the
random dynamical system associated with the stochastic local modified Swift-Hohenberg
equation. It allows us to overcome the computational difficulties according to the proper-
ties of the local modified Swift-Hohenberg equation. In particular, showing the existence
of a random attractor needs a lot of technical skills to obtain the desired results.

In this paper, we consider the following one-dimensional stochastic local modified Swift-
Hohenberg equation with multiplicative noise:

du +
(
�u + �u + αu + b|ux| – u)dt = σu ◦ dW (t) (.)

with initial condition

u(x, ) = u(x), x ∈ D, (.)

and the boundary conditions

u|∂D = �u|∂D = , x ∈ ∂D, (.)

where D is a bounded open interval, |b| �  is a constant, �u means uxx, and �u means
uxxxx.

An outline of this paper is as follows. We devote Section  to recall some definitions and
results referred to global random attractors and to present some notation. In Section , we
not only introduce the O-U transformer, but also obtain uniform a priori estimates of the
solution for the stochastic local modified Swift-Hohenberg equation. Finally, the proof of
the main theorem on the existence of global random attractor is presented in Section .

2 Preliminaries
There are many research results on random attractors and related issues. For simplicity of
the structure of the article, we only list the definitions; for the relevant theorems, we refer
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to [, ], and so on. Let (X,‖ · ‖X) be a completely separable Hilbert space with Borel
σ -algebra B(X), and let (�,F ,P, (θt)t∈R) be an ergodic metric dynamical system.

Definition . (See [, ]) A measurable mapping

ϕ : R+ × � × X → X, (t,ω, x) �→ ϕ(t,ω, x),

has the cocycle property:
() ϕ(,ω, x) is the identity mapping on X ;
() ϕ(t + s,ω, x) = ϕ(t, θsω,ϕ(s,ω, x)) for all s, t ≥ , x ∈ X , and ω ∈ �.
We call ϕ a random dynamical system (RDS) on X over (�,F ,P, (θt)t∈R). Furthermore,

the RDS ϕ is continuous if ϕ(t,ω, ·) = ϕ(t,ω) : X → X is continuous for all t ≥ .

Definition . (See [, ]) A random compact set A(ω) is said to be a random attractor
for RDS ϕ if the following conditions hold:

() pullback attracting property:

lim
t→+∞ d

(
ϕ
(
t, θ–tω,D(θ–tω)

)
;A(ω)

)
= ,

() the invariance property: ϕ(t,ω,A(ω)) = A(θtω) for P-a.e. ω ∈ � and all t ≥ .

Remark Let (�,F ,P) be a probability space with Wiener measure P. The Wiener shift
(θt)t∈R is defined by

θsω(t) = ω(t + s) – ω(s), t, s ∈ R.

Then (�,F ,P, (θt)t∈R) is an ergodic metric dynamical system; see [].

For the convenience of the following contents, we introduce some functional spaces
and some notations. Lq(D) is the Lebesgue space with norm ‖ · ‖Lq , and ‖ · ‖L = ‖ · ‖.
Particularly, ‖u‖L∞ = ess supx∈D |u(x)| for q = ∞.

Hσ (D) is the Sobolev space {u ∈ L(D), Dku ∈ L(D), k ≤ σ } with norm ‖ · ‖Hσ = ‖ · ‖σ .
Especially, H

(D) is the Sobolev space {u ∈ L(D), Dku ∈ L(D), k ≤ , ∂u
∂n |x∈∂D = }.

For notational simplicity, C is a generic constant that may take various values from line
to line; �v means vxx, and �v means vxxxx.

3 Uniform a priori estimates of solution
In this section, we mainly show uniform a priori estimates of a solution for the stochastic
local modified Swift-Hohenberg equation.

The original equation (.) can be rewritten as follows:

u(t) = u –
∫ t



(
αu + �u + �u + b|ux| – u)ds + σ

∫ t


u(s) ◦ dW (s).

We now introduce an O-U process z(θtω) that solves the following Itô equation:

dz + z dt = σ dW (t).
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By [, ], the random variable z(θtω) is tempered, and for every ω ∈ �̃, t �→ z(θtω) is con-
tinuous with respect to t. Especially, the properties limt→±∞ |z(θtω)|

|t| =  and

limt→±∞
∫ t

 z(θsω) ds
t =  hold.

Let v = e–z(θtω)u(t). Using the Itô equation, combined with the original equation (.), we
get

dv(t) = e–z(θtω) du(t) – u(t)e–z(θtω) ◦ d
(
z(θtω)

)

= –
(
�v + �v + αv + ez(θtω)v + bez(θtω)v

x
)

dt + z(θtω)v(t) dt.

Thus, we consider the following system:

dv
dt

+
(
α – z(θtω)

)
v + �v + �v + ez(θtω)v + bez(θtω)v

x = , (.)

v(x, ) = e–z(ω)u, (.)

v|∂D = �v|∂D = . (.)

Similarly to [, ], by the Galerkin method and some a priori estimates we can prove
that v(t,ω, v) is unique and continuous with respect to initial value v in H

(D) for P-a.e.
ω ∈ �, where v(t,ω, v) is the solution of system (.)-(.). Define the continuous random
dynamical system {ψ(t)}t≥ by

ψ(t,ω, v) = v(t,ω, v)

for all v ∈ H
(D), t ≥ , and ω ∈ �. Furthermore, setting u(t,ω, u) = ez(θtω)v(t,ω, v), we

have

φ(t,ω, u) = u(t,ω, u) = ez(θtω)v(t,ω, v) = ez(θtω)ψ(t,ω, v).

Then φ is a continuous random dynamical system on H
(D). It is straightforward to show

that the existence of a random attractor for φ is equivalent to the existence of a random
attractor for ψ .

In the following, provided that D is a collection of tempered random subsets of H
(D),

we will prove the existence of an absorbing set in H
(D) .

Lemma . Provided that v ∈ B = {B(ω)}ω ⊂ D , there exist a random radius ρ(ω) > 
and TB(ω) >  for P-a.e. ω ∈ � such that

∥
∥v

(
t, θ–tω, v(θ–tω)

)∥∥ ≤ ρ(ω), t > TB(ω). (.)

Proof Taking the inner product of equation (.) with v, we have




d
dt

‖v‖ +
(
α – z(θtω)

)∥∥v(t)
∥
∥ + (�v, v) + ‖�v‖ +

(
ez(θtω)v, v

)

+
(
bez(θtω)v

x , v
)

= . (.)
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Noticing that ez(θtω)(v, v) = ez(θtω)‖v‖
L and applying the Hölder inequality and ε-Young

inequality, we get

∣
∣(�v, v)

∣
∣ ≤ 


‖�v‖ + ‖v‖.

Now, we deal with the last term on the left side of equation (.). By integration by parts
we have

∫

D
bez(θtω)v

xv dx = –bez(θtω)
∫

D
v(vxv)x dx = –bez(θtω)

∫

D

(
vvxx + vv

x
)

dx,

and thus

bez(θtω)
∫

D
v

xv dx = –
b


ez(θtω)
∫

D
vvxx dx.

Applying the Hölder inequality and ε-Young inequality again, we get

∣
∣∣∣bez(θtω)

∫

D
v

xv dx
∣
∣∣∣ ≤ bCez(θtω)‖v‖

L‖vxx‖ ≤ 


‖vxx‖ + bCez(θtω)‖v‖
L .

Taking b small enough such that bC ≤ 
 , we obtain

∣∣∣
∣bez(θtω)

∫

D
v

xv dx
∣∣∣
∣ ≤ 


‖vxx‖ +




ez(θtω)‖v‖
L .

Putting all these inequalities together, we have




d
dt

‖v‖ +


‖�v‖ +

(
β – z(θtω)

)‖v‖ + (α – β – )‖v‖

+



ez(θtω)‖v‖
L ≤ , (.)

where β >  is a constant such that α – β –  < .
By the Sobolev imbedding L(D) ⊂ L(D) we get

d
dt

‖v‖ + 
(
β – z(θtω)

)‖v‖ + ‖�v‖

≤ –ez(θtω)‖v‖
L – C(α – β – )‖v‖

L .

We can change the right-hand side of this inequality as follows:

–ez(θtω)‖v‖
L – C(α – β – )‖v‖

L

= –ez(θtω)(‖v‖
L + Ce–z(θtω)(α – β – )

) + C(α – β – )e–z(θtω).

Then we have

d
dt

‖v‖ + 
(
β – z(θtω)

)‖v‖ + ‖�v‖ ≤ C(α – β – )e–z(θtω). (.)
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By the Gronwall inequality we have

∥
∥v

(
t,ω, v(ω)

)∥∥ ≤ e–βt+
∫ t

 z(θτ ω) dτ
∥
∥v(ω)

∥
∥

+ C(α – β – )
∫ t


e–z(θsω)–β(t–s)+

∫ t
s z(θτ ω) dτ ds. (.)

Furthermore, replacing ω with θ–tω in (.), then we have

∥∥v
(
t, θ–tω, v(θ–tω)

)∥∥

≤ e–t(β–
∫ 
–t z(θτ ω) dτ

t )∥∥v(θ–tω)
∥∥

+ C(α – β – )
∫ t


e–z(θs–tω)–β(t–s)+

∫ 
s–t z(θτ ω) dτ ds

= e–t(β–
∫ 
–t z(θτ ω) dτ

t )∥∥v(θ–tω)
∥
∥ + C(α – β – )

∫ 

–t
e–z(θsω)+βs+

∫ 
s z(θτ ω) dτ ds

≤ e–t(β–
∫ 
–t z(θτ ω) dτ

t )∥∥v(θ–tω)
∥∥

+ C(α – β – )
∫ 

–∞
es(β– z(θsω)

s +
∫ 
s z(θτ ω) dτ

s ) ds. (.)

Because of the properties of z(θtω), there exists TB(ω) >  such that, for all t ≥ TB(ω),

∫ 
–t z(θτω) dτ

t
≤ β


.

It follows that

e–t(β–
∫ 
–t z(θτ ω) dτ

t )∥∥v(θ–tω)
∥
∥ ≤ e–βt∥∥v(θ–tω)

∥
∥.

The random set D is tempered, which implies the boundedness of the first term on the
right-hand side of (.). The second term on the right-hand side of (.) is convergent.

Thus, there exist TB(ω) >  and a random variable ρ(ω) such that, for P-a.e. ω ∈ � and
all t > TB(ω),

∥
∥v

(
t, θ–tω, v(θ–tω)

)∥∥ ≤ ρ(ω). �

Lemma . Provided that v ∈ B = {B(ω)}ω ⊂ D , there exist a random radius ρ(ω) > 
and TB(ω) >  for P-a.e. ω ∈ � such that

∫ t+

t

∥
∥�v

(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds ≤ ρ(ω), t > TB(ω). (.)

Proof Multiplying equation (.) by eβt–
∫ t

 z(θτ ω) dτ , we get

d
dt

[
eβt–

∫ t
 z(θτ ω) dτ‖v‖] + eβt–

∫ t
 z(θτ ω) dτ‖�v‖

≤ C(α – β – )e–z(θtω)+βt–
∫ t

 z(θτ ω) dτ . (.)
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Set T̂ ≤ t ≤ t + . Integrating from T̂ to t, we have

eβt–
∫ t

 z(θτ ω) dτ
∥∥v(t)

∥∥ +
∫ t

T̂
eβs–

∫ s
 z(θτ ω) dτ

∥∥�v(s)
∥∥ ds

≤ C(α – β – )
∫ t

T̂
e–z(θsω)+βs–

∫ s
 z(θτ ω) dτ ds + eβT̂–

∫ T̂
 z(θτ ω) dτ

∥∥v
(
T̂ ,ω, v(ω)

)∥∥.

Multiplying this inequality by e–βt+
∫ t

 z(θτ ω) dτ and getting rid of the first term, we obtain

∫ t

T̂
eβ(s–t)+

∫ t
s z(θτ ω) dτ

∥
∥�v(s)

∥
∥ ds

≤ eβ(T̂–t)+
∫ t

T̂ z(θτ ω) dτ
∥∥v

(
T̂ ,ω, v(ω)

)∥∥

+ C(α – β – )
∫ t

T̂
e–z(θsω)+β(s–t)+

∫ t
s z(θτ ω) dτ ds. (.)

Now, substituting t for T̂ in (.), we obtain

∥
∥v

(
T̂ ,ω, v(ω)

)∥∥ ≤ e–βT̂+
∫ T̂

 z(θτ ω) dτ
∥
∥v(ω)

∥
∥

+ C(α – β – )
∫ T̂


e–z(θsω)–β(T̂–s)+

∫ T̂
s z(θτ ω) dτ ds. (.)

If we plug (.) back into (.), we have

∫ t

T̂
eβ(s–t)+

∫ t
s z(θτ ω) dτ

∥∥�v
(
s,ω, v(ω)

)∥∥ ds

≤ e–βt+
∫ t

 z(θτ ω) dτ
∥
∥v(ω)

∥
∥

+ C(α – β – )
∫ t


e–z(θsω)–β(t–s)+

∫ t
s z(θτ ω) dτ ds. (.)

Replacing ω with θ–tω in (.), we get

∫ t

T̂
eβ(s–t)+

∫ t
s z(θτ–tω) dτ

∥
∥�v

(
s, θ–tω, v(θ–tω)

)∥∥ ds

≤ C(α – β – )
∫ t


e–z(θs–tω)–β(t–s)+

∫ t
s z(θτ–tω) dτ ds

+ e–βt+
∫ t

 z(θτ–tω) dτ
∥
∥v(θ–tω)

∥
∥. (.)

In order to obtain the result, we need to substitute T̂ for t and t for t +  in (.) as follows:

∫ t+

t
eβ(s–t–)+

∫ t+
s z(θτ–t–ω) dτ

∥∥�v
(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds

≤ e–β(t+)+
∫ t+

 z(θτ–t–ω) dτ
∥∥v(θ–t–ω)

∥∥

+ C(α – β – )
∫ t+


e–z(θs–t–ω)–β(t+–s)+

∫ t+
s z(θτ–t–ω) dτ ds,
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that is,

∫ t+

t
eβ(s–t–)+

∫ 
s–t– z(θτ ω) dτ

∥
∥�v

(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds

≤ e–(t+)(β–
∫ 
–t– z(θτ ω) dτ

(t+) )∥∥v(θ–t–ω)
∥∥

+ C(α – β – )
∫ 

–t–
e–z(θsω)+βs+

∫ 
s z(θτ ω) dτ ds

≤ e–(t+)(β–
∫ 
–t– z(θτ ω) dτ

(t+) )∥∥v(θ–t–ω)
∥∥

+ C(α – β – )
∫ 

–∞
e–z(θsω)+βs+

∫ 
s z(θτ ω) dτ ds. (.)

According to the properties of z(θtω), when – ≤ s – t –  ≤ , we can deduce

∫ t+

t
eβ(s–t–)+

∫ 
s–t– z(θτ ω) dτ

∥
∥�v

(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds

≥ e–β– max–≤τ≤ |z(θτ ω)|
∫ t+

t

∥
∥�v

(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds. (.)

Combining estimates (.) and (.), we prove that there exist a random variable ρ(ω)
and TB(ω) >  such that, for P-a.e. ω ∈ � and all t > TB(ω),

∫ t+

t

∥
∥�v

(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds ≤ ρ(ω).

The proof of the lemma is now complete. �

4 The existence of random attractor
Lemma . Provided that v ∈ B = {B(ω)}ω ⊂ D , there exist a random radius ρ(ω) > 
and TB(ω) >  for P-a.e. ω ∈ � such that

∥∥�v
(
t, θ–tω, v(θ–tω)

)∥∥ ≤ ρ(ω), t > TB(ω). (.)

Proof Taking the inner product of equation (.) with �v, we have




d
dt

‖�v‖ +
∥
∥�v

∥
∥ +

(
�v,�v

)
+

(
α – z(θtω)

)‖�v‖

+
(
ez(θtω)v,�v

)
+

(
bez(θtω)(vx),�v

)
= . (.)

Applying the Hölder inequality and ε-Young inequality, we get

∣∣(�v,�v
)∣∣ ≤ 


∥∥�v

∥∥ + ‖�v‖.
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By the Gagliardo-Nirenberg inequality ‖v‖L ≤ C‖v‖ 
 ‖�v‖ 

 (see []) and the ε-Young
inequality we have

∣∣(ez(θtω)v,�v
)∣∣ ≤ Cez(θtω)‖v‖

L

∥∥�v
∥∥ ≤ Cez(θtω)∥∥�v

∥∥ · ‖v‖ 

∥∥�v

∥∥



≤ η
∥∥�v

∥∥ + C(η)e
z(θtω)

 ‖v‖ 
 .

Similarly, by the Gagliardo-Nirenberg inequality ‖vx‖L ≤ C‖v‖ 
 ‖�v‖ 

 and the ε-
Young inequality again, we obtain

∣
∣(bez(θtω)v

x ,�v
)∣∣ ≤ |b|Cez(θtω)∥∥�v

∥
∥‖vx‖

L ≤ |b|Cez(θtω)∥∥�v
∥
∥


 ‖v‖ 



≤ η
∥
∥�v

∥
∥ + C(η)e


 z(θtω)‖v‖ 

 .

Taking η = η = 
 , we deduce

d
dt

‖�v‖ + 
(
β – z(θtω)

)‖�v‖ +


∥
∥�v

∥
∥

≤ Ce

 z(θtω)‖v‖ 

 + ( – α + β)‖�v‖. (.)

Integrating (.) from s to t +  with respect to t, we have

∥
∥�v

(
t + ,ω, v(ω)

)∥∥

≤ ∥∥�v
(
s,ω, v(ω)

)∥∥ + 
∫ t+

s

(
z(θτω) – β

)∥∥�v
(
τ ,ω, v(ω)

)∥∥ dτ

+
∫ t+

s

[
Ce


 z(θτ ω)∥∥v

(
τ ,ω, v(ω)

)∥∥

 + ( – α + β)

∥∥�v
(
τ ,ω, v(ω)

)∥∥]dτ .

Integrating from t to t +  with respect to s again, we get

∥∥�v
(
t + ,ω, v(ω)

)∥∥

≤
∫ t+

t

∥∥�v
(
s,ω, v(ω)

)∥∥ ds + 
∫ t+

t

∣∣(z(θτω) – β
)∣∣∥∥�v

(
τ ,ω, v(ω)

)∥∥ dτ

+
∫ t+

t
Ce


 z(θτ ω)∥∥v

(
τ ,ω, v(ω)

)∥∥

 dτ + ( – α + β)

∫ t+

t

∥∥�v
(
τ ,ω, v(ω)

)∥∥ dτ

≤ ( – α + β)
∫ t+

t

∥∥�v
(
s,ω, v(ω)

)∥∥ ds + 
∫ t+

t

∣∣z(θτω)
∣∣∥∥�v

(
τ ,ω, v(ω)

)∥∥ dτ

+
∫ t+

t
Ce


 z(θτ ω)∥∥v

(
τ ,ω, v(ω)

)∥∥

 dτ . (.)

Replacing ω with θ–t–ω in (.), we have

∥∥�v
(
t + , θ–t–ω, v(θ–t–ω)

)∥∥

≤ ( – α + β)
∫ t+

t

∥∥�v
(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds
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+ 
∫ t+

t

∣∣z(θτ–t–ω)
∣∣∥∥�v

(
τ , θ–t–ω, v(θ–t–ω)

)∥∥ dτ

+
∫ t+

t
Ce


 z(θτ–t–ω)∥∥v

(
τ , θ–t–ω, v(θ–t–ω)

)∥∥

 dτ . (.)

According to Lemma ., the first term on the right-hand side of the above inequality is
bounded:

( – α + β)
∫ t+

t

∥∥�v
(
s, θ–t–ω, v(θ–t–ω)

)∥∥ ds ≤ | – α + β|ρ(ω).

For the second term, taking into account the properties of z(θtω), we have |z(θtω)| ≤
e|t|r(ω). Then


∫ t+

t

∣
∣z(θτ–t–ω)

∣
∣
∥
∥�v

(
τ , θ–t–ω, v(θ–t–ω)

)∥∥ dτ

≤ 
∫ t+

t
e|τ–t–|r(ω)

∥
∥�v

(
τ , θ–t–ω, v(θ–t–ω)

)∥∥ dτ .

Noticing that |τ – t – | <  and applying Lemma ., we obtain


∫ t+

t

∣∣z(θτ–t–ω)
∣∣∥∥�v

(
τ , θ–t–ω, v(θ–t–ω)

)∥∥ dτ ≤ er(ω)ρ(ω).

Now, we estimate the last term. Replacing t with τ in (.), we get

∥∥v
(
τ ,ω, v(ω)

)∥∥ ≤ e–βτ+
∫ τ

 z(θrω) dr∥∥v(ω)
∥∥

+ C(α – β – )
∫ τ


e–z(θsω)–β(τ–s)+

∫ τ
s z(θrω) dr ds. (.)

Substituting ω for θ–t–ω in (.), we obtain

∥∥v
(
τ , θ–t–ω, v(θ–t–ω)

)∥∥

≤ e–βτ+
∫ τ

 z(θr–t–ω) dr∥∥v(θ–t–ω)
∥∥

+ C(α – β – )
∫ τ


e–z(θs–t–ω)–β(τ–s)+

∫ τ
s z(θr–t–ω) dr ds. (.)

If we plug (.) back into (.), we obtain

∫ t+

t
Ce


 z(θτ–t–ω)

[
e–βτ+

∫ τ
 z(θr–t–ω) dr∥∥v(θ–t–ω)

∥∥

+ C(α – β – )
∫ τ


e–z(θs–t–ω)–β(τ–s)+

∫ τ
s z(θr–t–ω) dr ds

] 


dτ

≤
∫ t+

t
Ce


 z(θτ–t–ω)

[
(
e–βτ+

∫ τ
 z(θr–t–ω) dr∥∥v(θ–t–ω)

∥∥) 


+ C(α – β – )



(∫ τ


e–z(θs–t–ω)–β(τ–s)+

∫ τ
s z(θr–t–ω) dr ds

) 

]

dτ
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=
∫ t+

t
Ce


 z(θτ–t–ω)(e–βτ+

∫ τ
 z(θr–t–ω) dr∥∥v(θ–t–ω)

∥∥) 
 dτ

+ C(α – β – )



×
∫ t+

t
e


 z(θτ–t–ω)

(∫ τ


e–z(θs–t–ω)–β(τ–s)+

∫ τ
s z(θr–t–ω) dr ds

) 


dτ . (.)

Next, we estimate each term on the right-hand side of the last inequality. For the first term,
we have

C
∫ t+

t

(
e–βτ+

∫ τ
 z(θr–t–ω) dr∥∥v(θ–t–ω)

∥
∥) 

 e

 z(θτ–t–ω) dτ

= C
∫ t+

t

(
e–βτ+

∫ τ–t–
–t– z(θrω) dr∥∥v(θ–t–ω)

∥
∥) 

 e

 z(θτ–t–ω) dτ

= C
∫ 

–

(
e–β(τ++t)+

∫ τ
–t– z(θrω) dr∥∥v(θ–t–ω)

∥
∥) 

 e

 z(θτ ω) dτ

≤ Ce

 max–≤τ≤ |z(θτ ω)|

∫ 

–

(
e–β(τ+t+)+

∫ 
–t– |z(θrω)|dr) 

 dτ

= Ce

 max–≤τ≤ |z(θτ ω)|

∫ 

–

(
e–β(t+)+

∫ 
–t– |z(θrω)|dr) 

 · e– 
 βτ dτ

= Ce

 max–≤τ≤ |z(θτ ω)|(e–β(t+)+

∫ 
–t– |z(θrω)|dr) 

 ·
∫ 

–
e– 

 βτ dτ

≤ Ce

 max–≤τ≤ |z(θτ ω)|(e–β(t+)+

∫ 
–t– |z(θrω)|dr) 

 , (.)

where the first inequality is due to the properties of z(θtω).
For the second term, similarly to the above method, as t < τ < t + , we have

C(α – β – )



∫ t+

t
e


 z(θτ–t–ω)

(∫ τ


e–z(θs–t–ω)–β(τ–s)+

∫ τ
s z(θr–t–ω) dr ds

) 


dτ

≤ C(α – β – )



∫ t+

t
e


 z(θτ–t–ω)

(∫ τ


e–z(θs–t–ω)+

∫ 
s–t– |z(θrω)|dr–β(τ–s) ds

) 


dτ

≤ C(α – β – )



∫ t+

t
e


 z(θτ–t–ω)

(∫ τ–t–

–t–
e–z(θsω)+

∫ 
s |z(θrω)|dr–β(τ–t––s) ds

) 


dτ

≤ C(α – β – )



×
∫ t+

t
e


 z(θτ–t–ω)

(∫ 

–t–
e–z(θsω)+βs+

∫ 
s |z(θrω)|dr+β ds

) 


dτ , (.)

where by the condition t < τ < t + , –β(τ – t) < , we get rid of the term e–β(τ–t). Then
the last inequality can be estimated as follows:

C(α – β – )



∫ t+

t
e


 z(θτ–t–ω)

(∫ τ


e–z(θs–t–ω)–β(τ–s)+

∫ τ
s z(θr–t–ω) dr ds

) 


dτ

≤ C(α – β – )

 e


 β

∫ t+

t
e


 z(θτ–t–ω)

(∫ 

–∞
e–z(θsω)+βs+

∫ 
s |z(θrω)|dr ds

) 


dτ
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≤ C(α – β – )

 e


 β

∫ 

–
e


 z(θτ ω)

(∫ 

–∞
e–z(θsω)+βs+

∫ 
s |z(θrω)|dr ds

) 


dτ

≤ C(α – β – )

 e


 βe


 max–≤τ≤ |z(θτ ω)|

(∫ 

–∞
e–z(θsω)+βs+

∫ 
s |z(θrω)|dr ds

) 


. (.)

In summary, from estimates of (.) and (.) we obtain that the terms on the right-hand
of inequality (.) are bounded. Therefore, we prove that there exist a random variable
ρ(ω) and TB(ω) >  such that for P-a.e. ω ∈ � and all t > TB(ω),

∥∥�v
(
t + , θ–t–ω, v(θ–t–ω)

)∥∥ ≤ ρ(ω).

This completes the proof. �

Based on the above arguments, it is easy to deduce that there exists a random absorbing
set for the random dynamical system generated by system (.)-(.) in H

(D).

Theorem . Assume that v ∈ B = {B(ω)}ω ⊂ D . There exists a random absorbing set
B∗(ω) for the random dynamical system associated with system (.)-(.) in H

(D).

Proof We can take T = max{TB, TB, TB} and ρ(ω) = max{ρ(ω),ρ(ω),ρ(ω)}. Then, for
all t ≥ T and P-a.e. ω ∈ �, there exists a random absorbing set B∗(ω) for the random
dynamical system associated with system (.)-(.) in H

(D). �

Based on the above results, by Lemma . in [] we claim that ψ is asymptotically
compact. Therefore, the existence of a random attractor for ψ follows immediately from
Theorem . in [].

Theorem . Provided that v ∈ B = {B(ω)}ω ⊂ D , there exists a global random attractor
in H

(D) for the random dynamical system associated with system (.)-(.).
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