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Abstract
The existence of infinity of subharmonics for Duffing equations with convex and
oscillatory nonlinearities is shown. This result is a corollary of two theorems. These
theorems, one for a weak sub-quadratic potential and another for a geometric case,
roughly speaking, are complementary. The approach of this paper is based on the
phase-plane analysis for the time map and using the Poincaré-Birkhoff twist theorem.
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1 Introduction and the main results
Many problems in differential equations and dynamical systems are associated with the
perturbations of an autonomous system. One usually concerns the existence of special
kind of persistent solutions under perturbation. Recently, there are many researches on
this subject using the assumption of ‘oscillatory nonlinearity’ which can be considered as
a kind of nondegenerate condition at infinity in view of bifurcation; see [, ] and []. The
approaches of these researches are based on the analysis of the time map for the related
autonomous system combining the Poincaré-Birkhoff twist theorem for the planar home-
omorphism and topological degree theory.

Consider the Duffing equation

x′′ + g(x) = p(t), (.)

where g, p : R → R are continuous and p π-least periodic. The related autonomous sys-
tem of (.) is

x′ = y, y′ = –g(x). (.)

Its energy integral is

γh : H(x, y) ≡ 


y + G(x) = h,

where h is a parameter and G is the primitive of g .
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It is easy to see that, if lim inf|x|→∞ sgn(x)g(x) > , γh is a star-shaped closed curve for h
large enough, its least period is the so-called time map, or period function,

τ (h) :=
∫ x+

x–

ds√
h – G(s)

,

where x– = G–
– (h) <  < x+ = G–

+ (h) with G–
– , G–

+ the left and right inverse of G, respec-
tively.

The condition called ‘oscillatory nonlinearity’ can be expressed in terms of the time map
as

(τ) : �τ = τ ∗ – τ∗ := lim sup
h→+∞

τ (h) – lim inf
h→+∞

τ (h) > .

In the study of bifurcations, under a small forced perturbation, the existence of persistent
periodic solutions usually needs a setting of nondegenerate conditions which include the
nonvanishing of the derivative of the period function (see, for instance, Chicone []). Thus,
the condition (τ) can be interpreted reasonably as a kind of nondegenerate condition at
infinity for ‘global persistence’ under ‘large force’. We can understand (τ) in a generalized
meaning entailing that

lim sup
h→+∞

τ (h) = +∞ or lim inf
h→+∞

τ (h) = +∞.

Besides (τ), some growth condition on g(x) is needed to guarantee the existence of π-
periodic solution and infinitely many subharmonics.

In [], Ding, Iannacci, and Zanolin showed the existence of π-periodic solution and
infinitely many subharmonics under the assumptions that g(x) is globally Lipschitz and
has linear growth at infinity, that is,

 < lim inf|x|→+∞
g(x)

x
≤ lim sup

|x|→+∞
g(x)

x
< +∞. (.)

One of the authors generalized the above result in [] by dropping the globally Lipschitz
property and assuming the following growth conditions on g(x).

(g) : lim|x|→∞ sgn(x)g(x) = +∞;

(G) : lim sup
|x|→+∞

G(x)
g(x)

< +∞.

Later, Capietto, Mawhin, and Zanolin weakened the condition (G) in [] to the follow-
ing geometric one

(G)′ : ∀c > ,∃c >  such that

AB >  &
∣∣√G(B) –

√
G(A)

∣∣ < c �⇒ |B – A| < c.

They showed the existence of π-periodic solution by developing a new continuation the-
orem with two functionals. Wang showed in [] the existence of infinitely many subhar-
monic solutions under the same assumptions as in [].
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In this paper, we consider the Duffing equation (.) with convex potential. More pre-
cisely, we assume

(g) : lim inf|x|→∞

(
sgn(x)g(x) – max

t∈R
∣∣p(t)

∣∣) > ;

(g) : g(x) is nondecreasing for |x| ≥ d, where d is a constant.

We will prove that the convexity of the potential and the oscillatory nonlinearity imply
that the existence of the infinity of persistent subharmonic solutions, that is, we have the
following.

Theorem . Assume that (g), (g) and (τ). Then equation (.) has at least one π -
periodic solution and infinitely many subharmonic solutions xk(t) with minimal period
kπ . Moreover,

lim
k→+∞

min
t∈R

(∣∣xk(t)
∣∣ +

∣∣x′
k(t)

∣∣) = +∞.

This theorem is a corollary of two theorems. One is in [] and the other one is the fol-
lowing theorem. It considers the equation with so-called ‘weak sub-quadratic potential’
(see the condition (G) in the following).

Theorem . Assume (g) and

(G) : lim inf
x→+∞

G(x)
x =  or lim inf

x→–∞
G(x)

x = .

Then equation (.) has at least one π -periodic solution, and for each j ∈ N there is m∗
j ∈

N, such that for every k ≥ m∗
j with k primes with j, there is at least one periodic solution

xk(·) = xj,k(·) with minimal period kπ . Moreover, xj,k(·) has exactly j zeros in the interval
[, kπ ) and satisfies

lim
k→+∞

min
t∈R

(∣∣xj,k(t)
∣∣ +

∣∣x′
j,k(t)

∣∣) = +∞.

Theorem . is meaningful itself. We recall that the condition (G) is firstly introduced
in [] to guarantee the existence of π-periodic solution. Moreover, Ding and Zanolin
introduced in [] the following sub-linear condition on the time map to guarantee the
existence of infinitely many subharmonic solutions.

(τ) : lim
h→+∞

τ+(h) = +∞ or lim
h→+∞

τ–(h) = +∞,

where τ±(h) := | ∫ x±


ds√
h–G(s) |.

If we consider the forced equation (.), we can prove that (τ) ⇒ (G).
Actually, if the assumption (G) is false, then we have

(G) : There is a >  such that lim inf|x|→+∞
G(x)

x ≥ a > ,
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which implies that

lim|x|→+∞

(
G(x) –

a


x
)

= +∞,

and thus there are sequences {x±
m} with x±

m → ±∞ as m → ∞, such that

G
(
x+

m
)

– G(s) ≥ a

((

x+
m
) – s), for  ≤ s ≤ x+

m,

and

G
(
x–

m
)

– G(s) ≥ a

((

x–
m
) – s), for x–

m ≤ s ≤ .

Then

τ±(
h±

m
)

=
∣∣∣∣
∫ x±

m



ds√
(G(x±

m) – G(s))

∣∣∣∣ ≤
∣∣∣∣ √

a

∫ x±
m



ds√
(x±

m) – s

∣∣∣∣ ≤ π

a
,

where h±
m = G(x±

m), which contradicts (τ).
Therefore Theorem . is a generalization of the results both in [] and in [].
Now we prove Theorem .. Assume that G(x) is convex, then G(x) ≤ xg(x). (G) implies

that G(x) ≥ a
 x, it follows that g(x) ≥ a

 x for |x| � . Therefore G(x)
g(x) ≤ x

g(x) ≤ 
a for |x| � .

Thus (G) holds. Hence under the assumption (g) and (g) we see that either (G) or (g)
and (G) hold. Then Theorem . is a corollary of Theorem . and Theorem A in [].

The key point of our argument is the estimation of the return time when the solution
completes j clock-wise turns around the origin in the phase plane for given j under a forced
perturbation.

In the rest of the paper we will give the details of the proof for Theorem ..

2 Duffing equation with weak sub-quadratic potential
Rewrite equation (.) as the following equivalent form:

x′ = y, y′ = –g(x) + p(t). (.)

We will apply the Poinacré-Birkhoff twist theorem to obtain the existence of the kπ-
periodic solution for equation (.) under the assumption of a weak sub-quadratic poten-
tial. The existence of a π-periodic solution then follows from the Massera theorem.

The key point of applying the Poincaré-Birkhoff twist theorem is constructing an annu-
lus A in the (x, y) phase plane bounded by two star-shaped curves γ + and γ –, such that
the solution starting from γ + and γ – will move more than and less than j clock-wise turns
in the time interval [t, t + kπ ], respectively.

When the solution passes through the origin at some time, we cannot compute how
many clock-wise turns it moves. To avoid this problem, we introduce a modified equation
such that if z(t) = (x(t), y(t)) is a solution of the modified equation, then z(t) �= (, ) for
some t implies that z(t) �= (, ) for all t. Moreover, the twist property of the fixed point
obtained by using the Poinacré-Birkhoff twist theorem will help us to guarantee that the
kπ-periodic solution we showed for the modified equation is exactly the kπ-periodic
solution of the original equation (.) for sufficiently large k.
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Denote by P = max{|p(t)| | t ∈ [, π ]} and Bμ (g) the set of all the continuously differ-
entiable functions f (x) satisfying

∣∣f (x) – g(x)
∣∣ ≤ μ, for all x ∈R,

where μ is sufficient small such that lim inf|x|→∞ sgn(x)g(x) > μ + P.
We consider the following modified equation:

x′ =
∂H(t, x, y)

∂y
, y′ = –

∂H(t, x, y)
∂y

, (.)

where H(t, x, y) = y

 + K(x + y)[F(x) – xp(t)] + ( – K(x + y))x, F(x) =
∫ x

 f (ξ ) dξ with
f ∈ Bμ (g), and K ∈ C∞(R) satisfies that

K
(
x + y) =

{
,  ≤ x + y ≤ R

 ,
, x + y ≥ R

,

with some given constants R > R > .
Let z(t; t, z) = (x(t; t, z), y(t; t, z)) be the solution of (.) satisfying the initial condi-

tion z(t; t, z) = z = (x, y). Then we have the following fundamental lemma.

Lemma . Assume that g satisfies (g) and f ∈ Bμ (g) for sufficiently small μ. Then
each initial value problem associated with (.) has a unique solution z(t; t, z) =
(x(t; t, z), y(t; t, z)) which is well defined for t ∈ R and z �= (, ) implying that z(t; t,
z) �= (, ) for all t. Moreover, for any L > , there is E = E(L) >  such that

∣∣l(t) – l(t)
∣∣ ≤ E for |t – t| ≤ L and |z| � ,

where

l(t) =
√

y(t; t, z)


+ G
(
x(t; t, z)

)
for t > t.

Proof f is a continuously differentiable function. The existence and uniqueness of the so-
lution associated to the initial condition is ensured by the existence-uniqueness theorem.
Moreover, the solution has continuity with respect to initial conditions. It is easy to see
that z(t) ≡ (, ) is the solution of (.) satisfying the initial condition z(t; t, z) = (, ),
from which it follows that z �= (, ) ⇒ z(t; t, z) �= (, ), ∀t.

Note that equation (.) is the same as the equation

x′ = y, y′ = –f (x) + p(t)

for x + y ≥ R
. Then we have, for |z(t; t, z)| � ,

∣∣l′(t)
∣∣ =


l(t)

∣∣y(t)y′(t) + g
(
x(t)

)
x′(t)

∣∣ =


l(t)
∣∣y(t)

(
g
(
x(t)

)
– f

(
x(t)

)
+ p(t)

)∣∣

≤ 
l(t)

|P + μ|
∣∣y(t)

∣∣ ≤ |P + μ|.
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An obvious induction shows that for any L > , there is E = E(L) >  such that

∣∣l(t) – l(t)
∣∣ ≤ E for |t – t| ≤ L and |z| � .

Moreover, l(t) → +∞ ⇔ |z(t)| → +∞. Then the above estimation implies that the global
existence of the solution of (.) is a consequence of the continuation theorem. The lemma
is thus proved. �

If z �= (, ) we can represent the solution z(t; t, z) by means of polar coordinates as

r(t; t, r, θ) =
∣∣z(t; t, z)

∣∣, θ (t; t, r, θ) = Arg
(
z(t; t, z)

)
,

where | · | is Euclidean norm of R
. Sometimes we write r(t; t, z) = |z(t; t, z)| and

θ (t; t, z) = Arg(z(t; t, z)) for ease of notation.
Moreover, we have the following.

Lemma . Assume that the conditions of Lemma . hold. Then there is R > R > R > ,
such that θ ′(t; t, r, θ) <  whenever r(t; t, r, θ) ≥ R.

Proof From (g) and lim inf|x|→∞ sgn(x)g(x) > μ +P we have d >  such that x(f (x)–p(t)) >
 for |x| ≥ d and t ∈R. For |z(t)| ≥ R, we have

θ ′(t) = –


r(t)
(
x(t)y′(t) – y(t)x′(t)

)
= –


r(t)

(
y(t) +

(
f
(
x(t)

)
– p(t)

)
x(t)

)
.

Let R be a constant such that R ≥  max{d, R, max{|g(x)| : |x| ≤ d} + μ}. Then for
r(t) ≥ R, either |x(t)| ≥ d, and we have y(t) + (f (x(t)) – p(t))x(t) > , or |x(t)| < d, which
implies |y(t)| > |x(t)| and |y(t)| > /r(t) ≥ /R, then y(t) > –(f (x(t)) – p(t))x(t). Hence
θ ′(t) <  for r(t) ≥ R.

Lemma . concludes that z(t; t, z) moves clock-wise around the origin O if |z(t; t,
z)| ≥ R. �

Lemma . Assume that the conditions of Lemma . hold. Then for any solution z(t; t, z)
of (.) with z �= (, ), we have

θ (t; t, r, θ) – θ (t; t, r, θ) < π , ∀t > t.

Proof Note that in equation (.) yx′ = y >  whenever x =  and y �= . Then for any solu-
tion z(t; t, z) of (.) with z �= (, ), we have θ ′(t; t, r, θ) <  whenever θ (t; t, r, θ) =
kπ +/π , k ∈ Z. Thus Lemma . in [] shows that we have θ (t; t, r, θ)–θ (t; t, r, θ) <
π for all t > t. This proves the lemma. �

The following lemma is similar to that in [] with the modified proof as in [].

Lemma . Assume that the conditions of Lemma . hold. Then for any constant j ∈ N

there is Kj > R and there is a continuous increasing function ζ = ζj : [Kj, +∞) → R
+, with
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ζj(s) > s, ∀s ≥ Kj such that the following inference holds for each z(t) as the solution of (.):

∣∣z(t)
∣∣ ≤ r,

∣∣z(t)
∣∣ ≥ ζj(r) or

∣∣z(t)
∣∣ ≥ ζj(r),

∣∣z(t)
∣∣ ≤ r whenever r ≥ Kj

and
∣∣z(t)

∣∣ ≥ R,∀t ∈ [t, t] �⇒
z(t) moves at least j clock-wise turns on [t, t] around the origin O.

Proof Let z(t) be a solution of (.) and suppose that z(t) ≥ R for each t ∈ I , with I an
interval. Denote

H±(x, y) =
y


+ G(x) ± (μ + P)x, E =

{
(x, y) : y ≥ 

}
,

H±(t) =
y(t)


+ G

(
x(t)

) ± (μ + P)x(t), with z(t) =
(
x(t), y(t)

)
.

Then

d
dt

H+(t) = y(t)
(
g
(
x(t)

)
– f

(
x(t)

)
+ p(t) + μ + P

) ≥ ;

d
dt

H–(t) = y(t)
(
g
(
x(t)

)
– f

(
x(t)

)
+ p(t) – μ – P

) ≤ ,

for z(t) ∈ E. Moreover, let I ⊂ I be a nondegenerate interval such that z(t) ∈ E for all
t ∈ I. Then

H+(t) ≥ H+(s), H–(t) ≤ H–(s), for ∀t, s ∈ I, t > s. (.)

From the assumption (g), the definition of f and μ sufficiently small, we have for z =
(x, y),

H±(x, y) → +∞ ⇔ r = |z| → +∞.

Then for r sufficiently large, using similar argument as in [], Lemma ., we have two
continuous increasing functions L± : [r, +∞) with r > R sufficiently large, such that

L–
(|z|) ≤ H±(x, y) ≤ L+

(|z|), for z = (x, y) ∈ E,

and

L±(r) → +∞, for r → +∞.

Without loss of generality, we suppose that L–(r) < r < L+(r). Using (.) we have

L+
(
r(t)

) ≥ L–
(
r(s)

)
, L–

(
r(t)

) ≤ L+
(
r(s)

)
, for ∀t, s ∈ I, t > s,

from which it follows that

(ξ)–(r(s)
) ≤ r(t) ≤ ξ

(
r(s)

)
, for ∀t, s ∈ I, t > s, (.)
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where ξ(r) = (L–)–(L+(r)) and (ξ)–(r) = (L+)–(L–(r)) with r < ξ(r) and (ξ)–(r) → +∞
for r → +∞.

Denote by E = {(x, y) : y ≤ } and I ⊂ I be a nondegenerate interval such that z(t) ∈ E

for all t ∈ I. We can use a similar argument to above to obtain a continuous increasing
function ξ : [r, +∞) with r > R sufficiently large, such that

(ξ)–(r(s)
) ≤ r(t) ≤ ξ

(
r(s)

)
, for ∀t, s ∈ I, t > s. (.)

Moreover, r < ξ(r) and (ξ)–(r) → +∞ for r → +∞.
Choose a continuous increasing function η(r) ≥ max{ξi(r), i = , } with (η)–(r) → +∞

for r → +∞. Denote ζ(r) = η ◦η ◦η(r). Let K be large enough such that K ≥ ζ(R). Thus
(.) and (.) show that if |z(t)| ≥ K, then ζ –

 (|z(t)|) ≤ |z(t)| ≤ ζ(|z(t)|) before z(t)
completes  clock-wise turn around the origin O. That is, if |z(t)| ≥ K, θ (t) ≥ θ (t) – π

and |z(t)| ≥ R, ∀t ∈ [t, t] then ζ –
 (|z(t)|) ≤ |z(t)| ≤ ζ(|z(t)|). In other words, for r ≥

K,

|z(t)| ≤ r, |z(t)| ≥ ζ(r) and |z(t)| ≥ R,∀t ∈ [t, t]

or |z(t)| ≥ ζ(r), |z(t)| ≤ r and |z(t)| ≥ R,∀t ∈ [t, t] �⇒
z(t) moves at least one clock-wise turn on [t, t] around the origin O.

The lemma is thus proved by induction. �

Let Tj(t, z) denote the minimum time in which the solution z(t; t, z) of (.) com-
pletes j clock-wise turns, j ∈ N. In the proof of the next lemma we will use Lemma . to
show that Tj(t, z) is well defined for sufficiently large z. Let T+

j (t, z) denote the mini-
mum time such that if T ≥ T+

j (t, z) then the solution z(t; t, z) of (.) completes at least
j clock-wise turns in [t, t + T]. Moreover, denote

T–
j (h) = inf

{
Tj(t, z) | ∀z ∈ γh,∀f ∈ Bμ ,∀t

}
;

T+
j (h) = sup

{
T+

j (t, z) | ∀z ∈ γh,∀f ∈ Bμ ,∀t
}

.

Then we have the following estimations of the twist properties for the solutions of (.).

Lemma . Assume that the conditions of Lemma . hold. Then there exists a sequence
{h–

m} with limm→∞ h–
m = +∞ such that T+

j (h–
m) < +∞. Moreover, if (G) holds, then there

exists another sequence {h+
m} with limm→∞ h+

m = +∞ such that limm→∞ T–
j (h+

m) = +∞.

Proof For sufficiently large h, let

r+(h) = max
{√

x + y : /y + G(x) = h
}

,

r–(h) = min
{√

x + y : /y + G(x) = h
}

.

Then for for any j ∈ N and m ∈ N, let r(m) ≥ max{m, Kj+} and choose h–
m sufficiently large

such that r–(h–
m) ≥ ζj+(r(m)). Let

a = inf
{

–θ ′(t; t, z) : z ∈ γh–
m , r(m) ≤ ∣∣z(t; t, z)

∣∣ ≤ ζj+
(
r+(

h–
m
))}

.
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It is easy to see that

a ≥ inf{xg(x) – (μ + P)|x| + y : x + y ≥ (r(m))}
(ζj+(r+(h–

m))) > .

Denote by Lm = (j+)π
a . For any solution z(t; t, z), z ∈ γh–

m , there are two cases as follows.
() If r(m) ≤ |z(t; t, z)| ≤ ζj+(r+(h–

m)) for t ∈ [t, t + Lm], then

θ (t + Lm; t, z) – θ =
∫ t+Lm

t

θ ′(t) dt ≤ –aLm ≤ –(j + )π .

() If there exists a time t′
 ∈ [t, t + Lm) such that |z(t′

; t, z)| < r(m) or
|z(t′

; t, z)| > ζj+(r+(h–
m)), then we have t ∈ [t, t′

) such that |z(t; t, z)| ≥ R for
t ∈ [t, t] and

∣∣z(t; t, z)
∣∣ < r(m), |z| ≥ r–(

h–
m
) ≥ ζj+

(
r(m)),

or

∣∣z(t; t, z)
∣∣ > ζj+

(
r+(

h–
m
))

, |z| ≤ r+(
h–

m
)
.

According to Lemma ., it follows that z(t; t, z) completes at least j +  clock-wise turns
in [t, t]. That is,

θ (t; t, z) – θ ≤ –(j + )π ,

which implies that

θ (t + Lm; t, z) – θ = θ (t + Lm; t, z) – θ (t; t, z) + θ (t; t, z) – θ

< π – (j + )π = –(j + )π

by using Lemma ..
Hence for both cases, we show that the solution z(t; t, z), z ∈ γh–

m completes at least
j clock-wise turns in [t, t + Lm]. Moreover, the above argument shows that for T ≥ Lm,
the solution z(t; t, z), z ∈ γh–

m completes at least j clock-wise turns in [t, t + T], from
which it follows that T+

j (h–
m) ≤ Lm < +∞.

By the way, using the same method as employed above we can prove that if |z| ≥
ζj+(Kj+) then Tj(t, z) is well defined.

On the other hand, from the assumption (G), we have a sequence {xm} with xm → +∞
as m → ∞, such that limm→+∞ G(xm)

x
m

= . For any given L > , choose m, such that

G(xm)
x

m
≤ 

L , and
√

G(xm) ≥ E, for m ≥ m,

where E = E(L) is defined as in Lemma ..
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Consider the solution z(t; t, z) starting from z ∈ γh+
m , where

h+
m =

(√
G(xm) + E

).

If Tj(t, z) ≤ L, then Lemma . implies that

G(xm) ≤ 


y(t; t, z) + G
(
x(t; t, z)

) ≤
(√

h+
m + E

)
, for t ≤ t ≤ t + Tj(t, z),

which implies that

|x′(t; t, z)|√
((

√
h+

m + E) – G(x(t; t, z)))
≤ , for t ≤ t ≤ t + Tj(t, z).

Note that the solution z(t; t, z), z ∈ γh+
m , completes at least j clock-wise turns around the

origin O in [t, t + Tj(t, z)], then it intersects with the x-axis and y-axis which implies
that there exist t, t ∈ [t, t + Tj(t, z)] such that

x(t) = , y(t) =  and x′(t) = y(t) >  for t ∈ (t, t)

or

y(t) = , x(t) =  and x′(t) = y(t) <  for t ∈ (t, t).

If y(t) =  then G(x(t)) ≥ G(xm), which implies x(t) ≥ xm. If y(t) =  then G(x(t)) ≥
G(xm), which implies x(t) ≥ xm. In both cases we have

∣∣x(t) – x(t)
∣∣ ≥ xm – .

Therefore

Tj(t, z) =
∫ t+Tj(t,z)

t

dt ≥
∫ t

t

dt ≥
∣∣∣∣
∫ x(t)

x(t)

ds√
((

√
h+

m + E) – G(s))

∣∣∣∣

≥
∫ xm



ds√
((

√
h+

m + E) – G(s))
≥ √


xm√

G(xm)
·

√
G(xm)√
h+

m + E

=
√


· xm√
G(xm)

·
(

 +
E√

G(xm)

)–

≥ L

√


> L.

This is a contradiction. Hence we have proved that Tj(t, z) > L for z ∈ γh+
m and f ∈ Bμ ,

which implies that T–
j (h+

m) ≥ L. Since L is arbitrary we have

T–
j
(
h+

m
) → +∞ as m → ∞.

The lemma is thus proved. �

Now we are in the position to prove Theorem ..

Proof of Theorem . It follows from Lemma . that there exist sequences {h–
l } and {h+

l }
such that liml→+∞ h–

l = +∞, liml→+∞ h+
l = +∞, T+

j (h–
l ) < +∞, and liml→+∞ T–

j (h+
l ) = +∞.
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Let h–
m be large enough such that r–(h–

m) ≥ Kj+, h–
m ≥ ζj+(R) and Tj(, z) is well defined

for every solution z(t; z) = (x(t; x, y), y(t; x, y)) starting from z ∈ γh–
m at t = . Then

there is m∗
j ∈ N, such that, for every k ≥ m∗

j , where k primes with j, we can choose l =
l(m, k) sufficiently large, such that h–

m < h+
l and

T+
j
(
h–

m
)

< kπ < T–
j
(
h+

l
)
. (.)

Denote by Am,l the annulus bounded by γh–
m and γh+

l
. Consider the Poincaré map

Pk : (x, y) �→ (
x(kπ ; x, y), y(kπ ; x, y)

)
.

The uniqueness of the solution to initial value problems for equation (.) guarantees
that Pk is an area-preserving homeomorphism such that Pk(O) = O. Moreover, Am,l are
annuli bounded by strictly star-shaped Jordan curves around the origin and the inequality
(.) implies that Pk is boundary twisting on the annulus Am,l , that is,

θ (kπ ; t, z) – θ < –jπ , for z ∈ γh–
m ,

θ (kπ ; t, z) – θ > –jπ , for z ∈ γh+
l
.

Hence we can use a recent version of the Poincaré-Birkhoff fixed point theorema (Rebelo,
[], Corollary ) to obtain at least two fixed points of Pk , z, z ∈ Am,l with z �= z. These
fixed points are initial points of two kπ-periodic solutions

z(t) = z(t; z), z(t) = z(t; z)

of (.), such that z(t) and z(t) satisfy

θ (kπ ; zi) – θ (; zi) = –jπ , i = , .

We assert that

min
{∣∣zi(t)

∣∣ | t ∈ [, kπ )
}

> R, i = , .

If the assertion would not hold, then there exists t′
 ∈ (, kπ ] such that |z(t′

)| ≤ R (or
t′
 ∈ (, kπ ] such that |z(t′

)| ≤ R). It follows that there exists t ∈ (, t′
) such that |z()| =

|z| ≥ r–(h–
m) ≥ ζj+(Kj+), |z(t)| ≤ Kj+, and |z(t)| ≥ R > R for t ∈ [, t]. According to

Lemma ., we have

θ (t; z) – θ (; z) ≤ –(j + )π .

Then Lemma . implies that

θ (kπ ; z) – θ (; z) = θ (kπ ; z) – θ (t; z) + θ (t; z) – θ (; z)

≤ π – (j + )π = –(j + )π .

This is a contradiction. Hence z(t) > R, ∀t ∈ R (or z(t) > R, ∀t ∈ R).
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Therefore we have proved that zi(t) is exactly the kπ-periodic solution of the equation

x′ = y, y′ = –f (x) + p(t)

and zi(t) completes exactly j clock-wise turns around the origin O in [, kπ ) which implies
xi(t) has exactly j zeros in [, kπ ), where xi(t) = �(zi(t)), �(·) is the projection for the
first component, i = , .

Moreover, in the above argument we can choose the same Am,l for any f ∈ Bμ , μ suf-
ficiently small. Further, denote the two kπ-periodic solutions obtained above by zf ,(t) =
z(t) and zf ,(t) = z(t). It is easy to find a compact annulus Cm,l such that zf ,i(t), i = , , are
in Cm,l .

Now consider equation (.) with g, p : R → R continuous and p π-least periodic. We
construct the equations

x′ = y, y′ = –fq(x) + p(t)

with fq ∈ Bμ , fq → g in Cm,l as q → ∞. As showed previously, we have two sequences of
kπ-periodic solutions z(q)

 (t) = zfq ,(t) and z(q)
 (t) = zfq ,(t) for the equation

x′ = y, y′ = –fq(x) + p(t)

in Cm,l . Moreover, x(q)
i (t) = �(z(q)

i (t)) has exactly j zeros in [, kπ ), i = , . If t∗ is the zero
time of x(q)

i (t), i.e. x(q)
i (t∗) = , then |x(q)′

i (t∗)| ≥ c, where c is a positive constant which is
independent of q and i. By a standard compactness argument (see, for example, in []), we
obtain a kπ-periodic solution zj,k(t) (as the limitation for some subsequence of {z(q)

 (t)}
and {z(q)

 (t)}) for equation (.) in Cm,l . Then we obtain a kπ-periodic solution xj,k(t) =
�(zj,k(t)) for equation (.). Since p(t) is π-least periodic, xj,k(t) has exactly j zeros in
[, kπ ) and k is prime with j, and xj,k(t) has a minimal period kπ . Actually, the solution
zj,k(t) = (rk(t) cos θk(t), rk(t) sin θk(t)) satisfies

rk(t) > , θ ′
k(t) < , ∀t ∈R. (.)

Moreover, zj,k(t) moves exactly j clock-wise turns around the origin O in [, kπ ). Suppose,
by contradiction, that zj,k(t) has a minimal period lπ with l ∈N such that  ≤ l < k. Then
(.) implies that zj,k(t) moves exactly q clock-wise turns around the origin O in [, lπ )
with q ∈ N such that  ≤ q < j. On the other hand, from the additivity property of the
rotation we easily see that zj,k(t) moves exactly kq and lj clock-wise turns around the origin
O in [, lkπ ). It follows that kq = lj. Then

k/j = l/q with  ≤ l < k and  ≤ q < j.

This contradicts that k is prime with j. The same argument works for the case when j = .
Hence we have proved that zj,k(t) (xj,k(t)) has a minimal period kπ .

Theorem . is thus proved. �
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Endnote
a Usually, we can use the generalized version of the Poincaré-Birkhoff fixed point theorem by Ding [10] as in [1, 7, 9].

The result in [10], however, requires an extra assumption, i.e. the strictly star-shapedness of the outer boundary of
the annular region, as recently pointed out in [11]. Now we refer to [8], Corollary 2, which is a direct reduction to the
classical Poincaré-Birkhoff theorem for the standard annulus, already settled in [12]. We also refer to other versions
of the Poincaré-Birkhoff theorem due to Franks [13], and Qian-Torres [14], where independent proofs are given.
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