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Abstract
In this paper we consider the existence of at least one positive solution to a class of
singular semipositone coupled system of nonlocal boundary value problems. We
show that the system possesses at least one positive solution by using fixed point
index theory. We remark that to some extent our systems and results generalize and
extend some previous works.
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1 Introduction
In this paper, we consider the existence of at least one positive solution to the following
singular semipositone coupled system of nonlocal boundary value problems:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–x′′ = f (t, y(t)) + q(t), t ∈ (, ),

–y′′ = g(t, x(t)), t ∈ (, ),

x() = H(ϕ(y)), x() = ,

y() = H(ϕ(x)), y() = ,

(.)

where f , g : (, ) × [, +∞) → [, +∞) are continuous and may be singular at t = , ,
q : (, ) → (–∞, +∞) is Lebesgue integrable, and q(t) may have finitely many singular-
ities in [, ], Hi : R → R (R = (–∞, +∞)) are continuous, and Hi([, +∞)) ⊆ [, +∞) and
ϕi : C([, ]) → R (i = , ) are linear and can be realized as Stieltjes integrals with signed
measures. In particular, in the Stieltjes integral representation ϕ(y) =

∫

[,] y(t) dα(t) with
α : [, ] → R of bounded variation on [, ], we no longer assume that α is necessarily
monotonically increasing. Thus, in this paper, we allow the map y �→ ϕ(y) to be negative
even if y is nonnegative.

Recently, the theory of nonlocal and nonlinear boundary value problems and singular
semipositone differential systems becomes an important area of investigation because of
its wide applicability in control, electrical engineering, physics, chemistry fields, and so
on. Equation (.) is used to describe chemical reactor theory where the nonlinearity can
take negative values. Many works have been done for a kind of nonlinear boundary value
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problems [, ] and nonlinear differential systems [–]. However, most investigators only
focus on the case where the nonlinearity takes nonnegative values, that is, positone prob-
lems. For example, under conditions where f (t, y) and g(t, x) have no any singularities and
q(t) ≡ , Agarwal and O’Regan [], using the Leray-Schauder fixed point theorem, ob-
tained the existence of positive solutions of the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–x′′ = f (t, y(t)) + q(t), t ∈ (, ),

–y′′ = g(t, x(t)), t ∈ (, ),

x() = x() = ,

αy() – βy′() = γ y() + δy′().

(.)

Later, Zhang and Liu [] obtained the existence of positive solutions of system (.) by the
Leray-Schauder fixed point theorem under the conditions that q(t) : (, ) → (–∞, +∞)
is Lebesgue integrable, q(t) may have finitely many singularities in [, ], and f , g : (, ) ×
[, +∞) → [, +∞) are continuous and may be singular at t = , . The study of semiposi-
tone problems has a long history in the literature, the work of Anuradha et al. [] being
an early, classical example. More recent papers include those by Goodrich [], Graef and
Kong [], and Infante and Webb []. Furthermore, recently, there have been many pa-
pers on nonlocal BVPs with nonlinear boundary conditions. For example, Anderson [],
Goodrich [, –], and Infante et al. [–]. In this paper, these nonlocal nonlinear
boundary conditions have been investigated by Goodrich [, ]. For example, in [],
Goodrich investigated the existence of positive solutions of the semipositone boundary
value problems with nonlocal nonlinear boundary conditions

⎧
⎨

⎩

–y′′ = f (t, y(t)), t ∈ (, ),

y() = H(ϕ(y)), y() = ,
(.)

by the fixed point index under the conditions that f : [, ]×R → R and H : R → R are con-
tinuous, H([, +∞)) ⊆ [, +∞), and there is a number C ≥ , such that limz→+∞ |H(z)–Cz|

z =
 ((H) in []). The proof of Theorem . in [] gives a limiting condition, that is,

(C + ε)
∫ 


( – t) dα(t) +

∫ 



∫ 


G(t, s)

[

r

u(s) + v(s)
]

dα(t) < ,

where C is a constant, r 
=  satisfies some conditions, ε satisfies  < ε < [
∫ 

 ( –
t) dα(t)]– – C, v : [, ] → [, +∞) is continuous, and u : [, ] → [, +∞) is not iden-
tically zero on any subinterval of [, ]. Goodrich [] investigated the existence of posi-
tive solutions of the coupled system of boundary value problems with nonlocal boundary
conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–x′′ = f (t, y(t)), t ∈ (, ),

–y′′ = g(t, x(t)), t ∈ (, ),

x() = H(ϕ(y)), x() = ,

y() = H(ϕ(x)), y() = ,

(.)
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by the Leray-Schauder fixed point theorem under the conditions that f , g : [, ] ×
[, +∞) → [, +∞) are Hi : R → R are continuous, Hi([, +∞)) ⊆ [, +∞), and Hi satisfies
limz→+

Hi(z)
z =  and limz→+∞ Hi(z)

z = +∞, i = ,  ((A) in []). For example, Goodrich []
investigated the existence of at least one positive solution of the semipositone boundary
value problems with nonlocal, nonlinear boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

–y′′ = λf (t, y(t)), t ∈ (, ),

y() = H(ϕ(y)),

y() = ,

(.)

by the fixed point index, where λ >  is a parameter, under the conditions that f : [, ] ×
R → R are H : R → R are continuous, H([, +∞)) ⊆ [, +∞), limz→+ H(z)

z = +∞ ((H) in
[]), and there is a number C ≥  such that limz→+∞ |H(z)–Cz|

z =  ((H) in []).
Motivated by the works mentioned, in this paper, we consider the coupled system (.).

The main features of this paper are as follows. Firstly, we have more general integral
boundary conditions. Secondly, we consider coupled systems rather than a single equa-
tion. Finally, we consider f that need not have a lower bound, that is, a semipositone prob-
lem. We remark that, to some extent, our systems and results generalize some previous
works.

We organize this paper as follows. In Section , we first approximate the singular semi-
positone problem to the singular positone problem by a substitution. Then we present
some lemmas to be used later. In Section , we state our result and give its proof. In Sec-
tion , we present an example to demonstrate an application of our main results.

2 Preliminaries and lemmas
In this section, we first approximate the singular semipositone problem to the singular
positone problem by a substitution. Then we present some lemmas to be used later. We
assume that there are four linear functionals ϕ,,ϕ,,ϕ,,ϕ, : C[, ] → R such that ϕ,ϕ

satisfy the decompositions

ϕ(y) = ϕ,(y) + ϕ,(y), ϕ(y) = ϕ,(y) + ϕ,(y). (.)

Let E = C[, ], so that (E,‖ · ‖) is a Banach space with usual maximal norm ‖y‖ =
maxt∈[,] |y(t)|. Let

P =
{

y ∈ E : y(t) ≥ , y(t) ≥ t( – t)‖y‖, t ∈ [, ],ϕ,(y) ≥ ,ϕ,(y) ≥ 
}

. (.)

Clearly, P is a cone in E. We denote Pr := {y ∈ P,‖y‖ < r} for any r > .
Now, for the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

x′′(t) = , t ∈ (, ),

x() = ,

x() = ,
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we denote the Green functions

⎧
⎨

⎩

t( – s),  ≤ t ≤ s ≤ ,

s( – t),  ≤ s ≤ t ≤ .
(.)

In the rest of the paper, we adopt the following assumptions:
(H) There exist constants C, D >  such that ϕ,(y) ≥ C‖y‖ and ϕ,(y) ≥ D‖y‖ for

all y ∈ P.
(H) The functionals described in (.) have the form

ϕ(y) :=
∫

[,]
y(t) dα(t), ϕ,(y) :=

∫

[,]
y(t) dα,(t),

ϕ,(y) :=
∫

[,]
y(t) dα,(t),

ϕ(y) :=
∫

[,]
y(t) dα(t), ϕ,(y) :=

∫

[,]
y(t) dα,(t),

ϕ,(y) :=
∫

[,]
y(t) dα,(t),

where all αi,αi,j : C[, ] → R, i, j = , , are of bounded variation on [, ].
(H) We have

∫

[,]
G(t, s) dα,(t) > ,

∫

[,]
G(t, s) dα,(t) > , ∀s ∈ [, ],

∫

[,]
( – t) dα,(t) > ,

∫

[,]
( – t) dα,(t) > .

(H) The functions H, H : R → R are continuous with H([, +∞)), H([, +∞)) ⊆
[, +∞).

(H) f : (, ) × [, +∞) → [, +∞) is continuous, and for any t ∈ (, ), f (t, y) is nonde-
creasing in y and satisfies

f (t, y) ≤ p(t)h(y), (.)

where p : (, ) → [, +∞) and h : [, +∞) → [, +∞) are continuous, and limy→+∞ f (t,y)
y =

+∞ for t uniformly on any closed subinterval of (, ).
(H) g : (, ) × [, +∞) → [, +∞) is continuous, and g(t, ) >  for all t ∈ (, ). More-

over, there exist constants λ ≥ λ >  such that, for any t ∈ (, ) and x ∈ [, +∞),

cλ g(t, x) ≤ g(t, cx) ≤ cλ g(t, x),  ≤ c ≤ , (.)

with  <
∫ 

 G(t, t)g(t, ) dt < ∞.
(H) q(t) : (, ) → (–∞, +∞) is Lebesgue integrable such that

∫ 
 q–(t) dt > , where

q–(t) = max
{

–q(t), 
}

, t ∈ (, ).
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Remark . Note that since both ϕ and ϕ are linear, there exist constants C and D > 
such that |ϕ| ≤ C‖y‖ and |ϕ| ≤ D‖y‖ for all y ∈ P. Henceforth, C and D denote these
constants.

To state and prove the main result of this paper, we need the following lemmas.

Lemma . ([]) q : (, ) → (–∞, +∞) is Lebesgue integrable, and q(t) may have finitely
many singularities.

Lemma . ([]) For any c ≥  and (t, x) ∈ (, ) × [, +∞), we have

cλ g(t, x) ≤ g(t, cx) ≤ cλ g(t, x). (.)

Definition . If (x, y) ∈ C[, ] ∩ C(, ) × C[, ] ∩ C(, ) satisfies (.) and x(t) >
, y(t) >  for any t ∈ (, ), then we say that (x, y) is a positive solution of system (.).

For u ∈ E, let us define the function [·]∗ by

[
u(t)

]∗ =

⎧
⎨

⎩

u(t), u(t) ≥ ,

, u(t) < ,

H∗
i (z) = Hi

(
max{, z}), i = , .

Clearly, ω(t) =
∫ 

 G(t, s)q–(s) ds is a positive solution of the BVP

⎧
⎨

⎩

–ω′′(t) = q–(t), t ∈ (, ),

ω() = ω() = .

Clearly, ω ∈ P.
In what follows, we consider the following approximately singular nonlinear system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–x′′(t) = f (t, y(t)) + q+(t), t ∈ (, ),

–y′′(t) = g(t, [x(t) – ω(t)]∗), t ∈ (, ),

x() = H∗
 (ϕ(y)), x() = ,

y() = H∗
 (ϕ(x – ω)), y() = ,

(.)

where

q+(t) = max
{

q(t), 
}

, t ∈ (, ).

It is easy to check that (x, y) is a solution of (.) if and only if (x, y) is a solution of the
following nonlinear integral equation system:

⎧
⎨

⎩

x(t) = ( – t)H∗
 (ϕ(y)) +

∫ 
 G(t, s)[f (s, y(s)) + q+(s)] ds, t ∈ [, ],

y(t) = ( – t)H∗
 (ϕ(x – ω)) +

∫ 
 G(t, s)g(s, [x(s) – ω(s)]∗) ds, t ∈ [, ].

(.)
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If x ∈ P and ω ∈ P, then y ∈ P. In fact,

y(t) = ( – t)H∗

(
ϕ(x – ω)

)
+

∫ 


G(t, s)g

(
s,

[
x(s) – ω(s)

]∗)ds, t ∈ [, ]

and

y() = H∗

(
ϕ(x – ω)

)
, y() = .

If ‖y‖ = y() = H∗
 (ϕ(x – ω)), then we have

y(t) ≥ ( – t)H∗

(
ϕ(x – ω)

) ≥ t( – t)H∗

(
ϕ(x – ω)

)

= t( – t)‖y‖, t ∈ [, ].

If ‖y‖ > H∗
 (ϕ(x – ω)), then there exists t ∈ (, ) such that ‖y‖ = y(t). Since G(t,s)

G(t,s) ≥
t( – t), t, s ∈ (, ) × (, ), we have

y(t) = ( – t)H∗

(
ϕ(x – ω)

)
+

∫ 



G(t, s)
G(t, s)

G(t, s)g
(
s,

[
x(s) – ω(s)

]∗)ds

≥ t( – t)
[

( – t)H∗

(
ϕ(x – ω)

)
+

∫ 


G(t, s)g

(
s,

[
x(s) – ω(s)

]∗)ds
]

= t( – t)y(t)

= t( – t)‖y‖, t ∈ [, ].

If ‖y‖ < H∗
 (ϕ(x – ω)), then

y(t) = ( – t)H∗

(
ϕ(x – ω)

)
+

∫ 



G(t, s)
G(t, s)

G(t, s)g
(
s,

[
x(s) – ω(s)

]∗)ds

≥ ( – t)H∗

(
ϕ(x – ω)

)

≥ t( – t)H∗

(
ϕ(x – ω)

)

> t( – t)‖y‖, t ∈ [, ].

In other words, we have x,ω ∈ P, H∗
 (ϕ(x – ω)) ≥ , and

ϕi,(y) =
∫

[,]
( – t)H∗


(
ϕ(x – ω)

)
dαi,(t)

+
∫

[,]

(∫ 


G(t, s)g

(
s,

[
x(s) – ω(s)

]∗)ds
)

dαi,(t)

= H∗

(
ϕ(x – ω)

)
∫ 


( – t) dαi,(t)

+
∫ 



[∫

[,]
G(t, s) dαi,(t)

]

g
(
s,

[
x(s) – ω(s)

]∗)ds ≥ , i = , .

This yields that y ∈ P.



Liu and Hao Boundary Value Problems  (2016) 2016:207 Page 7 of 24

For convenience, we have the following form:

ϕ(y) =
∫ 


y(t) dα(t)

=
∫ 



[

( – t)H∗

(
ϕ(x – ω)

)
+

∫ 


G(t, s)g

(
s,

[
x(s) – ω(s)

]∗)ds
]

dα(t).

We define

Dx := H∗

(
ϕ(y)

)
. (.)

Obviously, it is a nonnegative number that only depends on x.
We list here more assumptions to be used later.
(H) We have

C
C

∫ 
 q–(t) dt + 

max≤τ≤R h(τ ) + 
> 

∫ 


( – t)

[
p(t) + q+(t)

]
dt +

Dx

max≤τ≤R h(τ ) + 
,

where

r∗ =
C

C

∫ 


q–(t) dt + , g̃ =

∫ 


G(s, s)g(s, ) ds,

R = max
{

H∗

(
ϕ(x – ω)

)
+

(
r∗ + 

)λ g̃, x ∈ [
t( – t)r∗, r∗], t ∈ [, ]

}
,

Dx = max
{

Dx, x ∈ [
t( – t)r∗, r∗], t ∈ [, ]

}
.

(H) limy→+∞ f (t,y)
y = +∞ for t uniformly on any closed subinterval of (, ).

As a matter of convenience, we set

x̃(t) = y(t) = ( – t)H∗

(
ϕ(x – ω)

)
+

∫ 


G(t, s)g

(
s,

[
x(s) – ω(s)

]∗)ds, t ∈ [, ].

Then, clearly, the equation system (.) is equivalent to the equation

x(t) = ( – t)Dx +
∫ 


G(t, s)

[
f
(
s, x̃(s)

)
+ q+(s)

]
ds, t ∈ [, ]. (.)

Next, let us define the nonlinear operator F : P → C([, ]) by

(Fx)(t) = ( – t)Dx +
∫ 


G(t, s)

[
f
(
s, x̃(s)

)
+ q+(s)

]
ds, t ∈ [, ]. (.)

It is well known that the solutions to system (.) exist if and only if the solutions to equa-
tion (.) exist. Therefore, if x(t) is a fixed point of F in P, then system (.) has one
solution (u, v), which can be written as

⎧
⎨

⎩

u(t) = x(t),

v(t) = ( – t)H∗
 (ϕ(x – ω)) +

∫ 
 G(t, s)g(s, [x(s) – ω(s)]∗) ds, t ∈ [, ].
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Lemma . ([]) Let X be a real Banach space, P be a cone in X, � be a bounded open
subset of X with θ ∈ �, and A : � ∩ P → P be a completely continuous operator.

() Suppose that

Au 
= λu, ∀u ∈ ∂� ∩ P,λ ≥ .

Then i(A,� ∩ P, P) = .
() Suppose that

Au � u, ∀u ∈ ∂� ∩ P.

Then i(A,� ∩ P, P) = .

Lemma . ([]) If g(t, x) satisfies (H), then for any t ∈ (, ), g(t, x) is increasing in x ∈
[, +∞), and for any [α,β] ⊂ (, ),

lim
n→+∞ min

t∈[α,β]

g(t, x)
x

= +∞.

Lemma . Suppose that (u, v) with u(t) ≥ ω(t) for any t ∈ [, ] is a positive solution of
system (.) and ϕ(u–ω) ≥ , ϕ(v) ≥ . Then (u–ω, v) is a positive solution of the singular
semipositone differential system (.).

Proof In fact, if (u, v) is a positive solution of (.) and u(t) ≥ ω(t),ϕ(u – ω) ≥ ,ϕ(v) ≥ 
for any t ∈ [, ], then by (.) and the definition of [u(t)]∗ we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′(t) = f (t, v(t)) + q+(t), t ∈ (, ),

–v′′(t) = g(t, u(t) – ω(t)), t ∈ (, ),

u() = H∗
 (ϕ(v)) = H(ϕ(v)), u() = ,

v() = H∗
 (ϕ(u – ω)) = H(ϕ(u – ω)), v() = .

(.)

Let u = u – ω. Then u′′
 = u′′ – ω′′, which implies that

u′′(t) = u′′
 (t) + ω′′(t) = u′′

 (t) – q–(t), t ∈ (, ).

Thus, (.) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′
 (t) = f (t, v(t)) + q+(t) – q–(t), t ∈ (, ),

–v′′(t) = g(t, u(t)), t ∈ (, ),

u() = H(ϕ(v)), u() = ,

v() = H(ϕ(u)), v() = .

(.)

Noticing that q(t) = q+(t) – q–(t), by (.) we have that (u, v) is a positive solution of
system (.), that is, (u – ω, v) is a positive solution of system (.). This completes the
proof of the lemma. �
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Lemma . Assume that (H)-(H) hold. Then F : P → P is a completely continuous op-
erator.

Proof For convenience, the proof is divided into the following five steps.
Step . We show that F : P → P is well defined. For any fixed x ∈ P, choose  < a <  such

that a‖x‖ < . Then a[x(t) – ω(t)]∗ ≤ a‖x‖ < , so by (.), (.), and Lemma . we have

g
(
t,

[
x(t) – ω(t)

]∗) ≤
(


a

)λ

g
(
t, a

[
x(t) – ω(t)

]∗) ≤ aλ–λ‖x‖λ g(t, ).

Then

∫ 


G(s, τ )g

(
τ ,

[
x(τ ) – ω(τ )

]∗)dτ

≤ aλ–λ‖x‖λ

∫ 


G(τ , τ )g(τ , ) dτ = R̃. (.)

Consequently, for any t ∈ [, ], we have

(Fx)(t) = ( – t)Dx +
∫ 


G(t, s)

[
f
(
s, x̃(s)

)
+ q+(s)

]
ds

≤ Dx +
∫ 


G(s, s)

[
p(s)h

(
x̃(s)

)
+ q+(s)

]
ds

≤ Dx + N
∫ 


G(s, s)

[
p(s) + q+(s)

]
ds < +∞,

where

N = max
≤τ≤R

h(τ ) + ,

max
{

H∗

(
ϕ(x – ω)

)
,∀x ∈ P

}
= C < +∞, R = C + R̃.

Thus, F : P → P is well defined.
Step . We show that F(P) ⊂ P. For any x ∈ P, by the definition of the operator F , we

obtain (Fx)() = , (Fx)() = Dx. If ‖Fx‖ = Dx, then we have

(Fx)(t) ≥ t( – t)Dx = t( – t)‖Fx‖, t ∈ [, ].

Then F(P) ⊂ P. If ‖Fx‖ > Dx, then there exists t ∈ (, ) such that ‖Fx‖ = (Fx)(t). Since
G(t,s)

G(t,s) ≥ t( – t), t, s ∈ (, ) × (, ), we have

(Fx)(t) = ( – t)Dx +
∫ 



G(t, s)
G(t, s)

G(t, s)
[
f
(
s, x̃(s)

)
+ q+(s)

]
ds

≥ t( – t)
[

( – t)Dx +
∫ 


G(t, s)

[
f
(
s, x̃(s)

)
+ q+(s)

]
ds

]

≥ t( – t)(Fx)(t) = t( – t)‖Fx‖, t ∈ [, ].
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If ‖Fx‖ < Dx, then

(Fx)(t) = ( – t)Dx +
∫ 



G(t, s)
G(t, s)

G(t, s)
[
f
(
s, x̃(s)

)
+ q+(s)

]
ds

≥ ( – t)Dx > t( – t)‖Fx‖, t ∈ [, ].

We also know that

ϕi,(Fx) =
∫

[,]
( – t)Dx dαi,(t) +

∫

[,]

(∫ 


G(t, s)

[
f
(
s, x̃(s)

)
+ q+(s)

]
ds

)

dαi,(t)

= Dx

∫ 


( – t) dαi,(t) +

∫ 



[∫

[,]
G(t, s) dαi,(t)

]
[
f
(
s, x̃(s)

)
+ q+(s)

]
ds

≥ , i = , .

Thus, F(P) ⊂ P.
Step . Let B ⊂ P be any bounded set. We show that F(B) is uniformly bounded. There

exists a constant L >  such that ‖u‖ ≤ L for any u ∈ B. Moreover, for any u ∈ B and s ∈
[, ], we have [x(s) – ω(s)]∗ ≤ x(s) ≤ ‖x‖ ≤ L < L + . Then, for any x ∈ B and s ∈ [, ], we
have g(s, [x(s) – ω(s)]∗) ≤ g(s, L + ) ≤ (L + )λ g(s, ), and thus

(Fx)(t) = ( – t)Dx +
∫ 


G(t, s)

[
f
(
s, x̃(s)

)
+ q+(s)

]
ds

≤ Dx +
∫ 


G(s, s)

[
p(s)h

(
x̃(s)

)
+ q+(s)

]
ds

≤ Dx + M
∫ 


G(s, s)

[
p(s) + q+(s)

]
ds < +∞,

where

M = max
≤τ≤R

h(τ ) + , max
{

H∗

(
ϕ(x – ω)

)
,∀x ∈ B ⊂ P

}
= C < +∞,

R = C + (L + )λ

∫ 


G(s, s)g(s, ) ds.

Therefore, F(B) is uniformly bounded.
Step . Let B ⊂ P be any bounded set. We show that F(B) is equicontinuous on [, ]. For

any (t, s) ∈ [, ] × [, ], G(t, s) is uniformly continuous. Thus, for any ε > , there exists a
constant δ = ε

Dx
such that, for any t, t′,∈ [, ] such that |t – t′| < δ, we have

∣
∣G(t, s) – G

(
t′, s

)∣
∣ <

ε

M
∫ 

 [p(s) + q+(s)] ds
.

On the other hand, for any x ∈ B, we have

∣
∣(Fx)(t) – (Fx)

(
t′)∣∣

≤ ∣
∣t – t′∣∣Dx +

∫ 



∣
∣G(t, s) – G

(
t′, s

)∣
∣
[
f
(
s, x̃(s)

)
+ q+(s)

]
ds
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< δDx +
ε

M
∫ 

 [p(s) + q+(s)] ds
M

∫ 



[
p(s) + q+(s)

]
ds

=
ε

Dx
Dx +

ε


= ε.

Thus, F(B) is equicontinuous on [, ].
Step . We show that F : P → P is continuous. Assume that xn, x ∈ P and ‖xn – x‖ →

, n → +∞. Then there exists a constant L >  such that ‖xn‖ ≤ L,‖x‖ ≤ L (n = , , . . .).
Similarly to (.), we have g(s, [x(s) – ω(s)]∗) ≤ g(s, L + ) ≤ (L + )λ g(s, ) (n = , , . . .).
Then, we have

∣
∣(Fxn)(t) – (Fx)(t)

∣
∣

≤ ∣
∣( – t)(Dxn – Dx )

∣
∣ +

∫ 


G(s, s)

∣
∣f

(
s, x̃n(s)

)
– f (s, x̃(s)

∣
∣ds,

where

Dxn = H∗


(∫ 



[
x̃n(s)

]
dα(s)

)

, Dx = H∗


(∫ 



[
x̃(s)

]
dα(s)

)

.

Set

rn(s) = G(s, s)|f (s, x̃n(s)
)

– f
(
s, x̃(s)

)
,

F(s) = MG(s, s)
[
p(s) + q+(s)

]
, s ∈ (, ),

where

M = max
≤τ≤R

h(τ ) + , max
{

H∗

(
ϕ(xn – ω)

)
,∀xn ∈ P

}
= C < +∞,

R′
 =

∫ 


G(s, τ )g

(
τ ,

[
xn(τ ) – ω(τ )

]∗)dτ ≤ (L + )λ

∫ 


G(s, s)g(s, ) ds,

R = C + R′
.

It is clear that |rn(s)| ≤ F(s), s ∈ (, ), n = , , . . . , and {rn(s)} is a sequence of measurable
functions in (, ). By (H) we have

 ≤
∫ 


F(s) ds = M

∫ 


G(s, s)

[
p(s) + q+(s)

]
ds < +∞. (.)

We assert that rn(s) →  (n → +∞) for any fixed s ∈ (, ). In fact, for any fixed s ∈ (, ),
noticing the continuity of f (s, y) in y, we have that f (s, y) is uniformly continuous with
respect to y in [, R]; thus, for any ε > , there exists a constant δ >  such that, for any
v, v ∈ [, R] such that |v – v| < δ,

∣
∣f (s, v) – f (s, v)

∣
∣ <

ε

G(s, s)
. (.)

On the other hand, in view of the continuity of g(s, x) in x, we obtain that g(s, x) is uniformly
continuous in x in [, L], so for the above δ > , there exists a constant δ > , such that.
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for any u, u ∈ [, L] such that |u – u| < δ,

∣
∣g(s, u) – g(s, u)

∣
∣ <

δ

G(s, s)
.

Since xn(s) → x(s) (n → +∞), there exists a natural number N >  such that |xn(s) –
x(s)| < δ for n > N. Noting that

∣
∣
[
xn(s) – ω(s)

]∗ –
[
x(s) – ω(s)

]∗∣∣

=
∣
∣
∣
∣
|xn(s) – ω(s)| + xn(s) – ω(s)


–

|x(s) – ω(s)| + x(s) – ω(s)


∣
∣
∣
∣

=
∣
∣
∣
∣
|xn(s) – ω(s)| – |x(s) – ω(s)|


+

xn(s) – x(s)


∣
∣
∣
∣

≤ |xn(s) – x(s)|


+
|xn(s) – x(s)|



=
∣
∣xn(s) – x(s)

∣
∣ < δ

and

 ≤ [
xn(s) – ω(s)

]∗ ≤ xn(s) ≤ L,

 ≤ [
x(s) – ω(s)

]∗ ≤ x(s) ≤ L,

for n > N, we have

∣
∣g

(
s,

[
xn(s) – ω(s)

]∗) – g
(
s,

[
x(s) – ω(s)

]∗)∣∣ <
δ

G(s, s)
. (.)

By (.) we have

∣
∣
∣
∣

∫ 


G(s, τ )g

(
τ ,

[
xn(τ ) – ω(τ )

]∗)dτ –
∫ 


G(s, τ )g

(
τ ,

[
x(τ ) – ω(τ )

]∗)dτ

∣
∣
∣
∣ <

δ


. (.)

Noting that H∗
 is continuous, for the above δ > , there exists δ >  such that |z – z| < δ.

Then

∣
∣H∗

 (z) – H∗
 (z)

∣
∣ <

δ


.

Since

ϕ(xn – ω) :=
∫

[,]

(
xn(s) – ω(s)

)
dα(s), ϕ(x – ω) :=

∫

[,]

(
x(s) – ω(s)

)
dα(s),

and xn → x, n → +∞, by the Lebesgue dominated convergence theorem we have

ϕ(xn – ω) → ϕ(x – ω), n → +∞.

For the above δ > , there exists a natural number N >  such that, for any n > N, we
have

∣
∣H∗


(
ϕ(xn – ω)

)
– H∗


(
ϕ(x – ω)

)∣
∣ <

δ


. (.)
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Then it follows from (.) and (.) that
∣
∣
∣
∣( – s)H∗


(
ϕ(xn – ω)

)
+

∫ 


G(s, τ )g

(
τ ,

[
xn(τ ) – ω(τ )

]∗)dτ

– ( – s)H∗

(
ϕ(x – ω)

)
+

∫ 


G(s, τ )g

(
τ ,

[
x(τ ) – ω(τ )

]∗)dτ

∣
∣
∣
∣

< δ,

that is,

∣
∣x̃n(s) – x̃(s)

∣
∣ < δ. (.)

By (.), choose N = max{N, N}. For n > N , we have

∣
∣
∣
∣f

(

s, ( – s)H∗

(
ϕ(xn – ω)

)
+

∫ 


G(s, τ )g

(
τ ,

[
xn(τ ) – ω(τ )

]∗)dτ

)

– f
(

s, ( – s)H∗

(
ϕ(x – ω)

)
+

∫ 


G(s, τ )g

(
τ ,

[
x(τ ) – ω(τ )

]∗)dτ

)∣
∣
∣
∣

<
ε

G(s, s)
,

that is,

∣
∣f

(
s, x̃n(s)

)
– f

(
s, x̃(s)

)∣
∣ <

ε

G(s, s)
.

Consequently, for any fixed s ∈ (, ) and for any ε > , there exists a natural number N > 
such that, for n > N,

∣
∣rn(s) – 

∣
∣ < ε,

that is, rn(s) →  (n → +∞), s ∈ (, ).
Since H∗

 is continuous, for the above ε > , there exists δ > δ >  such that if |z –z| < δ,
then

∣
∣H∗

 (z) – H∗
 (z)

∣
∣ < ε.

So by (.) we have

∣
∣
∣
∣H

∗


(∫ 



[

( – s)H∗

(
ϕ(xn – ω)

)
+

∫ 


G(s, τ )g

(
τ ,

[
xn(τ ) – ω(τ )

]∗)dτ

]

dα(s)
)

– H∗


(∫ 



[

( – s)H∗

(
ϕ(x – ω)

)
+

∫ 


G(s, τ )g

(
τ ,

[
x(τ ) – ω(τ )

]∗)dτ

]

dα(s)
)∣

∣
∣
∣

< ε,

that is,

|Dxn – Dx | < ε.
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By the Lebesgue dominated convergence theorem we have

‖Fxn – Fx‖ < ε + ε = ε, n → +∞.

Then

‖Fxn – Fx‖ → , n → +∞.

Therefore, F : P → P is continuous. Thus, F : P → P is a completely continuous operator.
This completes the proof of the lemma. �

Lemma . Assume that (H)-(H) hold. Then i(F , Pr∗ , P) = .

Proof Assume that there exist λ ≥  and z ∈ ∂Pr∗ such that λz = Fz. Then z = 
λ

Fz

and  < 
λ

≤ . We know that z(t) ≥ t( – t)‖z‖ = t( – t)r∗, t ∈ [, ], and ω(t) =
∫ 

 G(t, s)q–(s) ds ≤ t( – t)
∫ 

 q–(s) ds. Then, for any t ∈ [, ],

z(t) – ω(t) ≥ z(t) – t( – t)
∫ 


q–(s) ds

≥ t( – t)r∗ – t( – t)
∫ 


q–(s) ds

= t( – t)
[

r∗ –
∫ 


q–(s) ds

]

≥ .

Applying z = 
λ

Fz, we obtain λ, z such that

⎧
⎪⎪⎨

⎪⎪⎩

z′′
(t) + 

λ
[f (t, z̃(t)) + q+(t)] = ,

z() = 
λ

H∗
 (

∫ 
 z̃(t) dt) = 

λ
Dz ,

z() = .

(.)

Since z′′
(t) ≤  for any t ∈ (, ), z(t) is a concave function on [, ]. By the boundary con-

ditions, if ‖z‖ = z(), then z′
(t) ≤ , t ∈ (, ), and since z() = 

λ
Dz is a nonnegative

number depending only on z, we have z′
() = . Noting that

∫ 


G(s, τ )g

(
τ ,

[
z(τ ) – ω(τ )

]∗)dτ ≤
∫ 


G(τ , τ )g

(
τ ,

[
z(τ ) – ω(τ )

]∗)dτ

=
∫ 


G(τ , τ )g

(
τ ,

[
z(τ ) – ω(τ )

])
dτ

≤
∫ 


G(τ , τ )g

(
τ , z(τ )

)
dτ

≤
∫ 


G(τ , τ )g

(
τ , r∗)dτ

≤ (
r∗ + 

)λ
∫ 


G(τ , τ )g(τ , ) dτ ,
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we get

z̃(s) = ( – s)H∗

(
ϕ(z – ω)

)
+

∫ 


G(s, τ )g

(
τ ,

[
z(τ ) – ω(τ )

]∗)dτ

≤ H∗

(
ϕ(z – ω)

)
+

(
r∗ + 

)λ
∫ 


G(s, s)g(s, ) ds.

Then, choosing t ∈ (, ) and integrating (.) from  to t, we have

z′
(t) =

∫ t


z′′

(s) ds ≥ –
∫ t



[
f
(
s, z̃(s)

)
+ q+(s)

]
ds

≥ –
∫ t



[
p(s)h

(
z̃(s)

)
+ q+(s)

]
ds

≥ –
[

max
≤τ≤R

h(τ ) + 
]∫ t



[
p(s) + q+(s)

]
ds,

where

R = H∗

(
ϕ(z – ω)

)
+

(
r∗ + 

)λ
∫ 


G(s, s)g(s, ) ds. (.)

By (H) we know that R ≤ R. So

–z′
(t) ≤

[
max

≤τ≤R
h(τ ) + 

]∫ t



[
p(s) + q+(s)

]
ds

≤
[

max
≤τ≤R

h(τ ) + 
]∫ t



[
p(s) + q+(s)

]
ds.

Next, integrating this inequality from  to , we obtain

r∗ = z() =
∫ 


–z′

(s) ds ≤
[

max
≤τ≤R

h(τ ) + 
]∫ 


ds

∫ s



[
p(ξ ) + q+(ξ )

]
dξ

≤
[

max
≤τ≤R

h(τ ) + 
]∫ 


dξ

∫ 

ξ

[
p(ξ ) + q+(ξ )

]
ds

≤
[

max
≤τ≤R

h(τ ) + 
]∫ 


( – ξ )

[
p(ξ ) + q+(ξ )

]
dξ .

Hence,

r∗

max≤τ≤R h(τ ) + 
≤

∫ 


( – ξ )

[
p(ξ ) + q+(ξ )

]
dξ

≤ 
∫ 


( – ξ )

[
p(ξ ) + q+(ξ )

]
dξ ,

which is a contradiction with (H). On the other hand, if ‖z‖ > z(), then there exists
t ∈ (, ) such that

‖z‖ = z(t); z′
(t) = , z′

(t) ≥ , t ∈ (, t); z′
(t) ≤ , t ∈ (t, ).
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If t ∈ (, t), integrating (.) from t to t, we have

z′
(t) =

∫ t

t
–z′′

(s) ds

≤
∫ t

t

[
f
(
s, z̃(s)

)
+ q+(s)

]
ds

≤
∫ t

t

[
p(s)h

(
z̃(s)

)
+ q+(s)

]
ds

≤
[

max
≤τ≤R

h(τ ) + 
]∫ t

t

[
p(s) + q+(s)

]
ds,

where R is defined by (.), and by (H) we know that R ≤ R. So

z′
(t) ≤

[
max

≤τ≤R
h(τ ) + 

]∫ t

t

[
p(s) + q+(s)

]
ds

≤
[

max
≤τ≤R

h(τ ) + 
]∫ t

t

[
p(s) + q+(s)

]
ds.

Next, integrating this inequality from  to t, we obtain

r∗ = z(t) =
∫ t


z′

(s) ds + z()

≤
[

max
≤τ≤R

h(τ ) + 
]∫ t


ds

∫ t

s

[
p(ξ ) + q+(ξ )

]
dξ + z()

≤
[

max
≤τ≤R

h(τ ) + 
]∫ t


dξ

∫ ξ



[
p(ξ ) + q+(ξ )

]
ds + z()

≤
[

max
≤τ≤R

h(τ ) + 
]∫ t


ξ
[
p(ξ ) + q+(ξ )

]
dξ + z()

≤ max≤τ≤R h(τ ) + 
 – t

∫ 


ξ ( – ξ )

[
p(ξ ) + q+(ξ )

]
dξ + z().

Consequently,

r∗( – t)
max≤τ≤R h(τ ) + 

≤
∫ 


ξ ( – ξ )

[
p(ξ ) + q+(ξ )

]
dξ +

z()( – t)
max≤τ≤R h(τ ) + 

.

For t ∈ (t, ), we have

z′
(t) =

∫ t

t

z′′
(s) ds ≥ –

∫ t

t

[
f
(
s, z̃(s)

)
+ q+(s)

]
ds

≥ –
∫ t

t

[
p(s)h

(
z̃(s)

)
+ q+(s)

]
ds

≥ –
[

max
≤τ≤R

h(τ ) + 
]∫ t

t

[
p(s) + q+(s)

]
ds,
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where R is defined by (.), and by (H) we know that R ≤ R, so

–z′
(t) ≤

[
max

≤τ≤R
h(τ ) + 

]∫ t

t

[
p(s) + q+(s)

]
ds

≤
[

max
≤τ≤R

h(τ ) + 
]∫ t

t

[
p(s) + q+(s)

]
ds.

Next, integrating this inequality from t to , we obtain

r∗ = z(t) =
∫ 

t

–z′
(s) ds

≤
[

max
≤τ≤R

h(τ ) + 
]∫ 

t

ds
∫ s

t

[
p(ξ ) + q+(ξ )

]
dξ

≤
[

max
≤τ≤R

h(τ ) + 
]∫ 

t

dξ

∫ 

ξ

[
p(ξ ) + q+(ξ )

]
ds

≤
[

max
≤τ≤R

h(τ ) + 
]∫ 

t

( – ξ )
[
p(ξ ) + q+(ξ )

]
dξ

≤ max≤τ≤R h(τ ) + 
t

∫ 


ξ ( – ξ )

[
p(ξ ) + q+(ξ )

]
dξ .

Then,

r∗t

max≤τ≤R h(τ ) + 
≤

∫ 


ξ ( – ξ )

[
p(ξ ) + q+(ξ )

]
dξ .

Thus,

r∗

max≤τ≤R h(τ ) + 

≤ 
∫ 


ξ ( – ξ )

[
p(ξ ) + q+(ξ )

]
dξ +

z()( – t)
max≤τ≤R h(τ ) + 

= 
∫ 


ξ ( – ξ )

[
p(ξ ) + q+(ξ )

]
dξ +


λ

Dz ( – t)
max≤τ≤R h(τ ) + 

≤ 
∫ 


( – ξ )

[
p(ξ ) + q+(ξ )

]
dξ +

Dz

max≤τ≤R h(τ ) + 
,

which is a contradiction with (H). So, by Lemma ., i(F , Pr∗ , P) = . This completes the
proof of the lemma. �

Lemma . Assume that (H)-(H) and (H) hold. There exists a constant R∗ > r∗ such
that i(F , PR∗ , P) = .

Proof We choose constants α,β , and L such that

[α,β] ⊂ (, ), L > 
[

α( – β) max
≤t≤

∫ β

α

G(t, s) ds
]–

.
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By (H) there exists R∗
 > r such that

f (t, y) ≥ Ly, t ∈ [α,β], y ∈ [
R∗

 , +∞)
. (.)

On the other hand, by Lemma . there exists R∗
 > R∗

 such that, for t ∈ [α,β] and x ∈
[R∗

, +∞),

g(t, x)
x

≥ min
t∈[α,β]

g(t, x)
x

≥ 
maxα≤s≤β

∫ β

α
G(s, τ ) dτ

,

that is,

g(t, x) ≥ 
maxα≤s≤β

∫ β

α
G(s, τ ) dτ

x, t ∈ [α,β], x ∈ [
R∗

, +∞)
. (.)

Let R∗ ≥ R∗


α(–β) . Obviously, R∗ > R∗
 > R∗

 > r∗. Thus, r∗
R∗ < 

 .
Now we show that x � Fx, x ∈ ∂PR∗ . Indeed, otherwise, there exists x ∈ ∂PR∗ such that

x ≥ Fx. As in the proof of Lemma ., by the definition of r∗, for any t ∈ [α,β], we have

x(t) – ω(t)

≥ x(t) – t( – t)
∫ 


q–(s) ds

≥ x(t) – t( – t)
[C

∫ 
 q–(s) ds

C
+ 

]

= x(t) – t( – t)r∗ ≥ x(t) –
x(t)
‖x‖ r∗ = x(t) –

r∗

R∗ x(t) ≥ 


x(t)

≥ 


t( – t)‖x‖ ≥ 


R∗α( – β) ≥ R∗
 > .

So, by (.), for any s ∈ [α,β], we have

∫ β

α

G(s, τ )g
(
τ ,

[
x(τ ) – ω(τ )

]∗)dτ

≥ 
maxα≤s≤β

∫ β

α
G(s, τ ) dτ

∫ β

α

G(s, τ )
[
x(τ ) – ω(τ )

]∗ dτ

≥ 


R∗α( – β) ≥ R∗
 > R∗

 .

Since f is nondecreasing in y, from the last inequality it follows that

R∗ ≥ x(t) ≥ Fx(t) ≥
∫ 


G(t, s)

[
f
(
s, x̃(s)

)
+ q+(s)

]
ds

≥
∫ 


G(t, s)f

(
s, x̃(s)

)
ds

≥
∫ β

α

G(t, s)Lx̃(s) ds
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≥
∫ β

α

G(t, s)L
∫ β

α

G(s, τ )g
(
τ ,

[
x(τ ) – ω(τ )

]∗)dτ ds

≥ 


Lα( – β)R∗
∫ β

α

G(t, s) ds, t ∈ [, ].

Then we have


[
Lα( – β)

]– ≥
∫ β

α

G(t, s) ds, t ∈ [, ].

Taking the maximum in the last inequality, we get


[
Lα( – β)

]– ≥ max
≤t≤

∫ β

α

G(t, s) ds.

Consequently,

L ≤ 
[

α( – β) max
≤t≤

∫ β

α

G(t, s) ds
]–

.

This contradicts to the choice of L. Thus, by Lemma ., i(F , PR∗ , P) = . The proof is
complete. �

3 Main results
In this section, we give our main result.

Theorem . Suppose that (H)-(H) are satisfied. Then system (.) has at least one pos-
itive solution.

Proof Applying Lemmas . and . and the definition of the fixed point index, we have
i(F , PR∗\Pr∗ , P) = –. Thus, F has a fixed point z in PR∗\Pr∗ with r∗ < ‖z‖ < R∗. Since
r∗ < ‖z‖, we have

z(t) – ω(t) ≥ t( – t)‖z‖ –
∫ 


G(t, s)q–(s) ds ≥ t( – t)‖z‖ – t( – t)

∫ 


q–(s) ds

= t( – t)
[

‖z‖ –
∫ 


q–(s) ds

]

= kt( – t) ≥ , t ∈ [, ],

where k = ‖z‖ –
∫ 

 q–(s) ds > .
Choosing z ∈ PR∗\Pr∗ , we have

ϕi(z – ω) = ϕi(z) – ϕi(ω) ≥ C‖z‖ – ϕi(ω), i = , .

Since ϕi(ω) ≤ C‖ω‖ and ω ∈ P, we have ω(t) ≥ t( – t)‖ω‖. Consequently, by the above
inequalities and the definition of ω(t) we have

 ≤ t( – t)ϕi(ω) ≤ Ct( – t)‖ω‖ ≤ Cω(t) = C

∫ 


G(t, s)q–(s) ds

≤ Ct( – t)
∫ 


q–(s) ds.
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Consequently, ϕi(ω) ≤ C
∫ 

 q–(s) ds. Then

ϕi(z – ω) ≥ C‖z‖ – ϕi(ω) ≥ C

(C
∫ 

 q–(s) ds
C

+ 
)

– C

∫ 


q–(s) ds

= C > , i = , .

Then from Lemma . it follows that
⎧
⎨

⎩

x(t) = z(t) – ω(t),

y(t) = ( – t)H∗
 (ϕ(z – ω)) +

∫ 
 G(t, s)g(s, (z(s) – ω(s))) ds

is a positive solution of system (.). Thus, we complete the proof of Theorem .. �

Remark . In comparison with [] and [], we consider coupled systems rather than
only a single equation, the nonlinearity f (t, x) may be singular at t = , , and q(t) can have
finitely many singularities in [, ]. Moreover, we do not assume that H satisfies merely an
asymptotic condition.

Remark . In comparison with [], we also consider the coupled system, but our system
is singular semipositone. We consider f that need not have a lower bound, and we do not
assume that Hi satisfy superlinearity conditions at t =  and t = +∞.

Remark . In comparison with [], we have more complex integral boundary condi-
tions. In this paper, Hi (i = , ) are not linear, and ϕi : C([, ]) → R (i = , ) are linear
Stieltjes integrals with signed measures. Thus, in this paper, we allow the map y �→ ϕ(y) to
be negative even if y is nonnegative. This is very different from paper [].

4 Example
Example . Consider the singular system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–x′′ = t
(π+) y arctan y – 

+ √
{ √

t + 
√(t– 

 )
}, t ∈ (, ),

–y′′ = x



t(–t) , t ∈ (, ),

x() = H(ϕ(y)), x() = ,

y() = H(ϕ(x)), y() = ,

(.)

ϕ(y) =



y
(




)

–



y
(




)

=



y
(




)

–



y
(




)

︸ ︷︷ ︸
ϕ,(y)

+



y
(




)

︸ ︷︷ ︸
ϕ,(y)

, (.)

ϕ(x) =



x
(




)

–



x
(




)

=



x
(




)

–



x
(




)

︸ ︷︷ ︸
ϕ,(x)

+



x
(




)

︸ ︷︷ ︸
ϕ,(x)

. (.)

By (.) and (.) we know that ϕ,ϕ satisfy (H)-(H), and C = 
 , C = 

 , D = 
 , D =


 . Define H, H by

H(z) := z + z, H(z) := z

 , t ∈ (–∞, +∞).
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We know that H is not superlinear at t =  and does not satisfy an asymptotic condition
and that H is not superlinear at t =  and t = +∞. Then system (.) has at least one
positive solution on C[, ] ∩ C(, ) × C[, ] ∩ C(, ). Indeed, choose

p(t) =
t

(π + )
, h(y) = y arctan y,

q–(t) =


 +  √

{
√
t

+



√

(t – 
 )

}

,

q+(t) ≡ , g(t, x) =
x 



t( – t)
, λ = , λ =




.

Then

r∗ =
C

∫ 
 q–(t) dt

C
+  =




,


∫ 


( – t)

[
p(t) + q+(t)

]
dt =


(π + )

≈ .,

(.)

(
r∗ + 

)λ
∫ 


G(s, s)g(s, ) ds = , (.)

and thus

g̃ =
∫ 


G(s, s)g(s, ) ds =

(




)–

=
(




)

≈ .,

and  ≤ t( – t)‖x‖ ≤ x(t) ≤ ‖x‖, x ∈ P. If x ∈ [t( – t)r∗, r∗], t ∈ [, ], then

ϕ(x – ω) ≤ ϕ(x) ≤ D‖x‖ =
,


≈ ..

Consequently,

H∗

(
ϕ(x – ω)

) ≤ H

(
,


)

=
(

,


) 
 ≈ ., (.)

y(t) = ( – t)H∗

(
ϕ(x – ω)

)
+

∫ 


G(t, s)g

(
s,

[
x(s) – ω(s)

]∗)ds

≤
(

,


) 


+
∫ 


G(t, s)g

(
s, x(s)

)
ds

≤
(

,


) 


+
∫ 


G(t, s)g

(
s, r∗)ds

≤
(

,


) 


+
(
r∗)λ

∫ 


G(t, s)g(s, ) ds

=
(

,


) 


+
(




)

·
(




)

≈ ..
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Then ϕ(y) ≤ C‖y‖ ≤ 
 × [( ,

 ) 
 + ( 

 ) · ( 
 )] ≈ ., and

H∗

(
ϕ(y)

) ≤ H

(



×
[(

,


) 


+
(




)

·
(




)])

=
{




×
[(

,


) 


+
(




)

·
(




)]}

+



×
[(

,


) 


+
(




)

·
(




)]

≈ ..

By (.) and (.) we have

max
{

H∗

(
ϕ(x – ω)

)
+

(
r∗ + 

)λ g̃, x ∈ [
t( – t)r∗, r∗], t ∈ [, ]

}

≤
(

,


) 


+  ≈ ..

Then

R =
(

,


) 


+  ≈ .,

max
≤τ≤R

h(τ ) =
((

,


) 


+ 
)

arctan

((
,


) 


+ 
)

≈ .,

r∗

max≤τ≤R h(τ ) + 
=




(( ,
 ) 

 + ) arctan(( ,
 ) 

 + ) + 
≈ ., (.)

Dx

max≤τ≤R h(τ ) + 

≤ { 
 × [( ,

 ) 
 + ( 

 ) · ( 
 )]} + 

 × [( ,
 ) 

 + ( 
 ) · ( 

 )]

(( ,
 ) 

 + ) arctan(( ,
 ) 

 + ) + 

≈ ..

By (.), (.), and the last inequality we get that condition (H) holds.

Thus, (H)-(H) hold. Therefore, by Theorem . system (.) has at least one positive
solution on C[, ] ∩ C(, ) × C[, ] ∩ C(, ).

Remark . In Example ., even if we consider only one equation

⎧
⎨

⎩

–x′′ = t
(π+) x arctan x – 

+ √
{ √

t + 
√(t– 

 )
}, t ∈ (, ),

x() = H(ϕ(x)), x() = 
(.)
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the function H(z) = z + z does not satisfy the key condition H of [], that is, there is a
number C ≥  such that

lim
z→+∞

|H(z) – Cz|
z

= .

So [] cannot deal with the problem.

Remark . In Example ., the nonlinearity term f has singularity at t =  and t = 
 .

Moreover, f can tend to negative infinity as t →  or t → 
 , which implies that f need

not have a lower bound. So, Example . well demonstrates this point. In Example ., if
q(t) ≡ , then f , g : [, ] × [, +∞) → [, +∞) are continuous. Consider the system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–x′′ = t
(π+) y arctan y, t ∈ (, ),

–y′′ = x



t(–t) , t ∈ (, ),

x() = H(ϕ(y)), x() = ,

y() = H(ϕ(x)), y() = .

(.)

Let H(z) := z +z and H(z) := z 
 . We know that H is not superlinear at t =  and H is not

superlinear at t =  and t = +∞. Then, these do not satisfy the condition for Hi (i = , ) in
[], that is,

lim
z→+

|Hi(z)|
z

= , i = , 

and

lim
z→+∞

|Hi(z)|
z

= +∞.

So [] cannot deal with the problem.
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