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Abstract
This paper is concerned with the existence and uniqueness of solutions for a
sequential fractional differential system with coupled boundary conditions. The
existence of solutions is derived by applying Leray-Schauder’s alternative, while the
uniqueness of the solution is established via Banach’s contraction principle. Two
examples are then given to demonstrate the validity of our main results.
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1 Introduction
The human immunodeficiency virus (HIV) causes acquired immune deficiency syndrome
(AIDS). The viral infection is characterized by a severe impairment of the immune system
and related opportunistic infections. HIV is a retrovirus that targets the CD+ T lympho-
cytes, which are the most abundant white blood cells of the immune system. Until now,
there are several countries, particularly in Africa, with up to % of their populations be-
tween the ages of  and  years infected by HIV, and throughout the world, already over
 million deaths died of AIDS. Mathematical models have been proven valuable in under-
standing the dynamics of HIV infection [–]. Perelson [, ] developed a simple model
for the primary infection with HIV. In this model, four categories of cells were defined: un-
infected CD+ T-cells, latently infected CD+ T-cells, productively infected CD+ T-cells,
and the virus population. In [], two equations were proposed to describe the evolution
of the system for HIV- population dynamics:

{
dx
dt = s – μx – βxy,
dy
dt = βxy – αy,

where all parameters and variables are non-negative, and x denotes the number of unin-
fected CD+ T-cells and y denotes the number of infected cells, s is the assumed constant
rate of production of CD+ T-cells, μ is their per capita death rate, β is the rate of infection
of CD+ T-cells by virus, and α is the rate of disappearance of infected cells.
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Recently, Arafal et al. [] introduced fractional-order model of infection of CD+ T-cells
which is described by the following set of FODEs of order α,α,α > :

⎧⎪⎨
⎪⎩
Dα (T) = s – KVT – dT + bI,
Dα (I) = KVT – (b + δ)I,
Dα (V ) = NδI – cV ,

where T , I , and V denote the concentration of uninfected CD+ T-cells, infected CD+

T-cells, and free HIV virus particles in the blood, respectively. δ represents the death rate
of infected T-cells and includes the possibility of death by bursting of infected T-cells,
hence δ ≥ d. The parameter b is the rate at which infected cells return to the uninfected
class, while c is the death rate of the virus and N is the average number of viral particles
produced by an infected cell.

Motivated by the HIV infection model and its application background, in this paper,
we consider the existence of solutions for the nonlinear sequential fractional differential
system with coupled boundary conditions (BCs) of the type:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(cDp + λ
cDp–)u(t) = f(t, u(t), v(t)),  < t < ,

(cDq + λ
cDq–)v(t) = f(t, u(t), v(t)),  < t < ,

u() = u′() = , u() = av(ξ ),
v() = v′() = , v() = bu(η),

(.)

where λi >  (i = , ) is a parameter,  < p, q ≤ , cDp, cDq are the Caputo fractional deriva-
tives, ξ , η satisfy ξ ,η ∈ (, ) and ab(λη –  + e–λη)(λξ –  + e–λξ ) – (λ –  + e–λ )(λ –  +
e–λ ) �� �= , the nonlinearities f, f : [, ] ×R×R →R are given continuous functions.

In the past decades, fractional calculus has been extensively applied in many fields such
as physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer rhe-
ology, economics, control theory, signal and image processing, biophysics, and blood flow
phenomena. Many mathematicians and applied researchers have tried to model real pro-
cesses using the fractional calculus. In biology, it has been deduced that the membranes of
cells of biological organism have fractional-order electrical conductance [] and thus are
classified in groups of non-integer-order models. Fractional derivatives embody essential
features of cell rheological behavior and have enjoyed greatest success in the field of rhe-
ology []. Fractional-order ordinary differential equations are naturally related to systems
with long time memory which exists in most biological systems such as HIV infection,
hepatitis C virus (HCV) infection, and cancer pervasion. Also, they are closely related to
fractals, which are abundant in biological systems. Thus fractional-order differential equa-
tions are also regarded as a better tool for the description of hereditary properties of var-
ious materials and processes than the corresponding integer-order differential equations.
With this advantage, fractional-order models have become more realistic and practical
than the corresponding classical integer-order models, moreover, the dynamics behavior
of fractional-order models are also as stable as their integer-order counterpart. Since the-
oretical results can help to get an in-depth understanding for the dynamic behavior in
biological process, the study of abstract fractional dynamic models nowadays is quite rel-
evant and important. On the other hand, BCs in (.) are referred to as coupled BCs; they
arise in the study of reaction-diffusion equations, Sturm-Liouville problems, mathemati-
cal biology and so on; see [–]. In [], Leung studied the following reaction-diffusion
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system for a prey-predator interaction:{
ut(t, x) = σ
u + u(a + f (u, v)), t ≥ , x ∈ � ⊂R

n,
vt(t, x) = σ
v + v(–r + g(u, v)), t ≥ , x ∈ � ⊂R

n,

subject to the coupled BCs

∂u
∂η

= ,
∂v
∂η

– p(u) – q(v) =  on ∂�,

where the functions u(t, x), v(t, x), respectively, represent the density of prey and predator
at time t ≥  and at position x = (x, . . . , xn). Similar coupled BCs are also studied in []
for a biochemical system. As far as we know, the nonlinear fractional differential system
coupled at equations have been studied extensively. For details, see [–] and the refer-
ences therein. However, there have been a few papers which deal with coupling at bound-
ary conditions for fractional differential systems. Wang et al. [] obtained the existence
and uniqueness of positive solution to nonzero boundary values problem for a coupled
system of nonlinear fractional differential equations,{

Dα
+u(t) = f (t, v(t)), Dβ

+v(t) = g(t, u(t)),  < t < ,
u() = v() = , u() = au(ξ ), v() = bv(ξ ),

where  < α,β < ,  ≤ a, b < ,  < ξ < , f , g : [, ] × [, +∞) → [, +∞) are continuous
functions, and Dα

+, Dβ
+ are the standard Riemann-Liouville fractional derivative.

The paper is organized as follows. In Section , we recall some basic concepts of frac-
tional calculus and present some auxiliary lemmas. The main results are presented in Sec-
tion . We give two results: the first one dealing with the existence of solutions is derived
by applying Leray-Schauder’s alternative; the second one concerning the uniqueness of
solutions, established by applying Banach’s contraction mapping principle. In Section ,
two examples are given to demonstrate the validity of our main results. Some interesting
observations are presented in the conclusions section.

2 Preliminaries and lemmas
In this section, we will present some preliminaries and lemmas that will be used in the
proof of our main results.

Definition . ([, ]) The Riemann-Liouville fractional integral of order α >  is given
by

Iαu(t) =


(α)

∫ t


(t – s)α–u(s) ds,

where n –  < α < n, provided that the right-hand side is pointwise defined on (, +∞).

Definition . ([, ]) For an (n – )-times absolutely continuous function u : [,∞) →
R, the Caputo derivative of fractional order α is defined as

cDαu(t) =


(n – α)

∫ t


(t – s)n–α–u(n)(s) ds, n –  < α < n, n = [α] + ,

where [α] denotes the integer part of the real number α.



Jiang and Liu Boundary Value Problems  (2016) 2016:159 Page 4 of 15

Lemma . For any h, g ∈ L(, ) ∩ C(, ), the system consisting of the equations

(cDp + λ
cDp–)u(t) = h(t),

(cDq + λ
cDq–)v(t) = g(t), t ∈ (, ) (.)

and the BCs{
u() = u′() = , u() = av(ξ ),
v() = v′() = , v() = bu(η),

(.)

has a unique integral representation

u(t) = A(t)
{

a
(
λξ –  + e–λξ

)[∫ 


e–λ(–s)(Qg)(s) ds – b

∫ η


e–λ(η–s)(Ph)(s) ds

]

–
(
λ –  + e–λ

)[
a

∫ ξ


e–λ(ξ–s)(Qg)(s) ds –

∫ 


e–λ(–s)(Ph)(s) ds

]}

+
∫ t


e–λ(t–s)(Ph)(s) ds, (.)

v(t) = A(t)
{(

λ –  + e–λ
)[∫ 


e–λ(–s)(Qg)(s) ds – b

∫ η


e–λ(η–s)(Ph)(s) ds

]

– b
(
λη –  + e–λη

)[
a

∫ ξ


e–λ(ξ–s)(Qg)(s) ds –

∫ 


e–λ(–s)(Ph)(s) ds

]}

+
∫ t


e–λ(t–s)(Qg)(s) ds, (.)

where

A(t) =

�

(
λt –  + e–λt), A(t) =


�

(
λt –  + e–λt), (.)

(Ph)(s) =
∫ s



(s – τ )p–

(p – )
h(τ ) dτ , (Qg)(s) =

∫ s



(s – τ )q–

(q – )
g(τ ) dτ . (.)

Proof Solving (.), we obtain

u(t) = ce–λt +
c

λ

(
 – e–λt) +

c

λ


(
λt –  + e–λt) +

∫ t


e–λ(t–s)(Ph)(s) ds, (.)

v(t) = ce–λt +
c

λ

(
 – e–λt) +

c

λ


(
λt –  + e–λt) +

∫ t


e–λ(t–s)(Qg)(s) ds, (.)

where cij ( ≤ i ≤ ,  ≤ j ≤ ) are constants to be determined. In the following, we deter-
mine cij ( ≤ i ≤ ,  ≤ j ≤ ), so that u(t) and v(t) satisfy (.). By BCs (.), we obtain

c = c = , c = c = , (.)

and

λ –  + e–λ

λ


c –
a(λξ –  + e–λξ )

λ


c

= a
∫ ξ


e–λ(ξ–s)(Qg)(s) ds –

∫ 


e–λ(–s)(Ph)(s) ds, (.)
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b(λη –  + e–λη)
λ


c –

λ –  + e–λ

λ


c

=
∫ 


e–λ(–s)(Qg)(s) ds – b

∫ η


e–λ(η–s)(Ph)(s) ds. (.)

Note that
∣∣∣∣∣∣

λ–+e–λ

λ


– a(λξ–+e–λξ )
λ


b(λη–+e–λη)

λ


– λ–+e–λ
λ



∣∣∣∣∣∣ =
ab(λη –  + e–λη)(λξ –  + e–λξ )

λ
λ




–
(λ –  + e–λ )(λ –  + e–λ )

λ
λ




=
�

λ
λ



�B �= .

Thus, the system (.)-(.) has a unique solution for c and c. By Cramer’s rule and
simple calculations, it follows that

c =

B

a(λξ –  + e–λξ )
λ



[∫ 


e–λ(–s)(Qg)(s) ds – b

∫ η


e–λ(η–s)(Ph)(s) ds

]

–

B

λ –  + e–λ

λ


[
a

∫ ξ


e–λ(ξ–s)(Qg)(s) ds –

∫ 


e–λ(–s)(Ph)(s) ds

]
, (.)

c =

B

λ –  + e–λ

λ


[∫ 


e–λ(–s)(Qg)(s) ds – b

∫ η


e–λ(η–s)(Ph)(s) ds

]

–

B

b(λη –  + e–λη)
λ



[
a

∫ ξ


e–λ(ξ–s)(Qg)(s) ds –

∫ 


e–λ(–s)(Ph)(s) ds

]
. (.)

Substituting (.) and (.) in (.), one has

u(t) = A(t)
{

a
(
λξ –  + e–λξ

)[∫ 


e–λ(–s)(Qg)(s) ds – b

∫ η


e–λ(η–s)(Ph)(s) ds

]

–
(
λ –  + e–λ

)[
a

∫ ξ


e–λ(ξ–s)(Qg)(s) ds –

∫ 


e–λ(–s)(Ph)(s) ds

]}

+
∫ t


e–λ(t–s)(Ph)(s) ds.

So (.) holds. Similarly, substituting (.) and (.) in (.) we can get (.). This com-
pletes the proof of the lemma. �

Lemma . ([]) For any h, g ∈ L(, ) ∩ C(, ), we have

∣∣∣∣
∫ η


e–λ(η–s)(Ph)(s) ds

∣∣∣∣ ≤ ηp

λ(p)
(
 – e–λη

)‖h‖,

∣∣∣∣
∫ t


e–λ(t–s)(Ph)(s) ds

∣∣∣∣ ≤ 
λ(p)

(
 – e–λ

)‖h‖,
(.)

∣∣∣∣
∫ ξ


e–λ(ξ–s)(Qg)(s) ds

∣∣∣∣ ≤ ξ q

λ(q)
(
 – e–λξ

)‖g‖,

∣∣∣∣
∫ t


e–λ(t–s)(Qg)(s) ds

∣∣∣∣ ≤ 
λ(q)

(
 – e–λ

)‖g‖.
(.)
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Let X = C[, ], then X × X is a Banach space with the norm

∥∥(u, v)
∥∥

 := ‖u‖ + ‖v‖, ‖u‖ = max
≤t≤

∣∣u(t)
∣∣, ‖v‖ = max

≤t≤

∣∣v(t)
∣∣,

for any (u, v) ∈ X × X.
In view of Lemma ., we define the operator T : X × X → X × X by

T(u, v) =
(
T(u, v), T(u, v)

)
,

where operators Ti : X × X → X (i = , ) are defined by

T(u, v)(t)

= A(t)
{

a
(
λξ –  + e–λξ

)[∫ 


e–λ(–s)Q(u, v)(s) ds – b

∫ η


e–λ(η–s)P(u, v)(s) ds

]

–
(
λ –  + e–λ

)[
a

∫ ξ


e–λ(ξ–s)Q(u, v)(s) ds –

∫ 


e–λ(–s)P(u, v)(s) ds

]}

+
∫ t


e–λ(t–s)P(u, v)(s) ds (.)

and

T(u, v)(t)

= A(t)
{(

λ –  + e–λ
)[∫ 


e–λ(–s)Q(u, v)(s) ds – b

∫ η


e–λ(η–s)P(u, v)(s) ds

]

– b
(
λη –  + e–λη

)[
a

∫ ξ


e–λ(ξ–s)Q(u, v)(s) ds –

∫ 


e–λ(–s)P(u, v)(s) ds

]}

+
∫ t


e–λ(t–s)Q(u, v)(s) ds, (.)

with

P(u, v)(s) =
∫ s



(s – τ )p–

(p – )
f
(
τ , u(τ ), v(τ )

)
dτ , (.)

Q(u, v)(s) =
∫ s



(s – τ )q–

(q – )
f

(
τ , u(τ ), v(τ )

)
dτ . (.)

For the sake of convenience, we set

A = sup
t∈[,]

∣∣A(t)
∣∣, A = sup

t∈[,]

∣∣A(t)
∣∣, (.)

M =
A[|ab|(λξ –  + e–λξ )( – e–λη)ηp– + (λ –  + e–λ )( – e–λ )] + ( – e–λ )

λ(p)
,

M =
A[|a|(λξ –  + e–λξ )( – e–λ ) + (λ –  + e–λ )|a|( – e–λξ )ξ q–]

λ(q)
, (.)

M′
 =

A[(λ –  + e–λ )|b|( – e–λη)ηp– + |b|(λη –  + e–λη)( – e–λ )]
λ(p)

,
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M′
 =

A[(λ –  + e–λ )( – e–λ ) + |ab|(λη –  + e–λη)( – e–λξ )ξ q–] + ( – e–λ )
λ(q)

,

and

(P)(s) =
∫ s



(s – τ )p–

(p – )
dτ , (Q)(s) =

∫ s



(s – τ )q–

(q – )
dτ . (.)

Lemma . The operator T : X × X → X × X is a completely continuous.

Proof By continuity of the functions fi (i = , ), the operator T is continuous.
Let � ⊂ X × X be bounded. Then there exist constants Li >  (i = , ) such that

∣∣fi
(
t, u(t), v(t)

)∣∣ ≤ Li, ∀(u, v) ∈ �, i = , .

Then for any (u, v) ∈ �, it follows from (.), (.), (.), (.), and (.) that

∣∣T(u, v)(t)
∣∣

≤ A

{
|a|(λξ –  + e–λξ

)[
L

∫ 


e–λ(–s)(Q)(s) ds + |b|L

∫ η


e–λ(η–s)(P)(s) ds

]

+
(
λ –  + e–λ

)[|a|L

∫ ξ


e–λ(ξ–s)(Q)(s) ds + L

∫ 


e–λ(–s)(P)(s) ds

]}

+ L

∫ t


e–λ(t–s)(P)(s) ds

≤ A

[
|a|(λξ –  + e–λξ

)(L( – e–λ )
λ(q)

+
|b|L( – e–λη)ηp–

λ(p)

)

+
(
λ –  + e–λ

)( |a|L( – e–λξ )ξ q–

λ(q)
+

L( – e–λ )
λ(p)

)]

+
L( – e–λ )

λ(p)

≤ L
A[|ab|(λξ –  + e–λξ )( – e–λη)ηp– + (λ –  + e–λ )( – e–λ )] + ( – e–λ )

λ(p)

+ L
A[|a|(λξ –  + e–λξ )( – e–λ ) + (λ –  + e–λ )|a|( – e–λξ )ξ q–]

λ(q)
, (.)

which implies that

∥∥T(u, v)
∥∥ ≤ LM + LM, (.)

where M, M are given by (.).
By (.), (.), (.), (.), (.), and proceeding as in (.), we can obtain

∥∥T(u, v)
∥∥ ≤ LM′

 + LM′
, (.)

where M′
, M′

 are given by (.).
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Combining (.) with(.), we obtain

∥∥T(u, v)
∥∥

 =
∥∥T(u, v)

∥∥ +
∥∥T(u, v)

∥∥ ≤ (LM + LM) +
(
LM′

 + LM′

)

= M,

which implies that the operator T is uniformly bounded.
Next, we show that T is equicontinuous. For any t, t ∈ [, ] with t ≤ t, noticing (.)

then we have

∣∣T(u, v)(t) – T(u, v)(t)
∣∣

≤
∣∣∣∣[A(t) – A(t)

]{
a
(
λξ –  + e–λξ

)

×
[

L

∫ 


e–λ(–s)(Q)(s) ds – bL

∫ η


e–λ(η–s)(P)(s) ds

]

–
(
λ –  + e–λ

)[
aL

∫ ξ


e–λ(ξ–s)(Q)(s) ds – L

∫ 


e–λ(–s)(P)(s) ds

]}∣∣∣∣
+ L

∣∣∣∣
∫ t



(
e–λ(t–s) – e–λ(t–s))(P)(s) ds +

∫ t

t

e–λ(t–s)(P)(s) ds
∣∣∣∣.

Analogously, we can obtain the following inequalities:

∣∣T(u, v)(t) – T(u, v)(t)
∣∣

≤
∣∣∣∣[A(t) – A(t)

]{(
λ –  + e–λ

)

×
[

L

∫ 


e–λ(–s)(Q)(s) ds – bL

∫ η


e–λ(η–s)(P)(s) ds

]

– b
(
λη –  + e–λη

)[
aL

∫ ξ


e–λ(ξ–s)(Q)(s) ds – L

∫ 


e–λ(–s)(P)(s) ds

]}∣∣∣∣
+ L

∣∣∣∣
∫ t



(
e–λ(t–s) – e–λ(t–s))(Q)(s) ds +

∫ t

t

e–λ(t–s)(Q)(s) ds
∣∣∣∣.

Since for any fixed s ∈ [, ], the functions e–λi(t–s), Ai(t) (i = , ) are uniformly continuous
on the interval on [,], we can conclude that the operator T(u, v) is equicontinuous. Thus
the operator T(u, v) is completely continuous. The proof is completed. �

Now we state a well-known fixed point theorem, which is needed to prove the existence
of solutions for system (.).

Lemma . (Leray-Schauder alternative []) Let E be a Banach space. Assume that T :
E → E be a completely continuous operator. Let

V = {x ∈ E|x = μTx for some  < μ < }.

Then either the set V is unbounded, or T has at least one fixed point.
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3 Main results
Theorem . Assume that there exist real constants ρi, δi ≥  and ki >  (i = , ) such that
∀t ∈ [, ], x, y ∈R,

∣∣fi(t, x, y)
∣∣ ≤ ki + ρi|x| + δi|y|, i = , . (.)

In addition, assume that

(
M + M′


)
ρ +

(
M + M′


)
ρ <  and

(
M + M′


)
δ +

(
M + M′


)
δ < ,

where Mi, M′
i (i = , ) are defined by (.). Then the system (.) has at least one solution.

Proof Let us verify that the set V = {(u, v) ∈ X × X : (u, v) = μT(u, v),  ≤ μ ≤ } is
bounded. Let (u, v) ∈ V , then (u, v) = μT(u, v). For any t ∈ [, ], we have

u(t) = μT(u, v)(t), v(t) = μT(u, v)(t). (.)

Then, by (.), (.), (.), and (.), for any t ∈ [, ], we have

∣∣u(t)
∣∣ ≤

∣∣∣∣A(t)
{

a
(
λξ –  + e–λξ

)

×
[∫ 


e–λ(–s)Q(u, v)(s) ds – b

∫ η


e–λ(η–s)P(u, v)(s) ds

]

–
(
λ –  + e–λ

)[
a

∫ ξ


e–λ(ξ–s)Q(u, v)(s) ds –

∫ 


e–λ(–s)P(u, v)(s) ds

]}

+
∫ t


e–λ(t–s)P(u, v)(s) ds

∣∣∣∣
≤ A

{
|a|(λξ –  + e–λξ

)[(
k + ρ‖u‖ + δ‖v‖)∫ 


e–λ(–s)(Q)(s) ds

+ |b|(k + ρ‖u‖ + δ‖v‖)∫ η


e–λ(η–s)(P)(s) ds

]

+
(
λ –  + e–λ

)[|a|(k + ρ‖u‖ + δ‖v‖)∫ ξ


e–λ(ξ–s)(Q)(s) ds

+
(
k + ρ‖u‖ + δ‖v‖)∫ 


e–λ(–s)(P)(s) ds

]}

+
(
k + ρ‖u‖ + δ‖v‖)∫ t


e–λ(t–s)(P)(s) ds

≤ A[|ab|(λξ –  + e–λξ )( – e–λη)ηp– + (λ –  + e–λ )( – e–λ )] + ( – e–λ )
λ(p)

× (
k + ρ‖u‖ + δ‖v‖) +

(
k + ρ‖u‖ + δ‖v‖)

× A[|a|(λξ –  + e–λξ )( – e–λ ) + (λ –  + e–λ )|a|( – e–λξ )ξ q–]
λ(q)

≤ M
(
k + ρ‖u‖ + δ‖v‖) + M

(
k + ρ‖u‖ + δ‖v‖). (.)



Jiang and Liu Boundary Value Problems  (2016) 2016:159 Page 10 of 15

Hence we have

‖u‖ ≤ M
(
k + ρ‖u‖ + δ‖v‖) + M

(
k + ρ‖u‖ + δ‖v‖). (.)

Similarly, proceeding as in (.), we can obtain

‖v‖ ≤ M′

(
k + ρ‖u‖ + δ‖v‖) + M′


(
k + ρ‖u‖ + δ‖v‖). (.)

Combining (.) with (.), we obtain

‖u‖ + ‖v‖ ≤ [(
M + M′


)
k +

(
M + M′


)
k

]
+

[(
M + M′


)
ρ +

(
M + M′


)
ρ

]‖u‖
+

[(
M + M′


)
δ +

(
M + M′


)
δ

]‖v‖.

Consequently,

∥∥(u, v)
∥∥

 = ‖u‖ + ‖v‖ ≤ (M + M′
)k + (M + M′

)k

M
,

where M = min{ – [(M + M′
)ρ + (M + M′

)ρ],  – [(M + M′
)δ + (M + M′

)δ]}, which
proves that the set V is bounded. Thus, by Lemma ., the operator T has at least one
fixed point. Hence the system (.) has at least one solution. The proof is complete. �

Theorem . Assume that fi : [, ] × R
 → R are continuous functions and there exist

constants mi, ni ≥  (i = , ), such that ∀t ∈ [, ], xi, yi ∈R,

∣∣fi(t, x, y) – fi(t, x, y)
∣∣ ≤ mi|x – x| + ni|y – y|, i = , .

In addition, assume that

(
M + M′


)
(m + n) +

(
M + M′


)
(m + n) < ,

where Mi, M′
i (i = , ) are defined by (.). Then the system (.) has a unique solution.

Proof Define supt∈[,] |fi(t, , )| = Ni < ∞ (i = , ) such that

r ≥ (M + M′
)N + (M + M′

)N

 – (M + M′
)(m + n) – (M + M′

)(m + n)
.

We show that TBr ⊂ Br , where Br = {(u, v) ∈ X × X : ‖(u, v)‖ < r}. For any (u, v) ∈ Br , we
have

∣∣T(u, v)(t)
∣∣

≤ max
t∈[,]

∣∣∣∣A(t)
{

a
(
λξ –  + e–λξ

)

×
[∫ 


e–λ(–s)Q(u, v)(s) ds – b

∫ η


e–λ(η–s)P(u, v)(s) ds

]
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–
(
λ –  + e–λ

)[
a

∫ ξ


e–λ(ξ–s)Q(u, v)(s) ds –

∫ 


e–λ(–s)P(u, v)(s) ds

]}

+
∫ t


e–λ(t–s)P(u, v)(s) ds

∣∣∣∣
≤ A

{
|a|(λξ –  + e–λξ

)[(
m‖u‖ + n‖v‖ + N

)∫ 


e–λ(–s)(Q)(s) ds

+ |b|(m‖u‖ + n‖v‖ + N
)∫ η


e–λ(η–s)(P)(s) ds

]

+
(
λ –  + e–λ

)[|a|(m‖u‖ + n‖v‖ + N
)∫ ξ


e–λ(ξ–s)(Q)(s) ds

+
(
m‖u‖ + n‖v‖ + N

)∫ 


e–λ(–s)(P)(s) ds

]}

+
(
m‖u‖ + n‖v‖ + N

)∫ t


e–λ(t–s)(P)(s) ds

≤ A[|ab|(λξ –  + e–λξ )( – e–λη)ηp– + |(λ –  + e–λ )|( – e–λ )] + ( – e–λ )
λ(p)

× (
m‖u‖ + n‖v‖ + N

)
+

(
m‖u‖ + n‖v‖ + N

)
× A[|a|(λξ –  + e–λξ )( – e–λ ) + (λ –  + e–λ )|a|( – e–λξ )ξ q–]

λ(q)

≤ M
[
(m + n)r + N

]
+ M

[
(m + n)r + N

]
. (.)

Hence

∥∥T(u, v)
∥∥ ≤ M

[
(m + n)r + N

]
+ M

[
(m + n)r + N

]
.

Similarly, for any (u, v) ∈ Br , proceeding as in (.), we can get

∥∥T(u, v)
∥∥ ≤ M′


[
(m + n)r + N

]
+ M′


[
(m + n)r + N

]
.

Consequently,

∥∥T(u, v)
∥∥

 =
∥∥T(u, v)

∥∥ +
∥∥T(u, v)

∥∥
≤ M

[
(m + n)r + N

]
+ M

[
(m + n)r + N

]
+ M′


[
(m + n)r + N

]
+ M′


[
(m + n)r + N

]
≤ r.

Now for (u, v), (u, v) ∈ X × X, and for any t ∈ [, ], we have

∣∣T(u, v)(t) – T(u, v)(t)
∣∣

≤
∣∣∣∣A(t)

{
a
(
λξ –  + e–λξ

)[∫ 


e–λ(–s)[Q(u, v)(s) – Q(u, v)(s)

]
ds

– b
∫ η


e–λ(η–s)[P(u, v)(s) – P(u, v)(s)

]
ds

]
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–
(
λ –  + e–λ

)[
a

∫ ξ


e–λ(ξ–s)[Q(u, v)(s) – Q(u, v)(s)

]
ds

–
∫ 


e–λ(–s)[P(u, v)(s) – P(u, v)(s)

]
ds

]}

+
∫ t


e–λ(t–s)[P(u, v)(s) – P(u, v)(s)

]
ds

∣∣∣∣
≤ A

{
|a|(λξ –  + e–λξ

)[(
m‖u – u‖ + n‖v – v‖

)∫ 


e–λ(–s)(Q)(s) ds

+ |b|(m‖u – u‖ + n‖v – v‖
)∫ η


e–λ(η–s)(P)(s) ds

]

+
(
λ –  + e–λ

)[|a|(m‖u – u‖ + n‖v – v‖
)∫ ξ


e–λ(ξ–s)(Q)(s) ds

+
(
m‖u – u‖ + n‖v – v‖

)∫ 


e–λ(–s)(P)(s) ds

]}

+
(
m‖u – u‖ + n‖v – v‖

)∫ t


e–λ(t–s)(P)(s) ds

≤ A[|ab|(λξ –  + e–λξ )( – e–λη)ηp– + (λ –  + e–λ )( – e–λ )] + ( – e–λ )
λ(p)

× (
m‖u – u‖ + n‖v – v‖

)
+

(
m‖u – u‖ + n‖v – v‖

)
× A[|a|(λξ –  + e–λξ )( – e–λ ) + (λ –  + e–λ )|a|( – e–λξ )ξ q–]

λ(q)

≤ M
(
m‖u – u‖ + n‖v – v‖

)
+ M

(
m‖u – u‖ + n‖v – v‖

)
≤ [

M(m + n) + M(m + n)
](‖u – u‖ + ‖v – v‖

)
.

Consequently, for (u, v), (u, v) ∈ X × X, we obtain

∥∥T(u, v) – T(u, v)
∥∥

≤ [
M(m + n) + M(m + n)

](‖u – u‖ + ‖v – v‖
)
. (.)

Similarly, for (u, v), (u, v) ∈ X × X, we can obtain

∥∥T(u, v) – T(u, v)
∥∥

≤ [
M′

(m + n) + M′
(m + n)

](‖u – u‖ + ‖v – v‖
)
. (.)

It follows from (.) and (.) that

∥∥T(u, v) – T(u, v)
∥∥



≤ [(
M + M′


)
(m + n) +

(
M + M′


)
(m + n)

](‖u – u‖ + ‖v – v‖
)
.

Since (M + M′
)(m + n) + (M + M′

)(m + n) < , T is a contraction operator. So, by the
fixed point theorem of the contraction mapping principle, the operator T has a unique
fixed point, which is the unique solution of the system (.). The proof is complete. �
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4 Applications
Example . Consider the fractional differential system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cD 
 (D + )u(t) = f(t, u(t), v(t)),  < t < ,

cD 
 (D + )v(t) = f(t, u(t), v(t)),  < t < ,

u() = u′() = , u() = av(ξ ),
v() = v′() = , v() = bu(η),

(.)

where λ = , λ =  are two positive parameters. We take a = 
 , b = e, ξ = 

 , η = 
 .

By direct calculation, we have

� ≈ –. �= ,

A ≈ ., A ≈ .,

M ≈ ., M ≈ .,

M′
 ≈ ., M′

 ≈ ..

(.)

Let

f(t, x, y) =
t

t + 

(
 +




sin x +



cos y
)

, t ∈ [, ], x, y ∈ R,

f(t, x, y) =


(t + ) ( + x +  sin y), t ∈ [, ], x, y ∈ R.

Notice that

∣∣f(t, x, y)
∣∣ =

∣∣∣∣ t
t + 

(
 +




sin x +



cos y
)∣∣∣∣ ≤  +




|x| +


|y|,

∣∣f(t, x, y)
∣∣ =

∣∣∣∣ 
(t + ) ( + x +  sin y)

∣∣∣∣ ≤ 


+



|x| +


|y|,

and

(
M + M′


)
ρ +

(
M + M′


)
ρ ≈ . < ,(

M + M′

)
δ +

(
M + M′


)
δ ≈ . < .

Therefore, all conditions of Theorem . are satisfied, and hence by Theorem . the sys-
tem (.) has at least one solution.

Example . In Example ., we only change f, f, and keep the other conditions un-
changed. �, A, A, M, M, M′

, M′
 are as in (.). Let

f(t, x, y) =
t

(t + ) x +



arctan y, t ∈ [, ], x, y ∈ R,

f(t, x, y) = –



cos x +



sin y, t ∈ [, ], x, y ∈R.

(.)
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Noticing

∣∣f(t, x, y) – f(t, x, y)
∣∣ ≤ 


|x – x| +



|y – y|,

∣∣f(t, x, y) – f(t, x, y)
∣∣ ≤ 


|x – x| +




|y – y|,

and

(
M + M′


)
(m + n) +

(
M + M′


)
(m + n) ≈ . < .

Thus all conditions of Theorem . are satisfied and, consequently, the system (.) has a
unique solution (with f, f as in (.)).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank the referee for his/her very important comments, which improved the results and the
quality of the paper. This work was supported financially by the National Natural Science Foundation of China (11371221),
the Natural Science Foundation of Shandong Province of China (ZR2014AL004, ZR2013AQ014) and the Project of
Shandong Province Higher Educational Science and Technology Program (J14LI08, J13LI08), Doctoral Scientific Research
Foundation of Qufu Normal University and Youth Foundation of Qufu Normal University (BSQD20130140).

Received: 7 March 2016 Accepted: 16 August 2016

References
1. Culshaw, R, Ruan, S: A delay-differential equation model of HIV infection of CD4+ T-cells. Math. Biosci. 165, 27-39

(2000)
2. Nelson, P, Perelson, A: Mathematical analysis of delay differential equation models of HIV-1 infection. Math. Biosci.

179, 73-94 (2002)
3. Tuckwell, H, Wan, F: On the behavior of solutions in viral dynamical models. Biosystems 73, 157-161 (2004)
4. Wang, L, Li, M: Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Math. Biosci.

200, 44-57 (2006)
5. Perelson, A: Modeling the interaction of the immune system with HIV. In: Castillo-Chavez, C (ed.) Mathematical and

Statistical Approaches to AIDS Epidemiology. Lecture Notes in Biomathematics, vol. 83, pp. 350-370. Springer, New
York (1989)

6. Perelson, A, Kirschner, D, Boer, R: Dynamics of HIV infection of CD4+ T cells. Math. Biosci. 114, 81-125 (1993)
7. Arafal, AAM, Rida, SZ, Khalil, M: Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection.

Nonlinear Biomed. Phys. 6, 1 (2012)
8. Cole, K: Electric conductance of biological systems. In: Proc. Cold Spring Harbor Symp. Quant. Biol., pp. 107-116. Cold

Spring Harbor Laboratory Press, New York (1993)
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