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Abstract
In this paper, we study the asymptotic behavior of blowup time for a small diffusive
parabolic equation with exponential source. We prove that the blowup time of the
solution converges to that of the corresponding ODE as the small diffusive
approaches zero. Moreover, we show a more accurate estimate of the blowup time.
Precisely, when the initial data decay near the maximum, we obtain the lower and
upper bound estimates of the blowup time with a higher-order term of the peak of
initial data.
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1 Introduction
In this paper, we study the following semilinear parabolic equation:

⎧
⎪⎨

⎪⎩

ut = ε�u + eu, (x, t) ∈ � × (, +∞),
u(x, t) = , (x, t) ∈ ∂� × (, +∞),
u(x, ) = ϕ(x), x ∈ �,

(.)

where ε >  is a small parameter, � is a bounded smooth domain in R
N , and ϕ(x) is a con-

tinuous (nonnegative or sign-changing) function on �. Equation (.) describes combus-
tion processes in a medium with thermal reactions; we refer to [] for extensive references.
We know from [] that a solution of (.) may blow up in finite time, that is, the maximum
norm ‖u(·, t)‖∞ may diverge to ∞ in finite time. The maximal existence time of a solution
u of (.) in the classical sense is called the blowup time (when it is finite). We denote by
T(ε) the blowup time depending on the small parameter ε.

We first consider the corresponding ODE case. Suppose that z(t; θ ) is a solution of the
equation

dz
dt

= ez, z(; θ ) = θ > . (.)

Clearly, z(t; θ ) is solved as

z(t; θ ) = – ln
(
e–θ – t

)
.
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We easily find that z(t; θ ) → ∞ as t → e–θ . So it is interesting to study the asymptotic
behavior of blowup time of (.) when ε is small.

In fact, for positive initial data ϕ(x), Friedman and Lacey [] had studied the more gen-
eral equation ut = ε�u + f (u) and showed that if f (s) = es, then T(ε) → e–‖ϕ‖∞ as ε → .
We also refer to [–] for the estimates of blowup time for positive solutions. Later, Mi-
zoguchi and Yanagida [] considered the Dirichlet problem

⎧
⎪⎨

⎪⎩

ut = ε�u + |u|p–u, (x, t) ∈ � × (, +∞),
u(x, t) = , (x, t) ∈ ∂� × (, +∞),
u(x, ) = ϕ(x), x ∈ �,

(.)

where p > , � is a bounded domain in R
N , and ϕ satisfies

– min
x∈�

ϕ(x) < max
x∈�

ϕ(x). (.)

They showed that the blowup time T(ε) of the solution of this problem satisfies T(ε) →


p–‖ϕ‖–p
∞ as ε → . Moreover, when the initial value admits a Taylor expansion, there is

a more accurate estimate of T(ε). Moreover, Mizoguchi and Yanagida [] extended this
problem to the whole space and obtained similar results for the blowup time of (sign-
changing) solutions for the following Cauchy problem:

{
vt = �v + |v|p–v, (x, t) ∈R

N × (,∞),
v(x, ) = λϕ(x), x ∈R

N ,

where λ >  is a large parameter. In order to overcome the difficulty of sign-changing so-
lutions, Mizoguchi and Yanagida used an energy functional technique introduced by Giga
and Kohn [].

Recently, Payne and Schaefer [, ] studied the blowup phenomena and derived the
upper and lower bounds of blowup time for some semilinear equations under certain as-
sumptions on reactions and initial boundary data. Also, many authors considered the rate
estimates of the blowup or quenching solutions and also quenching time estimates; we
refer to [–] and the references therein.

Remark . We note that, under the assumption that the initial data are positive, Sato []
extended the results of Mizoguchi and Yanagida [, ] for power-type nonlinearity to a
more general nonlinear heat equation that includes exponential-type nonlinearity. How-
ever, here we study the more general initial data that satisfy (.) and are sign-changing.

In the present paper, we study problem (.) with exponential source, which can be
viewed as the limit case of (.) as p → ∞. Also, since equation (.) is not scaling invariant
and the initial data are sign-changing, our arguments here are more complicated. Since the
energy method can be applied only to star-shaped domains, we derive here some crucial
estimates of solutions for the case of small diffusion equations and extend the adapted
method of comparison to sign-changing solutions on any bounded domains.

The first result is the following estimate of (.).
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Theorem . If ϕ satisfies (.) and ε >  is small enough, then the solution of (.) blows
up in finite time. Furthermore, we have

T(ε) → e–‖ϕ‖∞ , ε → .

The second result is a more accurate estimate of blowup time for (.).

Theorem . If ϕ satisfies (.), ϕ(x) = maxx∈� ϕ(x), �ϕ(x) < , and ε >  is small
enough, then we have

e–ϕ(x) +



e–ϕ(x)∣∣�ϕ(x)
∣
∣ε + ◦(ε) ≤ T(ε) ≤ e–ϕ(x) + e–ϕ(x)∣∣�ϕ(x)

∣
∣ε + ◦(ε).

Finally, we give an estimate of blowup time when the initial value ϕ(x) satisfies ϕ(x) ∼
ϕ(x) – c|x – x|k with c, k > .

Theorem . If ϕ satisfies (.), ϕ(x) = maxx∈� ϕ(x), more precisely, ϕ(x) ∼ ϕ(x) – c|x –
x|k for constants c, k > , k 	= , and ε >  is small enough, then we have

e–ϕ(x) + cζkγke–(k+)ϕ(x)εk + ◦(
εk) ≤ T(ε) ≤ e–ϕ(x) + cγke–(k+)ϕ(x)εk + ◦(

εk),

where ζk = kk/(k + )k+, and γk satisfies

∫

�

e– |y–x|
τ

(πτ )N/ |y – x|k dy = γkτ
k + ◦(

τ k) as τ → .

We organize this paper as follows: In Section , a preliminary estimate of solutions is
given. Sections - are devoted to proofs of Theorems .-., respectively. Finally, we
give some notes for the negative initial data in Section .

2 Preliminary estimates
First, we show a preliminary lemma. Throughout this paper, letting m := minx∈� ϕ(x) and
M := maxx∈� ϕ(x), we denote by Tm and TM the blowup times of solutions of (.) with
θ = m and θ = M, respectively.

Lemma . Suppose that (.) is satisfied and ϕ(a) = M. Then, for any τ > , there exist α,
ε >  such that if  < ε ≤ ε, then the solution of (.) satisfies

u(x, t) >  in Ba,α ⊂ �

for t ∈ (, min{τ , T(ε)}), where Ba,α is the ball with center a and radius α.

Proof The solution u of (.) can be written as

u(x, t) =
∫

�

ϕ(y)G(x, y; t) dy +
∫ t



∫

�

eu(y,s)G(x, y; t – s) dy ds = I + I,
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where G(x, y; t) is the fundamental solution of the Dirichlet problem

{
Ut = ε�U in �,
U =  on ∂�.

(.)

Since I =
∫ t


∫

�
eu(y,s)G(x, y; t – s) dy ds ≥ , here we only need to estimate I.

Choose δ >  such that Ba,δ ⊂ � and ϕ(x) ≥ M
 in Ba,δ , and rewrite I as

I =
∫

Bx,δ

ϕ(y)G(x, y; t) dt +
∫

�\Bx,δ

ϕ(y)G(x, y; t) dy.

Then by Lemma . of [] we have that there exist c,α, ε >  with α < δ/ such that if
 < ε ≤ ε, then

G(x, y, z) ≥ (
 – e–c/ε) 

(πεt)N/ e– |x–y|
εt

for (x, y, t) ∈ Ba,α × Bx,α × (, τ ). Hence, for (x, t) ∈ Ba,α × (, τ ),

∫

Bx,α

ϕ(y)G(x, y, t) dy ≥ MC


(
 – e–c/ε),

where C =
∫

Bx,α


(πεt)N/ e– |x–y|
εt dy, and  < C ≤ .

On the other hand, by the comparison principle we have that  < G(x, y; t) < 
(πεt)N/ ×

e– |x–y|
εt . So we derive

∫

�\Bx,α

G(x, y; t) dy <


(πεt)N/

∫

�\Bx,α

e– |x–y|
εt dy

< e– α
εt


(πεt)N/

∫

RN
e– |x–y|

εt dy

= N/e– α
εt .

Thus,
∫

�\Bx,α
ϕ(y)G(x, y; t) dy ≥ –m

∫

�\Bx,α
G(x, y; t) dy ≥ –N/me– α

εt and

I ≥ MC


(
 – e–c/ε) – N/me– α

εt , x ∈ Ba,α

for t ∈ (, min{τ , T(ε)}).
Consequently, the solution u of (.) is estimated as

u(x, t) ≥ MC


(
 – e–c/ε) – N/me– α

εt , x ∈ Ba,α (.)

for t ∈ (, min{τ , T(ε)}). If ε >  is small enough, it is easy to see that the right-hand side
of (.) is positive. The proof of Lemma . is complete. �
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3 Proof of Theorem 1.1
Proof of Theorem . By the comparison principle we have

 < TM < Tm and T(ε) ≥ TM = e–M. (.)

It is sufficient to show that

lim sup
ε→

T(ε) ≤ TM.

For convenience, we assume that the origin is contained in � and ϕ() = M. Fix τ ∈
(TM, Tm). By Lemma . we have that there exists a ball D ⊂ � centered at the origin and
ε >  such that if  < ε ≤ ε, then u(x, t) >  in D for t ∈ (, min{τ , T(ε)}). For every μ > ,
there exists δμ >  small enough such that Bμ = {x ∈R

N ||x| ≤ δμ} ⊂ D and M – μ ≤ ϕ(x) ≤
M for x ∈ Bμ. We choose a continuous and radially symmetric function ϕ̃(x) on D that is
decreasing in |x| and satisfies

 ≤ ϕ̃(x) ≤ ϕ(x), x ∈ D,

and

ϕ̃(x) ≡ M – μ, x ∈ Bμ.

Assume that ũ is a solution of

⎧
⎪⎨

⎪⎩

ũt = ε�ũ + eũ in D × (, +∞),
ũ(x, t) =  on ∂D × (, +∞),
ũ(x, ) = ϕ̃(x) in D.

(.)

Then by comparison we have

u(x, t) ≥ ũ(x, t) in D

for t ∈ (, min{τ , T(ε)}).
Assume that Ũ is a solution of

⎧
⎪⎨

⎪⎩

Ũt = ε�Ũ in D × (, +∞),
Ũ(x, t) =  on ∂D × (, +∞),
Ũ(x, ) = ϕ̃(x) in D,

(.)

and we define

u(x, t) = z
(
t; Ũ(x, t)

)
= – ln

[
e–Ũ(x,t) – t

]
.

Denote the blowup time of u by T(ε), that is,

T(ε) = sup
{

t > |e–‖Ũ(·,t)‖∞ > s,∀s ∈ (, t)
}

.
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Obviously,

u(x, t) = – ln
[
e–Ũ(x,t) – t

] ≥ – ln
[
e–Ũ(x,t)] = Ũ(x, t) ≥ ,

and since

zθ = e–θ · ez, zθθ = te–θ · ez, zt = ez,

we derive

ut(x, t) – ε�u(x, t) – eu = zt(t; Ũ) + zθ (t; Ũ)Ũt – zθθ (t; Ũ)|∇Ũ|

– εzθ (t; Ũ)�Ũ – ez(t;Ũ)

= –te–θ ez

≤ .

Therefore, we see that u(x, t) is a subsolution of (.), and by comparison we get

 ≤ u(x, t) ≤ ũ(x, t) ≤ u(x, t)

for t ∈ (, min{τ , T(ε)}) and x ∈ D, and we can derive that T(ε) ≤ T(ε). So, it is sufficient
to show that

lim sup
ε→

T(ε) ≤ TM. (.)

Now we estimate ‖Ũ(·, t)‖∞. By the choice of ϕ̃ we know that it must attain at the origin.
Suppose that G̃ is the fundamental solution of Ũt = ε�Ũ in D with the homogeneous
Dirichlet condition and that ε and δμ are positive and small enough. Then, by Lemma .
of [] on D it is easy to find that there is a constant c̃ >  such that, for  < ε ≤ ε,

G̃(, y; t) ≥ (
 – e–c̃/ε) 

(πεt)N/ e– |y|
εt

for (y, t) ∈ Bμ × (, τ ). Hence, since M – μ ≤ ϕ ≤ M for x ∈ Bμ, we obtain

∥
∥Ũ(·, t)

∥
∥∞ = Ũ(, t)

=
∫

Bμ

ϕ̃(y)G̃(, y; t) dy +
∫

D\Bμ

ϕ̃(y)G̃(, y; t) dy

≥ (M – μ)
(
 – e–c̃/ε) 

(πεt)N/

∫

Bμ

e– |y|
εt dy

= (M – μ)
(
 – e–c̃/ε)

[

 –


(πεt)N/

∫

RN \Bμ

e– |y|
εt dy

]

≥ (M – μ)
(
 – e–c̃/ε)( – N/e–

δ
μ

εt
)

for  < t < τ .
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By the last estimate, for every μ >  and for ε >  small enough, we have

∥
∥Ũ(·, t)

∥
∥∞ ≥ M – μ > 

for t ∈ (, τ ). Then

e–‖Ũ(·,t)‖∞ ≤ e–M · eμ = TM · eμ

for t ∈ (, τ ). Since TM < TM · eμ < τ for small μ, we have

e–‖Ũ(·,TM ·eμ)‖∞ ≤ TM · eμ.

By the definition of T(ε) we obtain

T(ε) ≤ TM · eμ.

Since μ >  is arbitrary, (.) holds. The proof of Theorem . is complete. �

4 Proof of Theorem 1.2
In the following, we derive the lower and upper bounds of T(ε) and give the proof of
Theorem .. First, we prove an upper estimate.

Proposition . If ϕ satisfies (.), ϕ(x) = maxx∈� ϕ(x), and ε >  is small enough, then
we have

T(ε) ≤ e–ϕ(x) + e–ϕ(x)∣∣�ϕ(x)
∣
∣ε + ◦(ε).

Proof Let w(x, t) = – ln(V (x, t) – t), where V (x, t) = U(x, εt), and U(x, τ ) satisfies Uτ = �U .
Then

wt – ε�w – ew = –
Vt – 
V – t

+ ε
�V

V – t
– ε

|∇V |
(V – t) –


V – t

≤ –
Vt – ε�V

V – t
= .

So we see that w is a subsolution.
Next, let U(x, τ ) satisfy

U(x, ) = e–ϕ(x), x ∈ �,

U(x, τ ) =
τ

ε
+ , (x, t) ∈ ∂� × (, Cε),

where C >  is a constant. Then

w(x, ) = – ln
(
U(x, )

)
= ϕ(x) = u(x, ), x ∈ �,

w(x, t) = – ln
(
U(x, εt) – t

)
= , (x, t) ∈ ∂� × (, C).
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Thus, by the comparison principle

u(x, t) ≥ w(x, t), (x, t) ∈ � × (, C).

Notice that the boundary values of U(x, τ ) are bounded, that is,  ≤ U(x, τ ) ≤ C +  for
(x, τ ) ∈ ∂� × (, Cε), so we can write

U(x, εt) = U(x, ) + εtUτ (x, ) + ◦(ε) (.)

for  < t < C.
We take t̃ = U(x, εt̃). By the definition of w(x, t), w(x, t) → ∞ as t → t̃, so that the func-

tion w(x, t) blows up at time ≤ t̃.
Choosing C > U(x, ) + , by (.) we have

t̃ = U(x, εt̃)

= U(x, ) + ε̃tUτ (x, ) + o(ε)

= U(x, ) + εU(x, εt̃)Uτ (x, ) + o(ε)

= U(x, ) + ε
[
U(x, ) + εt̃Uτ (x, ) + o(ε)

]
Uτ (x, ) + o(ε)

= U(x, ) + εU(x, )�U + o(ε).

Since U(x, ) = e–ϕ(x) and ∇ϕ(x) = , we have �U(x, ) = –e–ϕ(x)�ϕ(x). Thus, as
ε → ,

t̃ = e–ϕ(x) + e–ϕ(x)∣∣�ϕ(x)
∣
∣ε + ◦(ε).

Since T(ε) ≤ t̃, Proposition . is proved. �

Now, we show a lower bound of T(ε).

Proposition . If ϕ satisfies (.), ϕ(x) = maxx∈� ϕ(x), �ϕ(x) < , and ε >  is small
enough, then we have

T(ε) ≥ e–ϕ(x) +



e–ϕ(x)∣∣�ϕ(x)
∣
∣ε + ◦(ε).

Proof Without loss of generality, let x = . We construct a supersolution of the form

w(x, t) = – ln
(
e–ϕ() – t

)
+ W (x, t), (x, t) ∈ � × (, C),

where C ∈ (, e–ϕ()) is a constant, W (x, t) = Z(x, εt), and Z(x, τ ) satisfies

⎧
⎪⎨

⎪⎩

Zτ = �Z, x ∈ �,  < τ < Cε,
Z(x, ) = ϕ(x) – ϕ(), x ∈ �,
Z(x, τ ) = –ϕ(), x ∈ ∂�,  < τ < Cε.

(.)
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Clearly, by the maximum principle, Z ≤ , and hence W (x, t) = Z(x, εt) ≤  for (x, t) ∈
� × (, C). We get

wt – ε�w – ew =


eϕ() – t
+ Wt – ε�W –

eW

e–ϕ() – t

=
 – eW

e–ϕ() – t
≥ 

and also

w(x, ) = ϕ(x) = u(x, ), x ∈ �,

and

w(x, t) = – ln
(
eϕ() – t

)
– ϕ() > , x ∈ ∂�,  < t < C.

It follows that

w(x, t) ≥ u(x, t), x ∈ ∂�,  < t < C.

Choose μ >  small enough and η >  sufficiently small depending on μ such that

–�ϕ(x) > –�ϕ() – μ for |x| < η.

Then, when |x| < η,

Z(x, τ ) = Z(x, ) + Zτ (x, )τ + o(τ )

= ϕ(x) – ϕ() + �ϕ(x)τ + o(τ )

≤ �ϕ(x)τ + o(τ )

≤ (
�ϕ() + μ

)
τ + o(τ )

as τ → . When |x| ≥ η and x ∈ �, Z(x, τ ) ≤ . It follows that, when |x| < η,

u(x, C) ≤ w(x, C) = – ln
(
e–ϕ() – C

)
+ W (x, C)

= – ln
(
e–ϕ() – C

)
+

(
�ϕ() + μ

)
εC + o(ε)

as ε → , and, when |x| ≥ η,

u(x, C) ≤ w(x, C) = – ln
(
e–ϕ() – C

)
+ W (x, C)

≤ – ln
(
e–ϕ() – C

)
.

Denote by ũ(x, t) the solution of

⎧
⎪⎨

⎪⎩

ũt = ε�ũ + eũ, (x, t) ∈ � × (C, +∞),
ũ(x, t) = , (x, t) ∈ ∂� × (C, +∞),
ũ(x, C) = w(x, C), x ∈ �,

(.)
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and by T̃ the blowup time for ũ. By the comparison principle,

T(ε) ≥ T̃ ≥ C + e– max� u(·,C).

On the one hand, when max� u(·, C) arrives at {x||x| < η}, we have

T(ε) ≥ C + e– max� u(·,C)

≥ C + e[ln(e–ϕ()–C)–(�ϕ()+μ)εC+◦(ε)]

≥ C +
(
e–ϕ() – C

)[
 –

(
�ϕ() + μ

)
εC + ◦(ε)

]

≥ e–ϕ() – εC
(
e–ϕ() – C

)[
�ϕ() + μ

]
+ ◦(ε).

Since μ >  is arbitrary and �ϕ() < , we get

T(ε) ≥ e–ϕ() + εC
(
e–ϕ() – C

)∣
∣�ϕ()

∣
∣ + ◦(ε). (.)

In order to get the optimal estimate, we choose C = 
 e–ϕ(), which maximizes the coeffi-

cient of ε, that is,

T(ε) ≥ e–ϕ(x) +



e–ϕ(x)∣∣�ϕ(x)
∣
∣ε + ◦(ε).

Since max� u(·, C) arrives at {x||x| ≥ η}, we have

T(ε) ≥ C + e– max� u(·,C)

≥ C + eln(e–ϕ()–C)

= e–ϕ().

In conclusion,

T(ε) ≥ e–ϕ() +



e–ϕ()∣∣�ϕ()
∣
∣ε + ◦(ε).

Proposition . is proved. �

Combining Propositions . and ., we get the proof of Theorem ..

5 Proof of Theorem 1.3
In the following, we derive the lower and upper bounds of T(ε) and give a proof of Theo-
rem .. We first prove an upper bound of T(ε).

Proposition . If ϕ satisfies (.), ϕ(x) = maxx∈� ϕ(x), and, moreover, there exist con-
stants c, k > , k 	=  such that ϕ(x) ≥ ϕ(x) – c|x – x|k as x → x, then, for ε >  small
enough,

T(ε) ≤ e–ϕ(x) + cγke–(k+)ϕ(x)εk + ◦(
εk),
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where γk satisfies

∫

�

e– |y–x|
τ

(πτ )N/ |y – x|k dy = γkτ
k + ◦(

τ k) as τ → .

Proof Similarly to the proof of Proposition ., we construct a subsolution as

w(x, t) = – ln
(
V (x, t) – t

)
,

where V (x, t) = U(x, εt), and U(x, τ ) satisfies Uτ = �U . Then by the proof of Proposi-
tion . we get

u(x, t) ≥ w(x, t)

for  < t < C. Assuming that μ > , we take δμ >  small enough such that Bμ = {x ∈R
N ||x–

x| < δμ} ⊂ � and ϕ(x) ≥ ϕ(x) – c|x – x|k for x ∈ Bμ.
Next, we consider the Dirichlet problem

{
Ut = �U in Bμ,
U(x, t) =  on ∂Bμ,

and we denote its fundamental solution by G(x, y; t). Then by a comparison to the funda-
mental solution of Ut = �U on R

N we derive

G(x, y; t) ≤ e– |x–y|
t

(π t)N/ for (x, y; t) ∈ Bμ × Bμ × (,∞).

Thus,

U(x, τ ) =
∫

Bμ

e–ϕ(y) e– |x–y|
τ

(πτ )N/ dy

≤
∫

Bμ

[
e–ϕ(x) + e–ϕ(x)c|y – x|k + ◦(|y – x|k)] e– |x–y|

τ

(πτ )N/ dy

≤
∫

RN

[
e–ϕ(x) + ◦(|y – x|k)] e– |x–y|

τ

(πτ )N/ dy

+
∫

Bμ

[
e–ϕ(x)c|y – x|k] e– |x–y|

τ

(πτ )N/ dy

≤ e–ϕ(x) + ◦(
δk
μ

)
+ e–ϕ(x)cγkτ

k + ◦(
τ k).

Since δμ >  is sufficiently small,

U(x, τ ) ≤ e–ϕ(x) + e–ϕ(x)cγkτ
k + ◦(

τ k).
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We take t̃ = U(x, εt̃). By the definition of w(x, t) we know that w(x, t) → ∞ as t → t̃. So
the function w(x, t) blows up at time ≤ t̃. We have

t̃ = U(x, εt̃) ≤ e–ϕ(x) + e–ϕ(x)cγk(εt̃)k + ◦(
εk)

≤ e–ϕ(x) + e–ϕ(x)cγkε
k[U(x, ) + εt̃Uτ (x, ) + o(ε)

]k + ◦(
εk)

= e–ϕ(x) + e–ϕ(x)cγkε
kU(x, )k + ◦(

εk)

= e–ϕ(x) + cγke–(k+)ϕ(x)εk + ◦(
εk).

Since T(ε) ≤ t̃, we complete the proof of Proposition .. �

We next give a lower estimate of T(ε).

Proposition . If ϕ satisfies (.), ϕ(x) = maxx∈� ϕ(x), and, moreover, there exist con-
stants c, k > , k 	=  such that ϕ(x) ≤ ϕ(x) – c|x – x|k as x → x, then, for ε >  small
enough,

T(ε) ≥ e–ϕ(x) + cζkγke–(k+)ϕ(x)εk + ◦(
εk),

where ζk = kk/(k + )k+, and γk satisfies

∫

�

e– |y–x|
τ

(πτ )N/ |y – x|k dy = γkτ
k + ◦(

τ k) as τ → .

Proof Without loss of generality, taking x = , we construct a supersolution as

w(x, t) = – ln
(
e–ϕ()–t) + W (x, t)

for  < t < C, where C ∈ (, e–ϕ()), w(x, t) = Z(x, εt), and Z(x, τ ) satisfies equation (.).
Then we estimate Z(x, τ ). There exists η >  such that Bη = {x ∈ R

N ||x| < η} ⊂ � and
ϕ(x) ≤ ϕ() – c|x|k for x ∈ Bη .

By the fundamental solution we write Z(x, τ ) as

Z(x, τ ) =
∫

Bη

(
ϕ(y) – ϕ()

) e– |x–y|
τ

(πτ )N/ dy.

When |x| < η,

Z(x, τ ) ≤
∫

Bη

[

–c|y|α e– |x–y|
τ

(πτ )N/

]

dy

= –cγkτ
k + o

(
τ k),

whereas when |x| ≥ η and x ∈ �, Z(x, τ ) ≤ . It follows that, when |x| < η,

u(x, C) ≤ w(x, C)

= – ln
(
e–ϕ() – C

)
+ W (x, C)

= – ln
(
e–ϕ() – C

)
– cγkε

kCk + ◦(
εk)
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as ε →  and that

u(x, C) ≤ w(x, C)

= – ln
(
e–ϕ() – C

)
+ W (x, C)

= – ln
(
e–ϕ() – C

)

when |x| ≥ η and x ∈ �.
By the same arguments as in Proposition .,

T(ε) ≥ C + e– max� u(·,C).

On the one hand, if max� u(·, C) arrives at {x||x| < η}, we have

T(ε) ≥ C + e[ln(e–ϕ()–c)+cγkεk Ck +◦(εk )]

= e–ϕ() + cγkε
kCk[e–ϕ() – c

]
+ ◦(

εk).

In order to get the optimal estimate, we choose C = k/(k + )e–ϕ(), which maximizes the
coefficient of εk , that is,

T(ε) ≥ e–ϕ(x) + c
kk

(k + )k+ γke–(k+)ϕ(x)εk + ◦(
εk),

whereas if max� u(·, C) arrives at {x||x| ≥ η}, then we have

T(ε) ≥ C + e– max� u(·,C) = e–ϕ().

In conclusion, as ε → ,

T(ε) ≥ e–ϕ() + cζkγke–(k+)ϕ()εk + ◦(
εk),

where ζk = kk/(k + )k+, and γk satisfies

∫

�

e– |y|
τ

(πτ )N/ |y|k dy = γkτ
k + ◦(

τ k) as τ → . �

Now, combining Propositions . and ., we get the proof of Theorem ..

6 Extension
We note that the assumption of (.) implies that ϕ is nonnegative or sign-changing func-
tion. However, when ϕ is negative, it is very interesting whether the blowup phenomenon
still occurs, and if it does, how to describe the asymptotic behavior of the blowup time as
ε → .

When ϕ is negative, letting v(x, t) = –u(x, t), we can change equation (.) into

⎧
⎪⎨

⎪⎩

vt = ε�v – e–v, (x, t) ∈ � × (, +∞),
v(x, t) = , (x, t) ∈ ∂� × (, +∞),
v(x, ) = –ϕ(x), x ∈ �.

(.)
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We also consider the zero diffusion case of ODE. Suppose that z(t; θ ) is a solution of the
equation

dz
dt

= –e–z, z(; θ ) = θ > . (.)

Then z(t; θ ) is solved as

z(t; θ ) = ln
(
eθ – t

)
.

Clearly, z(t; θ ) → –∞ as t → eθ . So we suspect that if ϕ were negative, then the blowup
time T(ε) of (.) would satisfy

T(ε) → e‖ϕ‖∞ as ε → . (.)

In fact, by comparison, v(x, t) ≤ z(t;‖ϕ‖∞), and we have T(ε) ≤ e‖ϕ‖∞ , that is, v will reach
–∞ (u will reach +∞) faster than z. On the other hand, by the similar arguments as in the
proof of Theorem . we can derive that T(ε) ≥ e‖ϕ‖∞ as ε → . Therefore, (.) holds.

However, when ϕ is negative and ϕ(x) = min� ϕ(x), we can easily find that eϕ(x) <  <
e–ϕ(x), and the arguments in the proofs of Theorems .-. will not be valid for this case.
In order to get more accurate estimates of T(ε) for negative initial data, some new way is
needed. We leave it to the interested readers.
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