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Abstract
The uniqueness of positive solution for a class of singular fractional differential system
with integral boundary conditions is considered in this paper and many types of
equation system are contained in this equation system because there are many
parameters which can be changeable in this equation system. The fractional orders
are involved in the nonlinearity of the boundary value problem and the nonlinearity is
allowed to be singular in regard to not only time variable but also space variable. The
existence of uniqueness of positive solution is mainly obtained by fixed point
theorem of mixed monotone operator and the positive solution of equation system is
dependent on λ. An iterative sequence and convergence rate are given which are
important for practical application and an example is given to demonstrate the
validity of our main results.
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1 Introduction
In the past couple of decades, boundary value problems for nonlinear fractional differ-
ential equations arise from the studies of complex problems in many disciplinary areas
such as aerodynamics, fluid flows, electrodynamics of complex medium, electrical net-
works, rheology, polymer rheology, economics, biology chemical physics, control theory,
signal and image processing, blood flow phenomena, and so on. Fractional-order models
have been shown to be more accurate and realistic than integer-order models, and with
this advantage in the application of these models, it is important to theoretically estab-
lish the conditions for the existence of positive solutions because theoretical results can
help people to get an in-depth understanding for the dynamic behavior in the practical
process, so the study of abstract fractional models is important and relevant nowadays. In
recent years, many authors investigated the existence of positive solutions for fractional
equation boundary value problems (see [–] and the references therein), and a great
deal of results have been developed for differential and integral boundary value problems.
The authors in [] studied the following system of singular fractional differential equa-

© 2016 Guo et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-016-0652-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-016-0652-1&domain=pdf
mailto:mathlls@163.com


Guo et al. Boundary Value Problems  (2016) 2016:147 Page 2 of 20

tions:

⎧
⎪⎨

⎪⎩

–Dα
+u(t) = f (t, u(t), Dβ

+ u(t), y(t)), –Dγ
+y(t) = g(t, u(t)),  < t < ,

Dβ

+ x() = , Dμ

+ x() =
∑p–

j= ajDμ

+ x(ξj),
y() = , Dv

+ y() =
∑p–

j= bjDv
+ y(ξj),

where α,γ ,β , v,μ ∈ R

+ = [, +∞),  < γ < α ≤ ,  < α – β < γ ,  < β ≤ μ < ,  < v < ,

 < ξ < ξ < · · · < ξp– < , aj, bj ∈R

+ with

∑p–
j= ajξ

α–μ–
j < ,

∑p–
j= bjξ

γ –
j < , f ∈ C([, ] ×

(, +∞),R
+) and may be singular at xi =  (i = , , ), g ∈ C([, ] × (, +∞),R

+), Dα
+,

Dβ
+, Dγ

+, Dμ
+, Dv

+ are the standard Riemann-Liouville derivatives. By using the fixed
point theorem of the mixed monotone operator, the authors obtained the uniqueness
of the positive solution. In [], the authors investigated the fractional differential equa-
tions

{
Dα

+u(t) + f (t, u(t), Dv
+ u(t), Dμ

+ u(t)) = ,  < t < ,
u() = u′() = u′′() = u′′() = ,

where α, v,μ ∈ R

+,  < α ≤ ,  < v ≤ ,  < μ ≤  are real numbers, f is a Carathéodory

function, f (t, x, y, z) is singular at x, y, z = , and Dα
+, Dv

+, Dμ
+ are the Riemann-Liouville

fractional derivatives. The authors obtained the existence and multiplicity of positive so-
lutions by means of Krasnosel’skii’s fixed point theorem. In [], the authors investigated
the fractional-order model for turbulent flow in a porous medium,

{
–Dβ

t (ϕp(–Dα
t x))(t) = f (x(t), Dγ

t x(t)),  < t < ,
Dα

t x() = Dα+
t x() = Dα

t x() = , Dγ
t x() = , Dγ

t x() =
∫ 

 Dγ
t x(s) dA(s),

where α,β ,γ ∈ R

+,  < γ ≤  < α ≤  < β < , α – γ > ,

∫ 
 x(s) dA(s) denotes a Riemann-

Stieltjes integral, A is a function of bounded variation, and dA can be a signed measure.
The p-Laplacian operator is defined as ϕp(s) = |s|p–s, p > , and the nonlinearity f (t, u, v)
may be singular at both u =  and v = , and Dα

t , Dβ
t , Dγ

t are the standard Riemann-
Liouville derivatives. The authors obtained the uniqueness of a positive solution by using
the fixed point theorem of the mixed monotone operator. In [], the authors investigated
the following system of singular problems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–Dα
t u(t) + λf (t, u(t), Dβ

t u(t), v(t)) = ,
–Dγ

t v(t) + λg(t, u(t)) = ,  < t < ,
Dβ

t u() = Dβ+
t u() = , Dβ

t u() =
∫ 

 Dβ
t u(s) dA(s),

v() = v′() = , v() =
∫ 

 v(s) dB(s),

where α,β ,γ ∈ R

+,  < α,γ ≤ ,  < β < , u denotes the number of uninfected CD+T

cells and v denotes the number of infected cells, λ >  is a parameter, α – β > ,
∫ 

 Dβ
t u(s) dA(s), and

∫ 
 v(s) dB(s) denote the Riemann-Stieltjes integrals of u with re-

spect to A and B, respectively, A, B are bounded variations, f : (, ) × R

+ → (–∞, +∞),

g : (, ) × R

+ → (–∞, +∞) are two continuous functions and may be singular at t = , ,

Dα
t , Dβ

t , Dγ
t are the standard Riemann-Liouville derivatives. The authors obtained the ex-

istence of positive solution by fixed point theorem.
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In present, many papers are devoted to the fractional differential equations in which the
fractional orders are involved in the nonlinearity; see [–, –]. On the other hand,
there are some papers studying singular equations in regard to space variable, we refer
the reader to [–]. Motivated by the results above, we utilize a fixed point theorem to
investigate the existence results of positive solution of the following class of nonlinear
singular fractional differential equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dα
+u(t) + λf (t, u(t), Dμ

+ u(t), Dμ
+ u(t), . . . , Dμn–

+ u(t), v(t)) = ,  < t < ,
Dβ

+v(t) + μg(t, u(t), Dη
+ u(t), Dη

+ u(t), . . . , Dηm–
+ u(t)) = ,  < t < ,

u() = u′() = · · · = u(n–)() = , u(n–)() = χ
∫ η

 h(s)u(n–)(s) dA(s),
v() = v′() = · · · = v(m–)() = , v(m–)() = ι

∫ ϑ

 a(s)v(m–)(s) dB(s),

(.)

where α,β ,μκ ,η ∈ R

+, n, m,κ , ∈ N (natural number set) and n –  < α ≤ n, m –  < β ≤

m, m < n (n, m ≥ ), κ – < μκ ≤ κ (κ = , , . . . , n–), – < η ≤  ( = , , . . . , m–), and
 < η,ϑ ≤ , λ,μ,χ , ι >  are parameters, f ∈ C((, ) × (, +∞)n,R

+), and f (t, x, x, . . . , xn)
has a singularity at xi =  (i = , , . . . , n) and t = , , g ∈ C((, ) × (, +∞)m–,R

+), h, a ∈
C(, ) with

∫ η

 χ tα–n+h(t) dA(t) < ,
∫ ϑ

 ιtβ–m+a(t) dB(t) < , A, B are functions of bounded
variation,

∫ η

 h(s)u(n–)(s) dA(s),
∫ ϑ

 a(s)v(m–)(s) dB(s) denote the Riemann-Stieltjes integral
with respect to A and B, Dα

+ u, Dβ
+v, Dμκ

+ u (κ = , , . . . , n – ), Dη

+ u ( = , , . . . , m – ) are
the standard Riemann-Liouville derivatives. The existence of positive solutions is obtained
by means of a mixed monotone operator in cones in this paper.

In this paper, we study the existence of positive solutions to BVP (.), where (u, v) ∈
C[, ] × C[, ] is said to be a positive solution of BVP (.) if and only if u, v satisfies (.)
and u(t) > , v(t) >  for any t ∈ (, ]. We should address here that our work presented in
this paper has various new system features. First of all, the system of equations in question
include many types of system of equations as special cases because there are many param-
eters which can be changeable in this equation system. Second, our study is on singular
nonlinear differential boundary value problems, that is, f (t, x, x, . . . , xn) has singularity at
xi =  (i = , , . . . , n) and t = , , and g(t, x, x, . . . , xm–) may be singular at t = , . Third,
fractional derivatives is involved in the nonlinear terms and boundary conditions of frac-
tional differential (.). Fourth, the uniqueness of the positive solution of equation (.) is
dependent on λ.

2 Preliminaries and lemmas
For the convenience of the reader, we first present some basic definitions and lemmas that
are important and are to be used in the rest of the paper. The definitions can also be found
in recent literature such as [, ].

Definition . [, ] The Riemann-Liouville fractional integral of order α >  of a func-
tion y : (,∞) →R

 is given by

Iα
+ y(t) =


�(α)

∫ t


(t – s)α–y(s) ds,

provided that the right-hand side is pointwise defined on (,∞).
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Definition . [, ] The Riemann-Liouville fractional derivative of order α >  of a
continuous function y : (,∞) →R

 is given by

Dα
+ y(t) =


�(n – α)

(
d
dt

)n ∫ t



y(s)
(t – s)α–n+ ds,

where n = [α] + , [α] denotes the integer part of the number α, provided that the right-
hand side is pointwise defined on (, ∞).

Lemma . [, ] Assume that u ∈ Cn[, ], then

Iα
+ Dα

+ u(t) = u(t) + Ctα– + Ctα– + · · · + Cntα–n,

where n is the least integer greater than or equal to α, Ci ∈ R
 (i = , , . . . , n).

Lemma . []
() If x ∈ L(, ), v > σ > , then

Iv
+ Iσ

+ x(t) = Iv+σ
+ x(t), Dσ

+ Iv
+ x(t) = Iv–σ

+ x(t), Dσ
+ Iσ

+ x(t) = x(t).

() If v > , σ > , then

Dv
+ tσ– =

�(σ )
�(σ – v)

tσ–v–.

For convenience in our presentation, we here list some conditions to be used throughout
the paper.

(S) f (t, x, x, . . . , xn) = φ(t, x, x, . . . , xn) +ψ(t, x, x, . . . , xn), where φ : (, )× (, +∞)n →
R


+ is continuous, φ(t, x, x, . . . , xn) may be singular at t = ,  and is nondecreasing

on xi >  (i = , , . . . , n); ψ : (, ) × (, +∞)n → R

+ is continuous, ψ(t, x, x, . . . , xn)

may be singular at t = ,  and xi =  (i = , , . . . , n), and is nonincreasing on xi > 
(i = , , . . . , n).

(S) There exists σ ∈ (, ) such that, for all xi >  (i = , , . . . , n), t ∈ (, ), and l ∈ (, ),

φ(t, lx, lx, . . . , lxn) ≥ lσφ(t, x, x, . . . , xn),

ψ
(
t, l–x, l–x, . . . , l–xn

) ≥ lσψ(t, x, x, . . . , xn).

(S) g ∈ C((, ) × (, +∞)m–,R
+), g(t, x, x, . . . , xm–) may be singular at t = ,  and is

nondecreasing on xi >  (i = , , . . . , m – ). Moreover, there exists ς ∈ (, ) such that

g(t, lx, lx, . . . , lxm–)

≥ lς g(t, x, x, . . . , xm–), t, l ∈ (, ), xi > , i = , , . . . , m – .

(S)

 <
∫ 


( – s)α–n+s–σ (α–)ψ(s, , , . . . , ) ds < +∞,

 <
∫ 


( – s)α–n+φ(s, , , . . . , ) ds < +∞,
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 <
∫ 


( – s)β–m+g(s, , , . . . , ) ds < +∞.

Remark . According to (S) and (S), we have

φ(t, lx, lx, . . . , lxn)

≤ lσφ(t, x, x, . . . , xn), t ∈ (, ), l ≥ , xi > , i = , , . . . , n,

ψ
(
t, l–x, l–x, . . . , l–xn

)

≤ lσψ(t, x, x, . . . , xn), t ∈ (, ), l ≥ , xi > , i = , , . . . , n,

g(t, lx, lx, . . . , lxm–)

≤ lς g(t, x, x, . . . , xm–), t ∈ (, ), l ≥ , xi > , i = , , . . . , m – .

Lemma . Let ρ ∈ L(, ) ∩ C(, ), then the equation of the BVPs

{
–Dα–n+

+ x(t) = ρ(t),  < t < ,
x() = , x() = χ

∫ η

 h(s)x(s) dA(s),
(.)

{
–Dβ–m+

+ y(t) = ρ(t),  < t < ,
y() = , y() = ι

∫ ϑ

 a(s)y(s) dB(s),
(.)

have the integral representation

x(t) =
∫ 


G(t, s)ρ(s) ds =

∫ 



(
G(t, s) + G(t, s)

)
ρ(s) ds,

y(t) =
∫ 


H(t, s)ρ(s) ds =

∫ 



(
H(t, s) + H(t, s)

)
ρ(s) ds,

(.)

respectively, where

G(t, s) = G(t, s) + G(t, s), H(t, s) = H(t, s) + H(t, s),

in which

G(t, s) =


�(α – n + )

{
tα–n+( – s)α–n+ – (t – s)α–n+,  ≤ s ≤ t ≤ ,
tα–n+( – s)α–n+,  ≤ t ≤ s ≤ ,

(.)

G(t, s) =
χ tα–n+

 – χ
∫ η

 tα–n+h(t) dA(t)

∫ η


h(t)G(t, s) dA(t), (.)

H(t, s) =


�(β – m + )

{
tβ–m+( – s)β–m+ – (t – s)β–m+,  ≤ s ≤ t ≤ ,
tβ–m+( – s)β–m+,  ≤ t ≤ s ≤ ,

(.)

H(t, s) =
ιtβ–m+

 – ι
∫ ϑ

 tβ–m+a(t) dB(t)

∫ ϑ


a(t)H(t, s) dB(t). (.)

Proof The proof is similar to that for Lemma . in [], we omit it here. �

Lemma . Let θ(s) = ms( – s)α–n+, θ(s) = ms( – s)β–m+, then the Green functions
G(t, s) and H(t, s) satisfy:
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() G(t, s) > , H(t, s) > , ∀t, s ∈ (, ),
() ∀t, s ∈ [, ],

tα–n+θ(s) ≤ G(t, s) ≤ Mtα–n+( – s)α–n+,

tβ–m+θ(s) ≤ H(t, s) ≤ Mtβ–m+( – s)β–m+,

where

m =


�(α – n + )

(

 +
χ

∫ η

 h(t)tα–n+ dA(t)
 – χ

∫ η

 h(t)tα–n+ dA(t)

)

,

m =


�(β – m + )

(

 +
ι
∫ ϑ

 a(t)tβ–m+ dB(t)

 – ι
∫ ϑ

 a(t)tβ–m+ dB(t)

)

,

M =


�(α – n + )

(

 +
χ

∫ η

 h(t)tα–n dA(t)
 – χ

∫ η

 h(t)tα–n+ dA(t)

)

,

M =


�(β – m + )

(

 +
ι
∫ ϑ

 a(t)tβ–m dB(t)

 – ι
∫ ϑ

 a(t)tβ–m+ dB(t)

)

.

Proof The proof is similar to that for Lemma . in [], we omit it here. �

Let u(t) = In–
+ x(t), v(t) = Im–

+ y(t), then x(t) = Dn–
+ u(t), y(t) = Dm–

+ v(t), the problem (.)
can turn into the following modified problem of the BVP (.):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dα–n+
+ x(t) + λf (t, In–

+ x(t), In––μ
+ x(t), . . . , In––μn–

+ x(t), Im–
+ y(t)) = ,  < t < ,

Dβ–m+
+ y(t) + μg(t, In–

+ x(t), In––η
+ x(t), . . . , In––ηm–

+ x(t)) = ,  < t < ,
x() = , x() = χ

∫ η

 h(s)x(s) dA(s),
y() = , y() = ι

∫ ϑ

 a(s)y(s) dB(s).

(.)

Lemma . Let u(t) = In–
+ x(t), v(t) = Im–

+ y(t), x(t), y(t) ∈ C[, ]. Then (.) can be trans-
formed into (.). Moreover, if (x, y) ∈ C[, ] × C[, ] is a positive solution of the problem
(.), then (In–

+ x, Im–
+ y) is a positive solution of the problem (.).

Proof Put u(t) = In–
+ x(t), v(t) = Im–

+ y(t) into (.), by Lemma ., we have

Dα
+ u(t) =

dn

dtn In–α
+ In–

+ x(t) =
dn

dtn In–α–
+ x(t) = Dα–n+

+ x(t),

Dμi
+ u(t) = Dμi

+ In–
+ x(t) = In––μi

+ x(t), i = , , . . . , n – ,

Dβ

+ v(t) =
dm

dtm Im–β

+ Im–
+ y(t) =

dm

dtm Im–β–
+ y(t) = Dβ–m+

+ y(t),

Dηi
+ u(t) = Dηi

+ In–
+ x(t) = In––ηi

+ x(t), i = , , . . . , m – .

(.)

By u(t) = In–
+ x(t), v(t) = Im–

+ y(t), and (.), we have

Dn–
+ u() = x() = , u(n–)() = x() = χ

∫ η


h(s)x(s) dA(s),

–Dα–n+
+ x(t) = λf

(
t, In–

+ x(t), In––μ
+ x(t), . . . , In––μn–

+ x(t), Im–
+ y(t)

)
,
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Dm–
+ v() = y() = , v(m–)() = y() = ι

∫ ϑ


a(s)y(s) dB(s),

–Dβ–m+
+ y(t) = μg

(
t, In–

+ x(t), In––η
+ x(t), . . . , In––ηm–

+ x(t)
)
.

Thus (.) is transformed into (.).
Now, assume (x, y) ∈ C[, ] × C[, ] is a positive solution for problem (.). Let u(t) =

In–
+ x(t), v(t) = Im–

+ y(t), by Lemma ., we have

–Dα
+ u(t) = –Dα

+ In–
+ x(t) = –Dα–n+

+ x(t)

= λf
(
t, In–

+ x(t), In––μ
+ x(t), . . . , In––μn–

+ x(t), Im–
+ y(t)

)

= λf
(
t, u(t), Dμ

+ u(t), Dμ
+ u(t), . . . , Dμn–

+ u(t), v(t)
)
,  < t < ,

–Dβ

+ v(t) = –Dβ

+ Im–
+ y(t) = –Dβ–m+

+ y(t)

= μg
(
t, In–

+ x(t), In––η
+ x(t), . . . , In––ηm–

+ x(t)
)

= μg
(
t, u(t), Dη

+ u(t), Dη
+ u(t), . . . , Dηn–

+ u(t)
)
,  < t < .

On the other hand, by u(t) = In–
+ x(t), v(t) = Im–

+ y(t), and Lemma ., we also get

Dn–
+ u(t) = Dn–

+ In–
+ x(t) = x(t),

Dm–
+ v(t) = Dm–

+ Im–
+ y(t) = y(t),

which implies that

u() = u′() = · · · = u(n–)() = x() = ,

u(n–)() = x() = χ

∫ η


h(s)x(s) dA(s) = χ

∫ η


h(s)u(n–)(s) dA(s),

v() = v′() = · · · = v(m–)() = y() = ,

v(m–)() = y() = ι

∫ ϑ


a(s)y(s) dB(s) = ι

∫ ϑ


a(s)v(m–)(s) dB(s).

Clearly, u = In–
+ x, v = Im–

+ y ∈ C([, ],R
+). Hence, (In–

+ x, Im–
+ y) is a positive solution of

problem (.). Hence, (.) and (.) are equivalent. �

The vector (x, y) is a solution of system (.) if and only if (x, y) ∈ C[, ] × C[, ] is a
solution of the following system of nonlinear integral equations:

{
x(t) = λ

∫ 
 G(t, s)f (s, In–

+ x(s), In––μ
+ x(s), . . . , In––μn–

+ x(s), Im–
+ y(s)) ds,

y(s) = μ
∫ 

 H(s, τ )g(τ , In–
+ x(τ ), In––η

+ x(τ ), . . . , In––ηm–
+ x(τ )) dτ .

(.)

Obviously, system (.) is equivalent to the following system of integral equations:

x(t) = λ

∫ 


G(t, s)f

(

s, In–
+ x(s), In––μ

+ x(s), . . . , In––μn–
+ x(s),

Im–
+

(

μ

∫ 


H(s, τ )g

(
τ , In–

+ x(τ ), In––η
+ x(τ ), . . . , In––ηm–

+ x(τ )
)

dτ

))

ds. (.)
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Let P be a normal cone of a Banach space E, and e ∈ P, e > θ (θ is a zero element of E).
Define a component of P by Qe = {u ∈ P| there exist constants c, C >  such that ce ≤ u ≤
Ce}. A : Qe × Qe → P is said to be mixed monotone if A(u, y) is nondecreasing in u and
nonincreasing in y, i.e., u ≤ u (u, u ∈ Qe) implies A(u, y) ≤ A(u, y) for any y ∈ Qe, and
y ≤ y (y, y ∈ Qe) implies A(u, y) ≥ A(u, y) for any u ∈ Qe. The element u� ∈ Qe is called
a fixed point of A if A(u�, u�) = u�.

Lemma . [, ] Suppose that A : Qe × Qe → Qe is a mixed monotone operator and
there exists a constant σ ,  < σ < , such that

A
(

lx,

l

y
)

≥ lσ A(x, y), x, y ∈ Qe,  < l < , (.)

then A has a unique fixed point x� ∈ Qe, and, for any x, y ∈ Qe, we have

lim
k→∞

xk = lim
k→∞

yk = x�,

where

xk = A(xk–, yk–), yk = A(yk–, xk–), k = , , . . .

and the convergence rate is

∥
∥xk – x�

∥
∥ = o

(
 – rσ k )

,
∥
∥yk – x�

∥
∥ = o

(
 – rσ k )

,

where r is a constant,  < r < , and dependent on x, y.

Lemma . [, ] Suppose that A : Qe × Qe → Qe is a mixed monotone operator and
there exists a constant σ ∈ (, ) such that (.) holds. If x�

λ ∈ Qe is a unique solution of
equation

λA(x, x) = x, λ > ,

then:
() For any λ ∈ (, +∞), ‖x�

λ – x�
λ

‖ → , λ → λ.
() If  < σ < 

 , then  < λ < λ implies x�
λ

≤ x�
λ

, x�
λ

�= x�
λ

.
() limλ→+∞ ‖x�

λ‖ = +∞, limλ→+ ‖x�
λ‖ = .

Let e(t) = tα–n+, we define a normal cone of C[, ] by

P =
{

x ∈ C[, ] : x(t) ≥ ,  ≤ t ≤ 
}

,

also define a component of P by

Qe =
{

x ∈ P : there exists D > ,

D

e(t) ≤ x(t) ≤ De(t), t ∈ [, ]
}

.
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Remark . By simple calculation, for any t ∈ [, ], we have

In–
+ e(t) =


�(n – )

∫ t


(t – s)n–sα–n+ ds

=
B(α – n + , n – )

�(n – )
tα– =

�(α – n + )
�(α)

tα–, (.)

Im–
+ tβ–m+ =


�(m – )

∫ t


(t – s)m–sβ–m+ ds

=
B(β – m + , m – )

�(m – )
tβ– =

�(β – m + )
�(β)

tβ–, (.)

In––μκ

+ e(t) =


�(n –  – μκ )

∫ t


(t – s)n––μκ sα–n+ ds

=
B(α – n + , n –  – μκ )

�(n –  – μκ )
tα–μκ –

=
�(α – n + )
�(α – μκ )

tα–μκ –, κ = , , . . . , n – , (.)

In––η

+ e(t) =


�(n –  – η)

∫ t


(t – s)n––η sα–n+ ds

=
B(α – n + , n –  – η)

�(n –  – η)
tα–η–

=
�(α – n + )
�(α – η)

tα–η–,  = , , . . . , m – . (.)

3 Main results
Theorem . Suppose that (S)-(S) hold. Then the BVP (.) has a unique positive solution
(u�

λ, v�
λ), which satisfies

�(α – n + )
D�(α)

tα– ≤ u�
λ(t) ≤ D�(α – n + )

�(α)
tα–,

�(β – m + )μtβ–

�(β)

(
�(α – n + )

D�(α)

)ς ∫ 


θ(s)sς (α–)g(s, , , . . . , ) ds

≤ v�
λ(t)

≤ �(β – m + )Mμtβ–

�(β)

(
D�(α – n + )
�(α – ηm–)

+ 
)ς

×
∫ 


( – s)β–m+g(s, , , . . . , ) ds, (.)

and at the same time u�
λ satisfies:

() For λ ∈ (,∞), ‖u�
λ – u�

λ
‖ → , λ → λ.

() If  < σ < 
 , then  < λ < λ implies u�

λ
≤ u�

λ
, u�

λ
�= u�

λ
.

() limλ→ ‖u�
λ‖ = , limλ→+∞ ‖u�

λ‖ = +∞.
Moreover, for any u, we construct a successive sequence

uk+(t) = In–
+

{

λ

∫ 


G(t, s)

[
φ
(
s, uk(s), Dμ

+ uk(s),

Dμ
+ uk(s), . . . , Dμn–

+ uk(s), Au(n–)
k (s)

)
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+ ψ
(
s, uk(s), Dμ

+ uk(s), Dμ
+ uk(s), . . . , Dμn–

+ uk(s), Au(n–)
k (s)

)]
ds

}

,

k = , , . . . ,

and we have ‖uk – u�
λ‖ →  as k → ∞, and the convergence rate

∥
∥uk – u�

λ

∥
∥ = o

(
 – rσ k )

,

where r is a constant,  < r < , and dependent on u. Moreover,

v�
λ(t) = Im–

+

(

μ

∫ 


H(t, s)g

(
s, u�

λ(s), Dη
+ u�

λ(s), . . . , Dηm–
+ u�

λ(s)
)

ds
)

.

Proof We first consider the existence of a positive solution to problem (.). From the
discussion in Section , we only need to consider the existence of a positive solution to
BVP (.). In order to realize this purpose, let

Ax(t) = Im–
+

(

μ

∫ 


H(t, s)g

(
s, In–

+ x(s), In––η
+ x(s), . . . , In––ηm–

+ x(s)
)

ds
)

,

and, for any x, w ∈ Qe, we define the operator Tλ : Qe × Qe → P by

Tλ(x, w)(t) = λ

∫ 


G(t, s)

[
φ
(
s, In–

+ x(s), In––μ
+ x(s), . . . , In––μn–

+ x(s), Ax(s)
)

+ ψ
(
s, In–

+ w(s), In––μ
+ w(s), . . . , In––μn–

+ w(s), Aw(s)
)]

ds. (.)

Now we prove that Tλ : Qe × Qe → P is well defined. For any x, w ∈ Qe, by (.), (.), we
have

∫ 


H(s, τ )g

(
τ , In–

+ x(τ ), In––η
+ x(τ ), . . . , In––ηm–

+ x(τ )
)

dτ

≤
∫ 


H(s, τ )g

(

τ ,
D�(α – n + )

�(α)
τα–,

D�(α – n + )
�(α – η)

τα–η–, . . . ,

D�(α – n + )
�(α – ηm–)

τα–ηm––
)

dτ

≤
∫ 


H(s, τ )g

(

τ ,
D�(α – n + )

�(α)
+ ,

D�(α – n + )
�(α – η)

+ , . . . ,
D�(α – n + )
�(α – ηm–)

+ 
)

dτ

≤
∫ 


H(s, τ )g

(

τ ,
D�(α – n + )
�(α – ηm–)

+ ,
D�(α – n + )
�(α – ηm–)

+ , . . . ,
D�(α – n + )
�(α – ηm–)

+ 
)

dτ

≤ M

(
D�(α – n + )
�(α – ηm–)

+ 
)ς

sβ–m+
∫ 


( – τ )β–m+g(τ , , , . . . , ) dτ , s ∈ [, ],

∫ 


H(s, τ )g

(
τ , In–

+ x(τ ), In––η
+ x(τ ), . . . , In––ηm–

+ x(τ )
)

dτ

≥
∫ 


H(s, τ )g

(

τ ,
�(α – n + )

D�(α)
τα–,

�(α – n + )
D�(α – η)

τα–η–, . . . ,

�(α – n + )
D�(α – ηm–)

τα–ηm––
)

dτ
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≥
∫ 


H(s, τ )g

(

τ ,
�(α – n + )

D�(α)
τα–,

�(α – n + )
D�(α)

τα–, . . . ,
�(α – n + )

D�(α)
τα–

)

dτ

≥
(

�(α – n + )
D�(α)

)ς

sβ–m+
∫ 


θ(τ )τ ς (α–)g(τ , , , . . . , ) dτ , s ∈ [, ].

Hence, by (.), for any s ∈ [, ], we have

Ax(s) = Im–
+

(

μ

∫ 


H(s, τ )g

(
τ , In–

+ x(τ ), In––η
+ x(τ ), . . . , In––ηm–

+ x(τ )
)

dτ

)

≤ �(β – m + )Mμsβ–

�(β)

(
D�(α – n + )
�(α – ηm–)

+ 
)ς

×
∫ 


( – τ )β–m+g(τ , , , . . . , ) dτ , (.)

Ax(s) = Im–
+

(

μ

∫ 


H(s, τ )g

(
τ , In–

+ x(τ ), In––η
+ x(τ ), . . . , In––ηm–

+ x(τ )
)

dτ

)

≥ μ�(β – m + )sβ–

�(β)

(
�(α – n + )

D�(α)

)ς ∫ 


θ(τ )τ ς (α–)g(τ , , , . . . , ) dτ .

By (.), (.), (.), (S), and Remark ., we have

φ
(
s, In–

+ x(s), In––μ
+ x(s), . . . , In––μn–

+ x(s), Ax(s)
)

≤ φ

(

s,
D�(α – n + )

�(α)
sα– + ,

D�(α – n + )
�(α – μ)

sα–μ– + , . . . ,

D�(α – n + )
�(α – μn–)

sα–μn–– + ,
�(β – m + )Mμ

�(β)

(
D�(α – n + )
�(α – ηm–)

+ 
)ς

× sβ–
∫ 


( – τ )β–m+g(τ , , , . . . , ) dτ + 

)

≤ φ(s, Db + , Db + , . . . , Db + )

≤ (Db + )σφ(s, , , . . . , )

≤ σ bσ Dσ φ(s, , , . . . , ), s ∈ (, ), (.)

where

D > max

{[

σ bσ Mλ

∫ 


( – s)α–n+φ(s, , , . . . , ) ds

+ Mc–σ λ

∫ 


s–σ (α–)( – s)α–n+ψ(s, , , . . . , ) ds

] 
–σ

, , c, b–,

[

cσ λ

∫ 


θ(s)sσ (α–)φ(s, , , . . . , ) ds + –σ b–σ λ

∫ 


θ(s)ψ(s, , , . . . , ) ds

]– 
–σ

}

,

b = max

{
�(α – n + )
�(α – μn–)

, ,
�(β – m + )
�(β)(Mμ)–

(
�(α – n + )
�(α – ηm–)

+ 
)ς

×
∫ 


( – τ )β–m+g(τ , , , . . . , ) dτ

}

.



Guo et al. Boundary Value Problems  (2016) 2016:147 Page 12 of 20

By (.), (.), (.), (S), and (S), we also have

ψ
(
s, In–

+ x(s), In––μ
+ x(s), . . . , In––μn–

+ x(s), Ax(s)
)

≤ ψ

(

s,
�(α – n + )

D�(α)
sα–,

�(α – n + )
D�(α – μ)

sα–μ–, . . . ,
�(α – n + )

D�(α – μn–)
sα–μn––,

μ�(β – m + )sβ–

�(β)

(
�(α – n + )

D�(α)

)ς ∫ 


θ(τ )τ ς (α–)g(τ , , , . . . , ) dτ

)

≤ ψ

(

s,
c
D

sα–,
c
D

sα–μ–, . . . ,
c
D

sα–μn––,
c

Dς
sβ–

)

≤ ψ

(

s,
c
D

sα–,
c
D

sα–, . . . ,
c
D

sα–
)

≤
(

c
D

sα–
)–σ

ψ(s, , , . . . , )

= c–σ Dσ s–σ (α–)ψ(s, , , . . . , ), s ∈ (, ), (.)

where

c = min

{
�(α – n + )

�(α)
, ,

�(β – m + )μ
�(β)

(
�(α – n + )

�(α)

)ς

×
∫ 


θ(τ )τ ς (α–)g(τ , , . . . , ) dτ

}

.

Noting c
D sα– < , by (.), (.), (.), (S), and (S), we have

φ
(
s, In–

+ x(s), In––μ
+ x(s), . . . , In––μn–

+ x(s), Ax(s)
)

≥ φ

(

s,
�(α – n + )

D�(α)
sα–,

�(α – n + )
D�(α – μ)

sα–μ–, . . . ,
�(α – n + )

D�(α – μn–)
sα–μn––,

μ�(β – m + )
�(β)

(
�(α – n + )

D�(α)

)ς

sβ–
∫ 


θ(τ )τ ς (α–)g(τ , , , . . . , ) dτ

)

≥ φ

(

s,
c
D

sα–,
c
D

sα–μ–, . . . ,
c
D

sα–μn––,
c
D

sβ–
)

≥ φ

(

s,
c
D

sα–,
c
D

sα–, . . . ,
c
D

sα–
)

≥
(

c
D

sα–
)σ

φ(s, , , . . . , )

= cσ D–σ sσ (α–)φ(s, , , . . . , ), s ∈ (, ), (.)

and by (.), (.), (.), (S), and Remark ., we also get

ψ
(
s, In–

+ x(s), In––μ
+ x(s), . . . , In––μn–

+ x(s), Ax(s)
)

≥ ψ

(

s,
D�(α – n + )

�(α)
sα–,

D�(α – n + )
�(α – μ)

sα–μ–, . . . ,
D�(α – n + )
�(α – μn–)

sα–μn––,

�(β – m + )Mμ

�(β)

(
D�(α – n + )

�(α)
+ 

)ς

sβ–m+
∫ 


( – τ )β–m+g(τ , , . . . , ) dτ

)
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≥ ψ
(
s, Dbsα–, Dbsα–μ–, . . . , Dbsα–μn––, Dς bsβ–m+)

≥ ψ(s, Db + , Db + , . . . , Db + )

≥ (Db + )–σψ(s, , , . . . , )

≥ –σ b–σ D–σψ(s, , , . . . , ), s ∈ (, ). (.)

For x, w ∈ Qe, it follows from (.), (.) that

λ

∫ 


G(t, s)φ

(
s, In–

+ x(s), In––μ
+ x(s), . . . , In––μn–

+ x(s), Ax(s)
)

ds

≤ Mtα–n+λ

∫ 


( – s)α–n+φ

(
s, In–

+ x(s), In––μ
+ x(s), . . . , In––μn–

+ x(s), Ax(s)
)

ds

≤ σ bσ Dσ Mλtα–n+
∫ 


( – s)α–n+φ(s, , , . . . , ) ds < +∞, t ∈ [, ], (.)

λ

∫ 


G(t, s)ψ

(
s, In–

+ w(s), In––μ
+ w(s), . . . , In––μn–

+ w(s), Aw(s)
)

ds

≤ Mtα–n+λ

∫ 


ψ

(
s, In–

+ w(s), In––μ
+ w(s), . . . , In––μn–

+ w(s), Aw(s)
)

ds

≤ c–σ Dσ Mλtα–n+
∫ 


( – s)α–n+s–σ (α–)ψ(s, , , . . . , ) ds < +∞, t ∈ [, ]. (.)

By (H), (.), and (.), we see that Tλ : Qe × Qe → P is well defined.
Next, we will prove that Tλ : Qe × Qe → Qe. It follows from (.), (.) that

Tλ(x, w)(t) ≤ Dtα–n+ = De(t), t ∈ [, ]. (.)

At the same time, by (.), (.), we have

λ

∫ 


G(t, s)φ

(
s, In–

+ x(s), In––μ
+ x(s), . . . , In––μn–

+ x(s), Ax(s)
)

ds

≥ tα–n+λ

∫ 


θ(s)φ

(
s, In–

+ x(s), In––μ
+ x(s), . . . , In––μn–

+ x(s), Ax(s)
)

ds

≥ cσ D–σ λtα–n+
∫ 


θ(s)sσ (α–)φ(s, , , . . . , ) ds, t ∈ [, ], (.)

λ

∫ 


G(t, s)ψ

(
s, In–

+ w(s), In––μ
+ w(s), . . . , In––μn–

+ w(s), Aw(s)
)

ds

≥ tα–n+λ

∫ 


θ(s)ψ

(
s, In–

+ w(s), In––μ
+ w(s), . . . , In––μn–

+ w(s), Aw(s)
)

ds

≥ –σ D–σ b–σ λtα–n+
∫ 


θ(s)ψ(s, , , . . . , ) ds, t ∈ [, ]. (.)

Equations (.) and (.) imply that

Tλ(x, w)(t) ≥ 
D

tα–n+ =

D

e(t), t ∈ [, ]. (.)

Hence, Tλ : Qe × Qe → Qe is well defined.
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Next, we shall prove that Tλ : Qe × Qe → Qe is a mixed monotone operator. In fact, for
any x, x ∈ Qe and x ≤ x, by the monotonicity of In––μi

+ , A and φ, for any t ∈ [, ], we
have

λ

∫ 


G(t, s)φ

(
s, In–

+ x(s), In––μ
+ x(s), . . . , In––μn–

+ x(s), Ax(s)
)

ds

≤ λ

∫ 


G(t, s)φ

(
s, In–

+ x(s), In––μ
+ x(s), . . . , In––μn–

+ x(s), Ax(s)
)

ds. (.)

Hence, by (.), we have

Tλ(x, w) ≤ Tλ(x, w), w ∈ Qe, (.)

that is, Tλ(x, w) is nondecreasing on x for any w ∈ Qe. Similarly, if w ≥ w, w, w ∈ Qe,
from (S), for any t ∈ [, ], we have

λ

∫ 


G(t, s)ψ

(
s, In–

+ w(s), In––μ
+ w(s), . . . , In––μn–

+ w(s), Aw(s)
)

ds

≤ λ

∫ 


G(t, s)ψ

(
s, In–

+ w(s), In––μ
+ w(s), . . . , In––μn–

+ w(s), Aw(s)
)

ds. (.)

Hence, by (.), we have

Tλ(x, w) ≤ Tλ(x, w), x ∈ Qe, (.)

i.e., Tλ(x, w) is nonincreasing on w for any x ∈ Qe. Hence, by (.) and (.), we see that
Tλ : Qe × Qe → Qe is a mixed monotone operator.

Finally, we show that the operator Tλ satisfies (.). For any x, w ∈ Qe and l ∈ (, ),
t ∈ [, ], by (S) and (S), we have

λ

∫ 


G(t, s)φ

(
s, In–

+ lx(s), In––μ
+ lx(s), . . . , In––μn–

+ lx(s), Alx(s)
)

ds

≥ λ

∫ 


G(t, s)φ

(
s, lIn–

+ x(s), lIn––μ
+ x(s), . . . , lIn––μn–

+ x(s), Alx(s)
)

ds

≥ λlσ
∫ 


G(t, s)φ

(
s, In–

+ x(s), In––μ
+ x(s), . . . , In––μn–

+ x(s), Ax(s)
)

ds, (.)

λ

∫ 


G(t, s)ψ

(
s, In–

+ l–w(s), In––μ
+ l–w(s), . . . , In––μn–

+ l–w(s), Al–w(s)
)

ds

≥ λ

∫ 


G(t, s)ψ

(
s, l–In–

+ w(s), l–In––μ
+ w(s), . . . , l–In––μn–

+ w(s), l–Aw(s)
)

ds

≥ λlσ
∫ 


G(t, s)ψ

(
s, In–

+ w(s), In––μ
+ w(s), . . . , In––μn–

+ w(s), Aw(s)
)

ds. (.)

Equations (.), (.) imply that

Tλ

(

lx,

l

w
)

≥ lσ Tλ(x, w), x, w ∈ Qe. (.)
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Hence, as regards Lemma . assume that there exists a unique positive solution x�
λ ∈ Qe

such that Tλ(x�
λ, x�

λ) = x�
λ. It is easy to check that x�

λ is a unique positive solution of (.) for
any given λ > . Moreover, by Lemma . we have the following conclusions:

() For any λ ∈ (, +∞), ‖x�
λ – x�

λ
‖ → , λ → λ.

() If  < σ < 
 , then  < λ < λ implies x�

λ
≤ x�

λ
, x�

λ
�= x�

λ
.

() limλ→ ‖x�
λ‖ = , limλ→+∞ ‖x�

λ‖ = +∞.
By Lemma ., we have

{
u�

λ(t) = In–
+ x�

λ(t),
v�
λ(t) = Im–

+ y�
λ(t), t ∈ [, ].

(.)

Hence, by (.) and the monotonicity and continuity of In–
+ , we get:

() ‖u�
λ – u�

λ
‖ → , λ → λ.

() If  < σ < 
 , then  < λ < λ implies u�

λ
≤ u�

λ
, u�

λ
�= u�

λ
.

() limλ→ ‖u�
λ‖ = , limλ→+∞ ‖u�

λ‖ = +∞.
Moreover, for any u(t) = In–

+ x ∈ Qe, by Lemma ., constructing a successive sequence

xk+(t) = λ

∫ 


G(t, s)

[
φ
(
s, In–

+ xk(s), In––μ
+ xk(s), . . . , In––μn–

+ xk(s), Axk(s)
)

+ ψ
(
s, In–

+ xk(s), In––μ
+ xk(s), . . . , In––μn–

+ xk(s), Axk(s)
)]

ds, k = , , . . . ,

by uk+(t) = In–
+ xk+(t), then

uk+(t) = In–
+

{

λ

∫ 


G(t, s)

[
φ
(
s, uk(s), Dμ

+ uk(s), Dμ
+ uk(s), . . . , Dμn–

+ uk(s), Au(n–)
k (s)

)

+ ψ
(
s, uk(s), Dμ

+ uk(s), Dμ
+ uk(s), . . . , Dμn–

+ uk(s), Au(n–)
k (s)

)]
ds

}

,

k = , , . . . ,

and we have ‖uk – u�
λ‖ = ‖In–

+ xk – In–
+ x�

λ‖ →  as k → ∞, the convergence rate is

∥
∥uk – u�

λ

∥
∥ =

∥
∥In–

+ xk – In–
+ x�

λ

∥
∥ = o

(
 – rσ k )

,

r is a constant,  < r < , and dependent on u, where u�
λ(t) = In–

+ x�
λ(t), and we easily get

v�
λ(t) = Im–

+

(

μ

∫ 


H(t, s)g

(
s, In–

+ x�
λ(s), In––η

+ x�
λ(s), . . . , In––ηm–

+ x�
λ(s)

)
ds

)

,

so by u�
λ(t) = In–

+ x�
λ(t), we have

v�
λ(t) = Im–

+

(

μ

∫ 


H(t, s)g

(
s, u�

λ(s), Dη
+ u�

λ(s), . . . , Dηm–
+ u�

λ(s)
)

ds
)

. (.)

By (.), (.) , for any t ∈ [, ], we easily get

�(α – n + )
D�(α)

tα– ≤ u�
λ(t) = In–

+ x�
λ(t) ≤ D�(α – n + )

�(α)
tα–,
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�(β – m + )μ
�(β)

(
�(α – n + )

D�(α)

)ς

tβ–
∫ 


θ(s)sς (α–)g(s, , , . . . , ) ds

≤ v�
λ(t) = Im–

+ y�
λ(t)

≤ �(β – m + )Mμ

�(β)

(
D�(α – n + )
�(α – ηm–)

+ 
)ς

tβ–

×
∫ 


( – s)β–m+g(s, , , . . . , ) ds.

Therefore, the proof of Theorem . is completed. �

Remark . Compared with previous work [, ], the fractional orders are involved
not only in the nonlinearity f but also in the nonlinearity g and the uniqueness positive
solution of equation (.) is dependent on eigenvalue λ. Moreover, compared with [], an
iterative sequence and the convergence rate are also given.

4 Example
Example . Consider the following boundary value problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

–D


+u(t) = λf (t, u(t), D



+ u(t), v(t)),  < t < ,

–D


+v(t) = μg(t, u(t)),  < t < ,

u() = u′() = , u′() =
∫ η

 u′(s) dA(s),
v() = , v() =

∫ ϑ

 v(s) dB(s),

(.)

where α = 
 , β = 

 , h(s) = a(s) = , η = ϑ = 
 , χ = τ = . Let u(t) = I

+ x(t), v(t) = v(t), the
equation can be changed to the following:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D


+x(t) + λf (t, I

+ x(t), I



+ x(t), v(t)) = ,  < t < ,

D


+v(t) + μg(t, I

+ x(t)) = ,  < t < ,

x() = , x() =
∫ 


 x(s) dA(s),

v() = , v() =
∫ 


 v(s) dB(s),

(.)

and

φ(t, x, x, x) =
(
t– 

 + cos t
)
x



 + tx



 + x



 ,

ψ(t, x, x, x) = t– 
 x– 


 + x– 


 + ( – t)x– 


 ,

g(t, u) =
(
t + t)u


 + (t sin t + t)u


 ,

A(t) =

⎧
⎪⎨

⎪⎩

, t ∈ [, 
 ),

, t ∈ [ 
 , 

 ),
, t ∈ [ 

 , ],

B(t) =

⎧
⎪⎨

⎪⎩

, t ∈ [, 
 ),

, t ∈ [ 
 , 

 ),
, t ∈ [ 

 , ].
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Hence,

∫ η


χ tα–n+h(t) dA(t) =

∫ 



t


 dA(t)

=  ×
(




) 


– 
(




) 


≈  × . –  × .

= .

< ,
∫ ϑ


ιtβ–g(t) dB(t) =

∫ 



t


 dB(t)

=  ×
(




) 


– 
(




) 


≈  × . –  × .

= .

< .

Moreover, for any (t, x, x, x) ∈ (, ) × (,∞) and  < l < , we have

φ(t, lx, lx, lx) =
(
t– 

 + cos t
)
(lx)


 + t(lx)


 + (lx)




≥ l


((

t– 
 + cos t

)
x



 + tx



 + x




)

= l

 φ(t, x, x, x),

ψ
(
t, l–x, l–x, l–x

)
= t– 


(
l–x

)– 
 +

(
l–x

)– 
 + ( – t)

(
l–x

)– 


≥ l


(
t– 

 x– 


 + x– 


 + ( – t)x– 



)

= l

 ψ(t, x, x, x),

g(t, lu) =
(
t + t)(lu)


 + (t sin t + t)(lu)




≥ l


((

t + t)u

 + (t sin t + t)u



)

= l

 g(t, u).

Noting σ = 
 , ψ(s, , , ) = s– 

 +– s, φ(s, , , ) = s– 
 +cos s+s+, g(s, ) = s+ s sin s+ s,

we have

∫ 


( – s)α–n+s–σ (α–)ψ(s, , , ) ds ≤

∫ 


s–σ (α–)ψ(s, , , ) ds

=
∫ 


s– 

 × 

(
s– 

 +  – s
)

ds

=  +



–



< +∞,
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∫ 


( – s)α–n+φ(s, , , ) ds ≤

∫ 


φ(s, , , ) ds

=
∫ 



(
s– 

 + cos s + s + 
)

ds

=  + sin  < +∞,
∫ 


( – s)β–m+g(s, ) ds ≤

∫ 


( – s)



(
s + s sin s + s)ds

≤
∫ 


( – s)



(
s + s + 

)
ds

=



< +∞.

Thus, the assumptions (S)-(S) of Theorem . hold. Then Theorem . implies that prob-
lem (.) has a unique solution. Furthermore, when λ → λ, λ ∈ (, +∞), we have

∥
∥x�

λ – x�
λ

∥
∥ → ,

and  < λ < λ implies

x�
λ (t) ≤ x�

λ (t), x�
λ (t) �= x�

λ (t).

Since σ = 
 ∈ (, 

 ),

lim
λ→

∥
∥x�

λ

∥
∥ = , lim

λ→+∞
∥
∥x�

λ

∥
∥ = +∞.

By u�
λ(t) = I

+ x�
λ(t), we can easily get:

() λ ∈ (, +∞), ‖u�
λ – u�

λ
‖ → , λ → λ.

() If  < σ < 
 , then  < λ < λ implies u�

λ
≤ u�

λ
, u�

λ
�= u�

λ
.

() limλ→ ‖u�
λ‖ = , limλ→+∞ ‖u�

λ‖ = +∞.
In addition, for any initial u = I

+ x ∈ Qe, we construct a successive sequence

xk+(t) = λ

∫ 


G(t, s)

[
φ
(
t, I

+ xk(t), I



+ xk(t), Axk(t)
)

+ ψ
(
t, I

+ xk(t), I



+ xk(t), Axk(t)
)]

ds, k = , , . . . ,

by uk+(t) = I
+ xk+(t), then

uk+(t) = I
+

{

λ

∫ 


G(t, s)

[
φ
(
s, uk(t), D



+ uk(t), Au′

k(t)
)

+ ψ
(
s, uk(t), D



+ uk(t), Au′

k(t)
)]

ds
}

, k = , , . . . ,

and we have ‖uk – u�
λ‖ = ‖I

+ xk – I
+ x�

λ‖ →  as k → ∞, and the convergence rate

∥
∥uk – u�

λ

∥
∥ =

∥
∥I

+ xk – I
+ x�

λ

∥
∥ = o

(
 – rσ k )

,
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r is a constant,  < r < , and dependent on u. Moreover,

v�
λ(t) = μ

∫ 


H(t, s)g

(
s, u�

λ(s)
)

ds.

5 Conclusions
In this paper, some existence results are obtained for the case where the nonlinearity is
allowed to be singular in regard to not only the time variable but also the space variable and
the fractional orders are involved in the nonlinearity of the boundary value problem (.).
Moreover, our equation system contains many types of equation systems because there
are many parameters in our equation system and the uniqueness of the positive solution
of equation (.) is dependent on λ. An iterative sequence and convergence rate are given
which are important for practical applications. The method which we used for the analysis
in this paper is the fixed point theorem of a mixed monotone operator in cone.
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