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Abstract
The paper is devoted to studying a viscous thin-film equation with a singular diffusion
term and the periodic boundary conditions in multidimensional space, which has a
lot of applications in fluids theory such as draining of foams and the movement of
contact lenses. In order to obtain the necessary uniform estimates and overcome the
difficulty of a singular diffusion term, the entropy functional method is used. Finally,
the existence of nonnegative weak solutions is obtained by some compactness
arguments.
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1 Introduction
The research of the Cahn-Hilliard equation and the thin-film equation has become a
hot topic recently. The Cahn-Hilliard equation (see []) can describe the evolution of
a conserved concentration field during phase separation, which has the form ut + ∇ ·
(m∇(εΔu + f ′(u))) =  where m, f , ε denote the atomic mobility, the free energy, the
parameter proportional to the interface energy, respectively. –(εΔu + f ′(u)) can be taken
as the chemical potential. For the linear or degenerate mobility, Elliott, Zheng, and Garcke
[, ] have studied its existence and obtained some properties of solutions. Besides, Liang
and Zheng [] obtained the existence and stability results for this model with a gradient
mobility by studying the corresponding semi-discrete problems.

The thin-film equation is usually used to describe the motion of a very thin layer of
viscous incompressible fluids along an inclined plane such as the draining of foams and the
movement of contact lenses. It can be taken as a class of fourth-order degenerate parabolic
equations []:

ut +
(
m(u)uxxx + f (u, ux, uxx)

)
x = ,

where the mobility m(u) degenerates at u = . For example, thin-film flows driven by the
surface tension can be modeled by the following fourth-order degenerate parabolic equa-
tions:

∂u
∂t

+
∂

∂x

(
u


(Chxxx – δBhx cosα + B sinα) + A

ux

u
+

M


σxu
)

= .
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For the simplified thin-film equation ut +(unuxxx)x = , Bernis and Friedman [] gave the
first result to the existence and nonnegativity of weak solutions. Bertozzi and Pugh [] have
studied the existence in the distributional sense and the long time decay for the model of
the thin-film equation with a second-order diffusion term. Boutat et al. [] studied a gener-
alized thin-film equation with period boundary in multidimensional space. Furthermore,
Liang [] has investigated the existence of the weak solutions and strong solutions with
the initial function near a steady state solution. For other results, the reader may refer to
[–] and [].

In this paper, we study the following viscous thin-film equation with a singular diffusion:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut – ∇ · (un∇w) + A∇ · ( ∇u
uα ) =  in QT ,

w = –Δu + νut in QT ,
u is Ω-periodic,
u(x, ) = u(x) on Ω ,

()

where Ω = (–, )N , QT = Ω × (, T). n, A, α, and ν are all constants with n,α,ν > .
For convenience, we introduce some notations:
• C is denoted as a positive constant and may change from line to line.
• Ω = (–, )N , Γj = ∂Ω ∩ {xj = –}, Γj+N = ∂Ω ∩ {xj = }.
• Hm

per(Ω) is the periodic Sobolev space i.e.

Hm
per(Ω) =

{
u ∈ Hm(Ω)

∣∣Dξ u
∣∣
Γj

= Dξ u|Γj+N , j = , . . . , N , |ξ | ≤ m – 
}

.

• The following norms on Hm
per(Ω) (m ≥ ) are equivalent:

‖u‖Hm(Ω), ‖u‖L(Ω) +
∥
∥Dmu

∥
∥

L(Ω) and |u| +
∥
∥Dmu

∥
∥

L(Ω),

where u = 
N

∫
Ω

u(x) dx (see []).
• Cm

per(Ω) = {u ∈ Cm(Ω)|Dξ u|Γj = Dξ u|Γj+N , j = , . . . , N , |ξ | ≤ m – }.
• a+ = max{a, }, a– = min{a, } for a ∈ R.
Our main result is the following theorem.

Theorem  Let α ∈ (, 
 ], u ∈ H(Ω),

n ∈

⎧
⎪⎨

⎪⎩

( 
 , ), N = ;

( 
 , ), N = ;

( 
 , ), N = .

Suppose A ≤  or α ≤  – n. Then there exist at least one pair of solutions (u, w) satisfying
. u ∈ L(, T ; H

per(Ω)) ∩ C([, T]; H(Ω)), u– 
 |∇u| ∈ L(QT ), w, ut ∈ L(QT );

. for any test function φ ∈ C([, T]; C
per(Ω)), one has

∫∫

QT

utφ dx dt +
∫∫

QT

unwΔφ dx dt

+ n
∫∫

QT

un–∇uw∇φ dx dt – A
∫∫

QT

∇u∇φ

uα
dx dt = ,

∫∫

QT

wφ dx dt = –
∫∫

QT

Δuφ dx dt + ν

∫∫

QT

utφ dx dt.
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The following lemmas are needed in the paper.

Lemma  (Bernis, see []) Let u ∈ H
per(Ω) be a nonnegative function. There exists a con-

stant μ >  such that the following inequality holds:

∫

Ω

|∇u|
u dx ≤ μ‖u‖

H(Ω).

Lemma  (Aubin-Lions, see []) Let X, B, and Y be Banach spaces and assume X ↪→
B ↪→ Y with compact imbedding X ↪→ B.

() Let F be bounded in Lp(, T ; X) where  ≤ p < ∞, and ∂F
∂t = { ∂f

∂t : f ∈ F} be bounded
in L(, T ; Y ). Then F is relatively compact in Lp(, T ; B).

() Let F be bounded in L∞(, T ; X), and ∂F
∂t = { ∂f

∂t : f ∈ F} be bounded in Lr(, T ; Y )
where r > . Then F is relatively compact in C([, T]; B).

Lemma  (see [] or []) Let V be a real, separable, reflexive Banach space and H is
a real, separable, Hilbert space. V ↪→ H is continuous and V is dense in H . Then {u ∈
L(, T ; V )|ut ∈ L(, T ; V ′)} is continuously imbedded in C([, T]; H).

The paper is arranged as follows. The existence of solutions to the approximate problem
will be proved in Section . In Sections  and , we will take the limit for small parameters
δ →  and ε → , respectively.

2 Approximate problem
This section is devoted to studying the following approximate problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut – ∇ · ((u+ + δ)n∇w) + A∇ · ( (u++δ)n∇u
(u++ε)n+α (+ε|∇u|) ) =  in QT ,

w = –Δu + νut in QT ,
u is Ω-periodic,
u(x, ) = uδε(x) on Ω

()

for  < δ < ε <  and u+ = max{u, }.

Lemma  Let uδε ∈ H
per(Ω), α > , and  < n < . Then there exist at least a pair of

solutions (u, w) to () satisfying
. u ∈ L(, T ; H

per(Ω)) ∩ C([, T]; H
per(Ω)), ut ∈ L(QT ), w ∈ L(, T ; H

per(Ω)), and
u(x, ) = u;

. for any test function φ ∈ L(, T ; H
per(Ω)), one has

∫∫

QT

utφ dx dt +
∫∫

QT

(u+ + δ)n∇w∇wφ dx dt

– A
∫∫

QT

(
(u+ + δ)n∇u

(u+ + ε)n+α( + ε|∇u|)

)
∇φ dx dt = ,

∫∫

QT

wφ dx dt = –
∫∫

QT

Δuφ dx dt + ν

∫∫

QT

utφ dx dt.
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Proof We will apply the Galerkin method to obtain the existence of solutions. Let
{φi}i=,,,... be the eigenfunctions of the Laplace operator –Δφi = λiφi with periodic bound-
ary value conditions. Moreover, those eigenfunctions are orthogonal in H and L spaces
and we can normalize φi such that (φi,φj) = δij =

{ , i = j,
, i �= j, where we define λ = , φ = ,

and (·, ·) denotes the scalar product of the L space.
Let M denote a positive integer and define wM(x, t) =

∑M
i= di(t)φi(x), uM(x, t) =

∑M
i= ci(t)φi(x), uM(x, ) =

∑M
i=(u,φi)φi. For j = , . . . , M, we consider the following sys-

tem of ordinary differential equations:

d
dt

(
uM,φj

)
= –

((
uM

+ + δ
)n∇wM,∇φj

)

+ A
((

(uM
+ + δ)n∇uM

(u+ + ε)n+α( + ε|∇uM|)

)
,∇φj

)
, ()

(
wM,φj

)
= –

(
ΔuM,φj

)
+ ν

d
dt

(
uM,φj

)
. ()

The ODE existence theorem yields the local unique existence of this initial value prob-
lem since the right hand side depends on ci continuously. In order to show the global
solvability, we take –ΔuM as the test function and apply the Young inequality to get




d
dt

∫

Ω

∣
∣∇uM∣

∣ dx + ν

∫

Ω

∣
∣uM

t
∣
∣ dx +

∫

Ω

(
uM

+ + δ
)n∣∣∇wM∣

∣ dx

= A
∫

Ω

(uM
+ + δ)n∇uM∇wM

(uM
+ + ε)n+α( + ε|∇uM|)

dx

≤ 


∫

Ω

(
uM

+ + δ
)n∣∣∇wM∣

∣ dx +
C
εα

∫

Ω

∣
∣∇uM∣

∣ dx. ()

It gives




d
dt

∫

Ω

∣∣∇uM∣∣ dx + ν

∫

Ω

∣∣uM
t

∣∣ dx +
∫

Ω

(
uM

+ + δ
)n∣∣∇ΔuM∣∣ dx

=
C
εα

∫

Ω

∣
∣∇uM∣

∣ dx. ()

The mass conservation property
∫
Ω

uM(x, t) dx =
∫
Ω

uM
 (x) dx (by letting j = ) ensures that

Poincaré’s inequality can be applied. On the other hand, the Gronwall inequality yields

sup
t∈(,T)

∫

Ω

(∣∣uM∣∣ +
∣∣∇uM∣∣)(x, t) dx +

∫∫

QT

∣∣uM
t

∣∣ dx dt +
∫∫

QT

∣∣∇wM∣∣ dx

≤ C. ()

Therefore, we have obtained

uM ∈ L∞(
, T ; H

per(Ω)
)
, wM ∈ L(, T ; H

per(Ω)
)
, uM

t ∈ L(QT ). ()

The classic Lp-estimate of the second-order elliptic equations implies

uM ∈ L(, T ; H
per(Ω)

)
. ()
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By (), (), and Lemma , we conclude that there exist a pair of functions (u, w) and a
subsequence of (uM, wM) such that as M → ∞,

uM ⇀ u weakly∗ in L∞(
, T ; H

per(Ω)
)
; ()

wM ⇀ w weakly in L(, T ; H
per(Ω)

)
; ()

uM
t ⇀ ut weakly in L(QT ); ()

uM → u strongly in L(, T ; H
per(Ω)

)
; ()

∇uM → ∇u a.e. in (QT )N ; ()

uM → u a.e. in QT and strongly in C
(
[, T]; L(Ω)

)
. ()

Moreover, by Lemma , (), (), and the embedding H(Ω) ↪→ W ,(Ω), we have

uM, u ∈ C
(
[, T]; H

per(Ω)
)
, ()

∇uM,∇u ∈ L(QT ). ()

From Vitali’s theorem, we get

(
uM

+ + δ
)n → (

uM
+ + δ

)n strongly in L(QT ); ()

∇uM → ∇u strongly in L(QT ); ()

(uM
+ + δ)n∇uM

(uM
+ + ε)n+α( + ε|∇uM|)

→ (u+ + δ)n∇u
(u+ + ε)n+α( + ε|∇u|)

strongly in L(QT ). ()

Let TM denote the projection from the space L(Ω) to Span{φ, . . . ,φM}. By multiplying
equation () by TMφ for φ ∈ L(, T ; H

per(Ω)), one has

∫∫

QT

uM
t TMφ dt +

∫∫

QT

(
uM

+ + δ
)n∇wM∇TMφ dx dt

= A
∫∫

QT

(
(uM

+ + δ)n∇uM

(uM
+ + ε)n+α( + ε|∇uM|)

)
∇TMφ dx dt, ()

∫∫

QT

wMTMφ dx dt = –
∫∫

QT

ΔuMTMφ dx dt + ν

∫∫

QT

uM
t TMφ dx dt. ()

By ()-(), we can perform the limit M → ∞ in each term of ()-(). �

3 The limit δ → 0
We shall perform the limit δ →  in the section to the solutions obtained by Lemma  and
we suppose that the initial function uδε → uε ∈ H(Ω) as δ →  and uε ≥ .

The main result of this section is the following.

Proposition  Let

n ∈

⎧
⎪⎨

⎪⎩

( 
 , ), N = ;

( 
 , ), N = ;

( 
 , ), N = .
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Then there exist at least a pair of functions (u, w) satisfying
. w ∈ L(QT ), u ∈ L(, T ; H

per(Ω)) ∩ C([, T]; H
per(Ω)), ut ∈ L(QT ), and u(x, ) = uε ;

. for any test function φ ∈ L(, T ; C∞
per(Ω)), one has

∫∫

QT

utφ dx dt –
∫∫

QT

unwΔφ dx dt – n
∫∫

QT

un–w∇u∇φ dx dt

– A
∫∫

QT

un∇u∇φ

(u + ε)n+α( + ε|∇u|)
dx dt = ,

∫∫

QT

wφ dx dt = –
∫∫

QT

Δuφ dx dt + ν

∫∫

QT

utφ dx dt.

In order to prove this proposition, we have to establish some uniform energy estimates
independent of δ and thus we introduce a nonnegative convex functional Φδ(·) (see[]):

If  ≤ n < , n �= ,

Φδ(σ ) =

{


(–n)(–n) (σ + δ)–n – 
–n (σ + δ) + 

–n , σ ≥ ;
(σ )

δn + 
–n (δ–n – )σ + 

–n , σ < .

If n = ,

Φδ(σ ) =

{
(σ + δ)Ln(σ + δ) – (σ + δ) + , σ ≥ ;
(σ )

δ
+ σ (Lnδ) + δ(Lnδ) – δ + , σ < .

It is easy to check that Φδ ∈ W ,+∞
loc (R), Φ ′′

δ (σ ) = 
(σ++δ)n .

By applying this functional, we can get the following estimates.

Lemma  There exist some constants C independent of δ (may depend on ε) such that
. d

dt
∫
Ω

Φ(u(x, t)) dx +
∫
Ω

|w| dx + ν
∫
Ω

|ut| dx ≤ C;
. ‖w‖L(QT ) ≤ C, ‖u‖L(,T ;H

per(Ω)) ≤ C;
. ‖u‖L∞(,T ;H

per(Ω)) ≤ C;
.

∫∫
QT

(u+ + δ)n|∇w| dx dt ≤ C;
. ‖ut‖L(QT ) ≤ C.

Proof By choosing Φ ′(u) as the test function in (), we get

d
dt

∫

Ω

Φ
(
u(x, t)

)
dx +

∫

Ω

|w| dx + ν

∫

Ω

|ut| dx

= A
∫

Ω

|∇u|
(u+ + ε)n+α( + ε|∇u|)

dx ≤ |A|
εn+α+ . ()

This implies

‖u‖L(,T ;H
per(Ω)) ≤ C‖w‖L(QT ) ≤ C, ()

which yields the results -. Similar to (), we conclude that




d
dt

∫

Ω

|∇u| dx + ν

∫

Ω

|ut| dx +



∫

Ω

(u+ + δ)n|∇w| dx ≤ C(ε)
∫

Ω

|∇u| dx,

which gives  and . �
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Lemma  There exist a pair of functions (u, w) such that, as δ → ,
. u ⇀ u weakly in L(, T ; H

per(Ω));
. w ⇀ w weakly in L(QT );
. ut → ut weakly in L(QT );
. u → u strongly in L(, T ; H

per(Ω)) and a.e. in QT ;
. u → u strongly in C([, T]; L(Ω));
. if supδ∈(,)

∫
Ω

Φ(u) dx < ∞, then u ≥  in QT and supt≤T ‖u–(t)‖L(Ω) ≤ Cδ
n
 when

n ≤ ;
. u ∈ L(, T ; H

per(Ω)) ∩ C([, T]; L(Ω)), ut ∈ L(QT ), w ∈ L(QT ).

Proof The results - can be obtained from Lemma , and Lemma  can give  and . In
order to prove -, we integrate () over (, T) to get

 ≤
∫

Ω

Φ
(
u(x, t)

)
dx ≤ n|A|T

εn+α+ + sup
δ∈(,)

∫

Ω

Φ
(
u(x)

)
dx ≤ C(ε).

If n < , we have

 ≤ 


∫

Ω

u
–(x, t) dx ≤ δn

n – 
(
δ–n – 

)∫

Ω

u–(x, t) dx + C(ε)δn.

If n = , we have

 ≤ 


∫

Ω

u
–(x, t) dx ≤ –δ ln δ

∫

Ω

u–(x, t) dx + C(ε)δ.

By performing the limit δ → , we get
∫
Ω

u
–(x, t) dx = , which implies . Besides, the

result  can be obtained from - and Lemma . �

Proof of Proposition  For any function φ ∈ L(, T ; C∞
per(Ω)), Lemma  gives

∫∫

QT

utφ dx dt –
∫∫

QT

(u+ + δ)nwΔφ dx dt – n
∫∫

QT

(u+ + δ)n–w∇u∇φ dx dt

+ A
∫∫

QT

(
(u+ + δ)n∇u∇φ

(u+ + ε)n+α( + ε|∇u|)

)
dx dt = , ()

∫∫

QT

wφ dx dt = –
∫∫

QT

Δuφ dx dt + ν

∫∫

QT

utφ dx dt. ()

Similar to the proof of ()-() and applying Lemma , Lemma , and Vitali’s theorem,
we can get

(u+ + δ)n → un strongly in L(QT ); ()

∇u → ∇u strongly in L(QT ); ()

(u+ + δ)n–∇u → un–∇u strongly in L(QT ) if n ≥ ; ()

(u+ + δ)n∇u
(u+ + ε)n+α( + ε|∇u|)

→ (u+ + δ)n∇u
(u+ + ε)n+α( + ε|∇u|)

strongly in L(QT ). ()
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If () holds for n < , ()-() ensure that the limit δ →  can be performed in ()-()
and then we can complete the proof of Proposition .

Therefore, we only need to prove

(u+ + δ)n–∇u → un– 

∇u

u



= un–∇u strongly in L(QT ) ()

if n < .
From the following three steps, we can prove ().
Step . Define m(δ) = δ + ‖u–‖C(QT ) and we have u + m(δ) ≥ δ > . By applying the Bernis

inequality, we get

∫∫

QT

|∇u|
(u + m(δ)) dx dt ≤

∫∫

QT

|Δu| dx dt ≤ C, ()

where C is independent of δ.
Step . In this step, we define Uδ = (u+ + δ)n–(u + m(δ)) 

 and we want to prove that the
limit limδ→ ‖Uδ – un– 

 ‖L(QT ) =  holds.
At first, it is obvious that we have

Uδ ≥ (
u+ + m(δ)

)n– 
 in QT . ()

Now we choose

r

⎧
⎪⎨

⎪⎩

= +∞, N = ;
< +∞, N = ;
< , N = ,

such that Hs(Ω) ↪→ W ,r(Ω) with 
 < s < . By using the Gagliardo-Nirenberg interpola-

tion inequality and Lemma , we get

∥∥u–(t)
∥∥

L∞(Ω) ≤ C
∥∥u–(t)

∥∥γ

W ,r (Ω)

∥∥u–(t)
∥∥–γ

L(Ω)

≤ C
∥∥u–(t)

∥∥γ

Hs
per(Ω)δ

n
 (–γ )

≤ C(ε, s)δ
n
 (–γ ) ()

with γ =



N+
N – 

r
. It implies

Uδ(x, t) ≤ (u+ + δ)n–(u+ + δ + 
∥
∥u–(t)

∥
∥

L∞(Ω)

) 


≤ (u+ + δ)n– 
 + δn–(

∥
∥u–(t)

∥
∥

L∞(Ω)

) 


≤ (u+ + δ)n– 
 + C(ε)δn–+ n

 (–γ ) ()

with

n ∈

⎧
⎪⎨

⎪⎩

( 
 , ), N = ;

( 
 , ), N = ;

( 
 , ), N = .
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Equations () and () yield

lim
δ→

Uδ(x, t) = un– 
 a.e. in QT . ()

The Lebesgue-dominated theorem yields

lim
δ→

∫∫

QT

∣∣Uδ – un– 

∣∣ dx dt = . ()

Step . This step is devoted to the proof of (). For any positive constant η, one has

∫∫

Q

∣∣
∣∣(u+ + δ)n–∇u – un– 


∇u√

u

∣∣
∣∣



dx dt

≤
∫∫

Q

∣
∣Uδ – un– 


∣
∣

∣∣
∣∣

∇u√
u + m(δ)

∣∣
∣∣



dx dt +
∫∫

Q
un–

∣∣
∣∣

∇u
u + m(δ)

–
∇u√

u

∣∣
∣∣



dx dt

≤
(∫∫

Q

∣
∣∣
∣

∇u√
u + m(δ)

∣
∣∣
∣



dx dt
) 


(∫∫

Q

∣∣Uδ – un– 

∣∣ dx dt

) 


+
∫∫

{u≥η}
un–

∣
∣∣
∣

∇u
u + m(δ)

–
∇u√

u

∣
∣∣
∣



dx dt

+
∫∫

{u<η}
un–

∣∣
∣∣

∇u
u + m(δ)

–
∇u√

u

∣∣
∣∣



dx dt

= I + I + I. ()

From Step  and Step , we know I →  as δ →  and by applying Lemma , we have
I →  as δ → . For the last term, we have

I =
∫∫

{u<η}
un–

∣∣
∣∣

∇u
u + m(δ)

–
∇u√

u

∣∣
∣∣



dx dt

≤ ηn–
[∫∫

{u<η}
|∇u|

|u + m(δ)| dx dt +
∫∫

{u<η}
|∇u|
|u| dx dt

]

≤ Cηn–
[(∫∫

{u<η}
|∇u|

|u + m(δ)| dx dt
) 


+

(∫∫

{u<η}
|∇u|
|u| dx dt

) 

]

≤ Cηn–. ()

Therefore, by performing the limit η → , we get I →  and then the estimate ()
holds. �

4 The limit ε → 0
We will perform the last limit ε →  in this section and assume that the initial function
uε converges to u strongly in L(Ω).

By letting δ =  in the definition of Φδ(·), we can define Φ(·) as

Φ(x) =

{


(–n)(–n) x–n – 
–n x + 

–n if n ∈ [, ), n �= ;
x ln x – x +  if n = .
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Lemma  In the sense of D′(, T), there exists a constant C >  such that

d
dt

∫

Ω

Φ(u) dx + C

∫

Ω

|Δu| dx + ν

∫

Ω

|ut| dx ≤ A
∫

Ω

|∇u|
(u + ε)n+α( + ε|∇u|)

dx.

Proof From the idea of () and the Lp-estimate, we get

d
dt

∫

Ω

Φ
(
u(x, t)

)
dx + C

∫

Ω

|Δu| dx + ν

∫

Ω

|ut| dx

≤ d
dt

∫

Ω

Φ
(
u(x, t)

)
dx +

∫

Ω

|w| dx + ν

∫

Ω

|ut| dx

= A
∫

Ω

|∇u|
(u+ + ε)n+α( + ε|∇u|)

dx. ()

Since u → u in C(QT ) as δ → , we have

–
∫ T


φ′(t)

∫

Ω

Φ(u) dx dt → –
∫ T


φ′(t)

∫

Ω

Φ(u) dx dt ()

for any nonnegative function φ ∈ D′(, T). By applying the limit Δu ⇀ Δu in L(QT ) as
δ → , one has

lim inf
δ→

∫ T


φ(t)

∫

Ω

|Δu| dx dt ≥
∫ T


φ(t)

∫

Ω

|Δu| dx dt. ()

Finally, it is easy to check that

A
∫∫

QT

|∇u|φ(t)
(u+ + ε)n+α( + ε|∇u|)

dx dt

→ A
∫∫

QT

|∇u|φ(t)
(u + ε)n+α( + ε|∇u|)

dx dt. ()

Equations ()-() give the result of this lemma. �

Lemma  If one of the following conditions holds:
(I)

∫
Ω

Φ(w) dx < ∞, A ≤ , and
(II)

∫
Ω

Φ(w) dx < ∞, α ≤  – n, n < , one has u ∈ L(, T ; H
per(Ω)), w, ut ∈ L(QT )

independent of ε.

Proof By Lemma  and the condition (I), we can prove the result easily.
If the condition (II) holds, Lemma  and Lemma  give

∫

Ω

Φ(u) dx + C

∫

Ω

|Δu| dx + ν

∫∫

QT

|ut| dx dt

≤
∫

Ω

Φ(u) dx + |A|
∫∫

QT

|∇u|
(u + ε)( + ε|∇u|)

dx dt

≤
∫

Ω

Φ(u) dx + |A|
∫∫

QT

|∇u|
(u + ε)α+n dx dt
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≤
∫

Ω

Φ(u) dx + |A|
(∫∫

QT

|∇u|
(u + ε) dx dt

) 

(∫∫

QT

(u + ε)(–(α+n)) dx dt
) 



≤
∫

Ω

Φ(u) dx + C
(∫ T


‖u‖H(Ω) dt

) 

(∫∫

QT

(u + ε) dx dt
)–(α+n)

≤ C



∫∫

QT

|Δu| dx dt + C, ()

which yields Δu ∈ L(QT ). Applying the second equation of Proposition , we get w ∈
L(QT ). �

Now we are in the position to prove Theorem .

Proof of Theorem  By Lemma , we can show the existence of two functions u ≥  and w
such that, as ε → ,

u ⇀ u in L(, T ; H
per(Ω)

)
; ()

ut ⇀ ut in L(QT ); ()

w ⇀ w in L(QT ); ()

u → u in C
(
[, T]; H

per(Ω)
)
; ()

u → u in L(, T ; H
per(Ω)

)
; ()

u → u, ∇u → ∇u a.e. in QT . ()

Furthermore, Lemma  yields

‖u‖C([,T];Hs
per(Ω)) ≤ C; ()

‖u‖C([,T];Hs
per(Ω)) ≤ C ()

for 
 < s < . By the Sobolev embedding theorem with the case N ≤ , we have ‖u‖L∞(QT ) ≤

C and ‖u‖L∞(QT ) ≤ C.
Step . By using ()-() and Vitali’s theorem, we get un → un in Lq(QT ) for any q > 

and thus one has
∫∫

QT

unwΔφ dx dt →
∫∫

QT

unwΔφ dx dt ()

as ε →  for any test function φ ∈ C∞([, T]; C
per(Ω)).

Step . In this step, we will prove the limit un–∇u → un–∇u in L(QT ).
First of all, the Bernis inequality yields

∫∫
QT

| ∇u√
u
| dx dt ≤ C and then we have

∫∫

Δ

un–|∇u| dx dt =
∫∫

Δ

un– |∇u|√
u

dx dt

≤ C
(∫∫

Δ

un– dx dt
) 

 →  ()
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as ε →  with Δ = {(x, t) ∈ QT |u(x, t) = }. On the other hand, it is easy to get

∇u√
u

→ ∇u√
u

a.e. in QT\Δ

as ε → . By Vitali’s theorem, we have

un–∇u → un–∇u in L(QT\Δ). ()

Hence, we have

un–∇u → un–∇u in L(QT ), ()

where we define un–∇u =  on Δ.
Step . In this step, we prove the limit Fε = un∇u

(u+ε)n+α (+ε|∇u|) → u–α∇u in L(QT ).
If α ≤ 

 , we have

∫∫

Δ

|Fε| dx dt ≤
∫∫

Δ

u–α |∇u|
u

dx dt

≤ C
(∫∫

Δ

u–α dx dt
) 

 →  ()

as ε → . Beside, it is easy to show Fε → u–α∇u a.e. in QT\Δ and Vitali’s theorem yields
∫∫

Δ

∣∣Fε – u–α∇u
∣∣ dx dt →  ()

as ε → . By ()-(), we have

Fε → u–α∇u in L(QT ), ()

where we define u–α∇u =  on Δ.
As ε → , the convergence () and ()-() give

∫∫
QT

utφ dx dt → ∫∫
QT

utφ dx dt and
∫∫

QT
un–∇uw∇φ dx dt → ∫∫

QT
un–∇uw∇φ dx dt. Step  yields

∫∫

QT

un∇u∇φ

(u + ε)n+α( + ε|∇u|)
dx dt →

∫∫

QT

u–α∇u∇φ dx dt.

Now we can take the limit ε →  in the equality
∫∫

QT

utφ dx dt +
∫∫

QT

unwΔφ dx dt

+ n
∫∫

QT

un–∇uw∇φ dx dt – A
∫∫

QT

un∇u∇φ

(u + ε)n+α( + ε|∇u|)
dx dt = ,

∫∫

QT

wφ dx dt = –
∫∫

QT

Δuφ dx dt + ν

∫∫

QT

utφ dx dt

for any test function φ ∈ C([, T]; C
per(Ω)). For the initial value, this holds in the sense of

u ∈ C([, T]; H
per(Ω)). �
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