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1 Introduction
Boundary value problems of nonlinear fractional differential equations have been studied
extensively in recent years (see, for instance, [–] and the references therein). In addition,
since Rabinowitz established unilateral global bifurcation theorems, there has been much
research in global bifurcation theory and it has been applied to obtain the existence and
multiplicity for solutions of differential equations (see, for instance, [–] and their ref-
erences). However, little of the previous research is involved with both global bifurcation
techniques and fractional differential equations. In this paper, we will deal with fractional
differential equations via global bifurcation techniques.

In [], Ma et al. studied the problem

{
u′′′′(t) = rg(t)f (u(t)), t ∈ (, ),
u() = u() = u′′() = u′′() = ,

(.)

where the following conditions have been adopted:
(H) f : R →R is continuous and sf (s) >  for s �= .
(H) There exist f, f∞ ∈ (,∞) such that

f = lim
s→

f (s)
s

, f∞ = lim
s→∞

f (s)
s

.

(H) g : [, ] →R is a continuous function which attains both positive and negative
values.

The main result that Ma et al. established in [] is stated as follows:
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Let (H)-(H) hold. Assume that

r ∈
(

λ+

f∞
,
λ+

f

)
∪

(
λ–

f
,
λ–

f∞

)

or

r ∈
(

λ+

f
,
λ+

f∞

)
∪

(
λ–

f∞
,
λ–

f

)
.

Then (.) has at least one positive solution. Here λ+ and λ– are two simple principal
eigenvalues of the following linear eigenvalue problem:

{
u′′′′(t) = λg(t)u(t), t ∈ (, ),
u() = u() = u′′() = u′′() = .

Inspired by [], we will tackle the following fractional differential equation attached to
boundary conditions:

{
Dα

+u(t) + rf (t, u(t)) = , t ∈ (, ),
tn–αu(n–)(t)|t= = tn–αu(n–)(t)|t= = · · · = tn–αu(t)|t= = u() = ,

(.)

where r > , α > , n is always the smallest integer greater than or equal to α in this paper.
α can be integer or not. We consider (.) under the following assumption.

(C) f : (, ) ×R →R is continuous and xf (t, x) >  for x �= .
(C+

 ) There exists a nonnegative function a+ ∈ C[, ] such that

lim
x→+

tn–( – t)n–f (t, x)
x

= a+ (t)

for all t ∈ (, ) uniformly. Moreover, a+ (t) does not identically vanish in any subin-
terval of (, ).

(C–
 ) There exists a nonnegative function a– ∈ C[, ] such that

lim
x→–

tn–( – t)n–f (t, x)
x

= a– (t)

for all t ∈ (, ) uniformly. Moreover, a– (t) does not identically vanish in any subin-
terval of (, ).

(C+
 ) There exists a nonnegative function a+∞ ∈ C[, ] such that

lim
x→+∞

tn–( – t)n–f (t, x)
x

= a+∞(t)

for all t ∈ (, ) uniformly. Moreover, a+∞(t) does not identically vanish in any subin-
terval of (, ).

(C–
 ) There exists a nonnegative function a–∞ ∈ C[, ] such that

lim
x→–∞

tn–( – t)n–f (t, x)
x

= a–∞(t)
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for all t ∈ (, ) uniformly. Moreover, a–∞(t) does not identically vanish in any subin-
terval of (, ).

(C) There exists a constant number b >  such that

 <
tn–( – t)n–f (t, x)

x
≤ b

for all (t, x) ∈ (, ) × (R – {}).
(C) There exists a function ϕ ∈ C[, ] such that

f (t, x)
x

≥ ϕ(t) ≥ 

for all (t, x) ∈ (, ) × (R – {}). In addition, ϕ(t) does not identically vanish in any
subinterval of (, ).

Remark . The conditions that we adopt admit the singularity of f (t, x) at t =  and t = ,
while (H) and (H) in [] require the continuity of g there. What is more, the right side
of equation (.) has been separated into two parts, functions of t and u(t), respectively.
However, we do not ask for that separation in this paper. Moreover, we tackle αth-order
differential equations in this paper, where α >  may be integer or not, while [] only deals
with fourth-order differential equations.

The rest of the paper is arranged as follows. In Section , some preliminary definitions
and results will be presented. In Section , we will prove some property of H , L+ , and L+∞
as preparations. In Section , we will give our main results and prove it. In Section , we
will present two examples to apply our main results.

2 Preliminary
Definition . The Riemann-Liouville fractional integral of order α >  of a function g :
(, +∞) → R is defined by

Iα
+g(t) =


�(α)

∫ t


(t – s)α–g(s) ds,

provided that the right-hand side is pointwise defined on (, +∞). In addition, I
+ is the

identical operator.

Definition . The Riemann-Liouville fractional derivative of order α >  of a continuous
function g : (, +∞) →R is defined by

Dα
+g(t) =

(
d
dt

)n

In–α
+ g(t),

provided that the right-hand side is pointwise defined on (, +∞).
When α ∈N

+, the Riemann-Liouville fractional integral and derivative of order α coin-
cide with the usual integral and derivative of integer order, respectively.

Consider the following problem:{
Dα

+u(t) + h(t) = , t ∈ (, ),
tn–αu(n–)(t)|t= = tn–αu(n–)(t)|t= = · · · = tn–αu(t)|t= = u() = .

(.)
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If we set

G(t, s) =


�(α)

{
tα–( – s)α– – (t – s)α–,  ≤ s ≤ t ≤ ,
tα–( – s)α–,  ≤ t ≤ s ≤ ,

then we will have the following.

Lemma . Let h ∈ C(, ). If h(t) is absolutely integrable in (, a) for any number a ∈ (, ),
we set

u(t) =
∫ 


G(t, s)h(s) ds, (.)

i.e.,

u(t) =


�(α)

[
–

∫ t


(t – s)α–h(s) ds + tα–

∫ 


( – s)α–h(s) ds

]
, (.)

then u(t) must be a solution of (.).

Proof If (.) is satisfied, it is easy to verify that u() = . Since

u(i)(t) =


�(α – i)

[
–

∫ t


(t – s)α–i–h(s) ds + tα–i–

∫ 


( – s)α–h(s) ds

]
,

i = , , , . . . , n – ,

we have

∣∣tn–αu(i)(t)
∣∣ ≤ 

�(α – i)

∫ t


(t – s)α–i–∣∣h(s)

∣∣ds +
tn–i–

�(α – i)

∣∣∣∣
∫ 


( – s)α–h(s) ds

∣∣∣∣
=

(t – ξ )α–i–

�(α – i)

∫ t



∣∣h(s)
∣∣ds +

tn–i–

�(α – i)

∣∣∣∣
∫ 


( – s)α–h(s) ds

∣∣∣∣,
i = , , , . . . , n – , ξ ∈ [, t].

Hence

tn–αu(i)(t)|t= = , i = , , , . . . , n – . �

Definition . Let X be a real Banach space and let K be a subset of X. Then K is called
an order cone if:

(i) K is closed, nonempty, and K �= θ ;
(ii) a, b ∈R, a, b ≥ , x, y ∈ K ⇒ ax + by ∈ K ;

(iii) x ∈ K and –x ∈ K ⇒ x = θ .
On this basis, u ∈ K is denoted by u ≥ θ while u > θ means that u ∈ K and u �= θ . Moreover,
K is called solid if int(K) �= φ, i.e., K has interior points. u � θ means that u is an interior
point of K .
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In this paper, the space we choose is

X =
{

u ∈ C(, ) : lim
t→+

u(t)
tα–( – t)

and lim
t→–

u(t)
tα–( – t)

both exist
}

.

X is a Banach space equipped with the norm

‖u‖ = sup
<t<

∣∣∣∣ u(t)
tα–( – t)

∣∣∣∣.
We set the cone

K+ :=
{

u ∈ X : u(t) ≥ ,∀t ∈ (, )
}

.

Clearly K+ is a solid cone of X.
Now we present some conditions that Lemma . needs:

(H+
 ) The operators L, N : X → X are compact on the real Banach space X . L + N is positive.

L is linear and ‖Nu‖
‖u‖ →  as ‖u‖ → . Moreover, X has an order cone K with X = K –K .

(H+
 ) The spectral radius r(L) of L is positive.

(H+
 ) L is strongly positive, i.e., Lu � θ for u > θ .

Two results which will be very important in this paper are stated as follows.

Lemma . (Corollary . in []) We set

S+ =
{

(μ, u) ∈R× X : (μ, u) is a solution of u = μ(Lu + Nu) with μ >  and u > θ
}

.

If (H+
 ) and (H+

 ) are satisfied, then (r(L)–, θ ) is a bifurcation point of u = μ(Lu + Nu) and
S+ contains an unbounded solution component C+(r(L)–) which passes through (r(L)–, θ ).

If additionally (H+
 ) is satisfied, then (μ, u) ∈ C+(r(L)–) and μ �= r(L)– always implies

μ >  and u > θ .

Lemma . (Theorem . in []) Let X be a Banach space and K ⊂ X be a solid cone.
L : X → X is linear, compact, and strongly positive. Then we have:

(a) r(L) > , r(L) is a simple eigenvalue with an eigenvector ν � θ and there is no other
eigenvalue with positive eigenvector.

(b) |λ| < r(L) for all eigenvalue λ �= r(L).
(c) For y > θ , λ ≤ r(L), the equation λu – Lu = y has no solution in K .
(d) Let S : X → X be a linear operator. If Sx – Lx ≥ θ on K , then r(s) ≥ r(L), while

r(s) > r(L) if Sx – Lx � θ for x > θ .

3 Property of H, L0+ , and L+∞
We set

(Hu)(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds.

First of all, we show that H is well defined in X if (C) is satisfied.
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Recalling that

(Hu)(t) =


�(α)

[
tα–

∫ 


( – s)α–f

(
s, u(s)

)
ds –

∫ t


(t – s)α–f

(
s, u(s)

)
ds

]
,

what we only need to do is to describe the nature of f (s, u(s)) when s is close to  and to .
Due to condition (C), we have

∣∣f (s, u(s)
)∣∣ ≤ b

sn–( – s)n–

∣∣u(s)
∣∣

= bsα–n( – s)–n
∣∣∣∣ u(s)
sα–( – s)

∣∣∣∣
≤ b‖u‖sα–n( – s)–n. (.)

Then we can see that H is well defined on X. Furthermore, we have the following result.

Lemma . If (C) is satisfied, then H : X → X is compact.

Proof The proof is divided into two parts.
Part . We prove that Hu ∈ X for u ∈ X in this part.
Suppose u ∈ X. It is obvious that Hu ∈ C(, ).
We will prove that limt→+

(Hu)(t)
tα–(–t) exists in the next. We have

(Hu)(t)
tα– =


�(α)

[∫ 


( – s)α–f

(
s, u(s)

)
ds –

∫ t
 (t – s)α–f (s, u(s)) ds

tα–

]
. (.)

Moreover, due to (.), we have

∣∣∣∣
∫ t

 (t – s)α–f (s, u(s)) ds
tα–

∣∣∣∣ ≤
∫ t

 (t – s)α–|f (s, u(s))|ds
tα–

≤ b‖u‖ ∫ t
 (t – s)α–sα–n( – s)–n ds

tα–

= b‖u‖( – ξ )–n
∫ t

 (t – s)α–sα–n ds
tα–

= b‖u‖( – ξ )–n �(α)�(α – n + )
�(α – n + )

tα–n+, ξ ∈ (, t).

So

lim
t→+

∫ t
 (t – s)α–f (s, u(s)) ds

tα– = . (.)

By (.) and (.), we know that

lim
t→+

(Hu)(t)
tα–( – t)

=


�(α)

∫ 


( – s)α–f

(
s, u(s)

)
ds. (.)
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At last, we prove that limt→–
(Hu)(t)

tα–(–t) exists:

(Hu)(t)
 – t

=
tα– ∫ 

 ( – s)α–f (s, u(s)) ds –
∫ t

 (t – s)α–f (s, u(s)) ds
�(α)( – t)

=
(tα– – )

∫ 
 ( – s)α–f (s, u(s)) ds
�(α)( – t)

+
∫ 

 ( – s)α–f (s, u(s)) ds –
∫ t

 (t – s)α–f (s, u(s)) ds
�(α)( – t)

=
(tα– – )

∫ 
 ( – s)α–f (s, u(s)) ds
�(α)( – t)

+
∫ 

t ( – s)α–f (s, u(s)) ds
�(α)( – t)

+
∫ t

 [( – s)α– – (t – s)α–]f (s, u(s)) ds
�(α)( – t)

, (.)

where

lim
t→–

(tα– – )
∫ 

 ( – s)α–f (s, u(s)) ds
�(α)( – t)

= –


�(α – )

∫ 


( – s)α–f

(
s, u(s)

)
ds. (.)

Moreover, by (.) we have

∣∣∣∣
∫ 

t ( – s)α–f (s, u(s)) ds
�(α)( – t)

∣∣∣∣ ≤
∣∣∣∣b‖u‖ ∫ 

t ( – s)α–n+sα–n ds
�(α)( – t)

∣∣∣∣
=

∣∣∣∣ b‖u‖ξα–n

�(α)(α – n + )
( – t)α–n+

∣∣∣∣, ξ ∈ (t, ),

then

lim
t→–

∫ 
t ( – s)α–f (s, u(s)) ds

�(α)( – t)
= . (.)

Now we have to deal with
∫ t

 [( – s)α– – (t – s)α–]f (s, u(s)) ds
�(α)( – t)

.

Since

( – s)α– – (t – s)α–

( – t)
– (α – )( – s)α–

does not change sign, by (.) we have

∣∣∣∣
∫ t

 [( – s)α– – (t – s)α–]f (s, u(s)) ds
�(α)( – t)

–
∫ t

 ( – s)α–f (s, u(s)) ds
�(α – )

∣∣∣∣
=


�(α)

∣∣∣∣
∫ t



[
( – s)α– – (t – s)α–

( – t)
– (α – )( – s)α–

]
f
(
s, u(s)

)
ds

∣∣∣∣
≤ b‖u‖

�(α)

∣∣∣∣
∫ t



[
( – s)α– – (t – s)α–

( – t)
– (α – )( – s)α–

]
sα–n( – s)–n ds

∣∣∣∣. (.)



Guan et al. Boundary Value Problems  (2016) 2016:141 Page 8 of 18

After some calculations (more details being omitted), we know that

lim
t→–

∫ t



[
( – s)α– – (t – s)α–

( – t)
– (α – )( – s)α–

]
sα–n( – s)–n ds = . (.)

Moreover,

∣∣∣∣
∫ 

 ( – s)α–f (s, u(s)) ds
�(α – )

–
∫ t

 ( – s)α–f (s, u(s)) ds
�(α – )

∣∣∣∣
=

∣∣∣∣
∫ 

t ( – s)α–f (s, u(s)) ds
�(α – )

∣∣∣∣
≤

∣∣∣∣b‖u‖ ∫ 
t ( – s)α–nsα–n ds
�(α – )

∣∣∣∣
=

∣∣∣∣b‖u‖ξα–n( – t)α–n+

(α – n + )�(α – )

∣∣∣∣, ξ ∈ (t, ). (.)

Due to (.)-(.), we have

lim
t→–

(Hu)(t)
tα–( – t)

=


�(α – )

∫ 



[
( – s)α– – ( – s)α–]f

(
s, u(s)

)
ds. (.)

Up to now, we have proved that for u ∈ X there must be Hu ∈ X.
Part . We will show that H : X → X is compact in this part.
For a bounded subset of X named D, we have to prove that

{
g : g(t) =

(Hu)(t)
tα–( – t)

for some u ∈ D
}

is uniformly bounded and equicontinuous.
Since D is bounded, we can choose a constant number M >  such that ‖u‖ ≤ M for all

u ∈ D. By (.) and (.), we have

lim
t→+

∣∣∣∣ (Hu)(t)
tα–( – t)

∣∣∣∣ =
∣∣∣∣ 
�(α)

∫ 


( – s)α–f

(
s, u(s)

)
ds

∣∣∣∣
≤ b‖u‖

�(α)

∫ 


( – s)α–n+sα–n ds

≤ bM�(α – n + )�(α – n + )
�(α)�(α – n + )

. (.)

Similarly, by (.) and (.), we have

lim
t→–

∣∣∣∣ (Hu)(t)
tα–( – t)

∣∣∣∣ =
∣∣∣∣ 
�(α – )

∫ 



[
( – s)α– – ( – s)α–]f

(
s, u(s)

)
ds

∣∣∣∣
≤ b‖u‖

�(α – )

∣∣∣∣
∫ 



[
( – s)α– – ( – s)α–]sα–n( – s)–n ds

∣∣∣∣
=

b‖u‖
�(α – )

[
�(α – n + )�(α – n + )

�(α – n + )
–

�(α – n + )�(α – n + )
�(α – n + )

]

≤ bM�(α – n + )�(α – n + )
�(α – )�(α – n + )

. (.)
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Moreover, examining the proof of (.) and (.), we can find that the convergence of
(.) and (.) are independent of u ∈ D, i.e., for any ε >  there must exist a constant
number δ >  such that for any u ∈ D,  < t < δ always implies | (Hu)(t)

tα–(–t) – 
�(α)

∫ 
 ( –

s)α–f (s, u(s)) ds| ≤ ε and  – δ < t <  always implies | (Hu)(t)
tα–(–t) – 

�(α–)
∫ 

 [( – s)α– – ( –

s)α–]f (s, u(s)) ds| < ε. Furthermore, thanks to  < tn–(–t)n–f (t,x)
x ≤ b and the boundedness

of D, recalling that

(Hu)(t)
tα–( – t)

=


�(α)( – t)

∫ 


( – s)α–f

(
s, u(s)

)
ds

–


�(α)tα–( – t)

∫ t


(t – s)α–f

(
s, u(s)

)
ds

=
∫ 



( – s)α–n+sα–n

�(α)( – t)
sn–( – s)n–f (s, u(s))

u(s)
u(s)

‖u‖sα–( – s)
ds

+
∫ t



( – s)–n(t – s)α–sα–n

�(α)tα–( – t)
sn–( – s)n–f (s, u(s))

u(s)

× u(s)
‖u‖sα–( – s)

ds,

we will know that {g : g(t) = (Hu)(t)
tα–(–t) for some u ∈ D} is uniformly bounded and equicon-

tinuous. �

We set

(L+ u)(t) =
∫ 


G(t, s)

a+ (s)
sn–( – s)n– u(s) ds,

(L+∞u)(t) =
∫ 


G(t, s)

a+∞(s)
sn–( – s)n– u(s) ds.

Lemma . L+ , L+∞ : X → X are linear, compact, and strongly positive operators.

Proof Similar to Lemma ., we can verify that L+ , L+∞ : X → X are compact operators.
Moreover, they are obviously linear operators. We only prove that L+ : X → X is strongly
positive in the following since the proof of the other one is similar.

For u > θ , similar with (.) and (.), we have

lim
t→+

(L+ u)(t)
tα–( – t)

=


�(α)

∫ 


( – s)α– a+ (s)

sn–( – s)n– u(s) ds > 

and

lim
t→–

(L+ u)(t)
tα–( – t)

=


�(α – )

∫ 



[
( – s)α– – ( – s)α–] a+ (s)

sn–( – s)n– u(s) ds > .

Noticing that G(t, s) >  for  < t < ,  < s <  (proof omitted), we know that there must
exist a constant number c >  such that (L+ u)(t)

tα–(–t) > c for all t ∈ (, ), which implies that
L+ u � θ . �
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4 Main result and its proof
Since L+ and L+∞ satisfy the conditions of Lemma ., we know that r(L+ ) >  and
r(L+∞) > . We set

μ+ = r(L+ )–, μ+∞ = r(L+∞)–.

Then we will have the following conclusion.

Theorem . Let (C), (C+
 ), (C+

 ), (C), and (C) hold. Then if μ+∞ < r < μ+ or μ+ < r <
μ+∞, there must exist at least one positive solution of (.).

Proof The proof is organized as follows.
In Part , we consider the auxiliary equation (see (.)) of which solutions of the kind

μ =  will be the solutions of (.) and we transform it into a functional operator equation
(see (.)).

In Part , we intend to verify that L+ , N+ satisfy all the conditions required to apply
Lemma . and Lemma ., where N+ will be defined in Part .

In Part , we apply Lemma . and Lemma . to get the existence of at least one positive
solution of (.).

Part . Consider the following problem:

{
Dα

+u(t) + μrf (t, u(t)) = , t ∈ (, ),
tn–αu(n–)(t)|t= = tn–αu(n–)(t)|t= = · · · = tn–αu(t)|t= = u() = .

(.)

We call (μ, u) ∈ R × X a solution of (.) if it satisfies (.). It is clear that any solution of
(.) of the form (, u) yields a solution u of (.).

Thanks to (.), we can see that f (s, u(s)) is absolutely integrable in (, a) for any a ∈ (, )
and u ∈ X. Then due to Lemma ., (μ, u) ∈R× X is a solution of (.) if

u(t) = μr
∫ 


G(t, s)f

(
s, u(s)

)
ds. (.)

If we decompose f (t, x) to become

f (t, x) =
a+ (t)

tn–( – t)n– x + â+ (t, x),

then due to (C+
 ), we know that

lim
x→+

tn–( – t)n–â+ (t, x)
x

=  for t ∈ (, ) uniformly. (.)

Moreover, (.) is equivalent to

u(t) = μr
∫ 


G(t, s)

a+ (s)
sn–( – s)n– u(s) ds

+ μr
∫ 


G(t, s)â+

(
s, u(s)

)
ds

:= μr(L+ u)(t) + μr(N+ u)(t),



Guan et al. Boundary Value Problems  (2016) 2016:141 Page 11 of 18

i.e., u is a solution of (.) if and only if

u = μr(L+ u) + μr(N+ u). (.)

Part . It is obvious that L+ , N+ is positive by (C). Moreover, we have confirmed that
L+ : X → X is linear, compact, and strongly positive in Lemma .. In addition, we also
know that N+ = H – L+ is compact due to Lemma .. It is left for us to verify that
‖N+ u‖

‖u‖ →  as ‖u‖ → .
Similar to (.) and (.), we have

lim
t→+

|(N+ u)(t)|
‖u‖tα–( – t)

=
| ∫ 

 ( – s)α–â+ (s, u(s)) ds|
‖u‖�(α)

≤
∫ 

 ( – s)α–|â+ (s, u(s))|ds
‖u‖�(α)

=


�(α)

∫ 


( – s)α+–nsα–n

∣∣∣∣ sn–( – s)n–â+ (s, u(s))
u(s)

u(s)
‖u‖sα–( – s)

∣∣∣∣ds

≤ 
�(α)

∫ 


( – s)α+–nsα–n

∣∣∣∣ sn–( – s)n–â+ (s, u(s))
u(s)

∣∣∣∣ds

=


�(α)

∣∣∣∣ξn–( – ξ )n–â+ (ξ , u(ξ ))
u(ξ )

∣∣∣∣
∫ 


( – s)α+–nsα–n ds

=
�(α – n + )�(α – n + )

�(α)�(α – n + )

∣∣∣∣ξn–( – ξ )n–â+ (ξ , u(ξ ))
u(ξ )

∣∣∣∣, ξ ∈ (, ), (.)

and similarly

lim
t→–

|(N+ u)(t)|
‖u‖tα–( – t)

=
| ∫ 

 [( – s)α– – ( – s)α–]â+ (s, u(s)) ds|
‖u‖�(α – )

≤ 
�(α – )

∫ 



[
( – s)α–n – ( – s)α–n+]sα–n

×
∣∣∣∣ sn–( – s)n–â+ (s, u(s))

u(s)
u(s)

‖u‖sα–( – s)

∣∣∣∣ds

≤ 
�(α – )

∫ 



[
( – s)α–n – ( – s)α–n+]sα–n

∣∣∣∣ sn–( – s)n–â+ (s, u(s))
u(s)

∣∣∣∣ds

=


�(α – )

∣∣∣∣ξn–( – ξ )n–â+ (ξ , u(ξ ))
u(ξ )

∣∣∣∣
∫ 



[
( – s)α–n – ( – s)α–n+]sα–n ds

=


�(α – )

[
�(α – n + )�(α – n + )

�(α – n + )
–

�(α – n + )�(α – n + )
�(α – n + )

]

×
∣∣∣∣ξn–( – ξ )n–â+ (ξ , u(ξ ))

u(ξ )

∣∣∣∣, ξ ∈ (, ). (.)
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Moreover,

|(N+ u)(t)|
‖u‖tα–( – t)

=
∣∣∣∣ 
�(α)( – t)

∫ 


( – s)α– â+ (s, u(s))

‖u‖ ds

–


�(α)tα–( – t)

∫ t


(t – s)α– â+ (s, u(s))

‖u‖ ds
∣∣∣∣

≤ 
�(α)( – t)

∫ 


( – s)α– |â+ (s, u(s))|

‖u‖ ds

+


�(α)tα–( – t)

∫ t


(t – s)α– |â+ (s, u(s))|

‖u‖ ds

=
∫ 



( – s)α–n+sα–n

�(α)( – t)

∣∣∣∣ sn–( – s)n–â+ (s, u(s))
u(s)

∣∣∣∣
∣∣∣∣ u(s)
‖u‖sα–( – s)

∣∣∣∣ds

+
∫ t



( – s)–n(t – s)α–sα–n

�(α)tα–( – t)

∣∣∣∣ sn–( – s)n–â+ (s, u(s))
u(s)

∣∣∣∣
∣∣∣∣ u(s)
‖u‖sα–( – s)

∣∣∣∣ds

≤
∫ 



( – s)α–n+sα–n

�(α)( – t)

∣∣∣∣ sn–( – s)n–â+ (s, u(s))
u(s)

∣∣∣∣ds

+
∫ t



( – s)–n(t – s)α–sα–n

�(α)tα–( – t)

∣∣∣∣ sn–( – s)n–â+ (s, u(s))
u(s)

∣∣∣∣ds

=
∣∣∣∣ξn–

 ( – ξ)n–â+ (ξ, u(ξ))
u(ξ)

∣∣∣∣
∫ 



( – s)α–n+sα–n

�(α)( – t)
ds

+
∣∣∣∣ξn–

 ( – ξ)n–â+ (ξ, u(ξ))
u(ξ)

∣∣∣∣( – ξ)–n
∫ t



(t – s)α–sα–n

�(α)tα–( – t)
ds

=
∣∣∣∣ξn–

 ( – ξ)n–â+ (ξ, u(ξ))
u(ξ)

∣∣∣∣ �(α – n + )�(α – n + )
�(α)�(α – n + )( – t)

+
∣∣∣∣ξn–

 ( – ξ)n–â+ (ξ, u(ξ))
u(ξ)

∣∣∣∣( – ξ)–n �(α – n + )tα–n+

�(α – n + )( – t)
,

ξ ∈ (, ), ξ ∈ (, t). (.)

Because a+ (s, u(s)) has the property similar with (.) (the proof is easy, so we omit it),
we can see that the convergence of (.) and (.) are independent of u ∈ X (i.e., for any
ε >  there must exist a constant number δ >  such that for any u ∈ D,  < t < δ always
implies | |(N+ u)(t)|

‖u‖tα–(–t) – | ∫ 
 (–s)α–â+ (s,u(s)) ds|

‖u‖�(α) | ≤ ε and  – δ < t <  always implies | |(N+ u)(t)|
‖u‖tα–(–t) –

| ∫ 
 [(–s)α––(–s)α–]â+ (s,u(s)) ds|

‖u‖�(α–) | < ε) and applying (.) on (.)-(.), we can finish this part.
Part . Applying Lemma . and Lemma ., we can draw a conclusion as below.
For (.), from ( μ+

r , θ ) there emanates an unbounded continuum of positive solutions
C+ ⊂ D+. Here

D+ =
{

(μ, u) ∈ R× X : u = μrL+ u + μrN+ u with μ >  and u > θ
}

.

Furthermore, (μ, u) ∈ C+ and μ �= μ+
r always implies u > θ .
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To verify the existence of at least one positive solution of (.), we only need to show
that C+ crosses the hyperplane {} × X in R × X. To this end, it will be enough to show
that C+ joins ( μ+

r , θ ) to ( μ+∞
r , +∞).

Suppose (μn, un) ∈ C+ satisfy μn + ‖un‖ → ∞ now, we will show that {μn} is bounded
first:

If not, choosing a subsequence and relabeling it if necessary, we have limn→∞ μn → ∞.
Now defining

(Lϕu)(t) =
∫ 


G(t, s)ϕ(s)u(s) ds,  < t < ,

we can verify that Lϕ : X → X is linear, compact, and strongly positive (the proofs are
similar to but simpler than those corresponding to L since ϕ is continuous, so we omit
them). Then, due to Lemma .(c), we see that there is a contradiction for sufficiently large
n in the following inequality:

un(t) = μnr
∫ 


G(t, s)f

(
s, un(s)

)
ds > μnr

∫ 


G(t, s)ϕ(s)un(s) ds = μnr(Lϕun)(t).

Then {μn} is bounded and hence limn→∞ ‖un‖ → ∞.
Second, let vn = un

‖un‖ , we will show that {vn} is relatively compact. Similar to (.) and
(.) and by (.), we have

 ≤ lim
t→+

vn(t)
tα–( – t)

=
μnr
�(α)

∫ 


( – s)α– f (s, un(s))

‖un‖ ds

≤ μnrb
�(α)

∫ 


( – s)α–n+sα–n ds

=
μnrb�(α – n + )�(α – n + )

�(α)�(α – n + )
(.)

and

 ≤ lim
t→–

vn(t)
tα–( – t)

=
μnr

�(α – )

∫ 



[
( – s)α– – ( – s)α–] f (s, un(s))

‖un‖ ds

≤ μnrb
�(α – )

∫ 



[
( – s)α–n – ( – s)α–n+]sα–n ds

=
μnrb

�(α – )

[
�(α – n + )�(α – n + )

�(α – n + )
–

�(α – n + )�(α – n + )
�(α – n + )

]

=
μnrb�(α – n + )�(α – n + )

�(α – )�(α – n + )
. (.)

Moreover, recall that

vn(t)
tα–( – t)

=


�(α)

[


 – t

∫ 


( – s)α– f (s, un(s))

‖un‖ ds

–


tα–( – t)

∫ t


(t – s)α– f (s, un(s))

‖un‖ ds
]

. (.)
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Due to (.) and the boundedness of {μn}, we know that the convergence of (.) and
the convergence of (.) are uniform for t ∈ (, ), i.e., they are independent of n. Then
applying (.) on (.), we will see that {g : g(t) = vn(t)

tα–(–t) for some u ∈ D} is uniformly
bounded and equicontinuous, which exactly means that {vn} is relatively compact. Hence,
we can find a subsequence of {(μn, vn)} convergent to (μ∗, v∗). Obviously ‖v∗‖ =  and
v∗ > θ . We relabel the subsequence {(μn, vn)} for convenience.

Before claiming that C+ joins ( μ+
r , θ ) to ( μ+∞

r , +∞), we still have some preparatory work
to do. Decomposing f (t, x) to become

f (t, x) =
a+∞(t)

tα–( – t)n– x + â+∞(t, x),

then (.) is equivalent to

u(t) = μr
∫ 


G(t, s)

a+∞(s)
sα–( – s)n– u(s) ds

+ μr
∫ 


G(t, s)â+∞

(
s, u(s)

)
ds

:= μr(L+∞u)(t) + μr(N+∞u)(t). (.)

We will show that, for any t ∈ (, ), we have

lim
u∈K ,‖u‖→∞

(N+∞u)(t)
‖u‖ = .

Since

(N+∞u)(t)
‖u‖ =


�(α)

tα–
∫ 


( – s)α– â+∞(s, u(s))

‖u‖ ds

–
∫ t


(t – s)α– â+∞(s, u(s))

‖u‖ ds

we only need to prove that

lim
u∈K ,‖u‖→∞

∫ 


( – s)α– â+∞(s, u(s))

‖u‖ ds = 

and

lim
u∈K ,‖u‖→∞

∫ t


(t – s)α– â+∞(s, u(s))

‖u‖ ds = .

We only prove the first one since the proof of the second one is similar.
It is not hard to see that there exists a constant number b+∞ >  such that

∣∣∣∣ tn–( – t)n–â+∞(t, x)
x

∣∣∣∣ ≤ b+∞

for all (t, x) ∈ (, ) × (, +∞) due to  < tn–(–t)n–f (t,x)
x ≤ b and a+∞ ∈ C[, ]. So for any

ε > , we can find a sufficiently small δ >  satisfying the requirement that, for any u ∈ K ,
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we must have

∣∣∣∣
∫ δ


( – s)α– â+∞(s, u(s))

‖u‖ ds
∣∣∣∣ ≤

∫ δ


( – s)α– |â+∞(s, u(s))|

‖u‖ ds

≤
∫ δ


( – s)α–n+sα–n b+∞|u(s)|

‖u‖sα–( – s)
ds

≤ b+∞
∣∣∣∣
∫ δ


( – s)α–n+sα–n

∣∣∣∣ds <
ε


(.)

and similarly

∣∣∣∣
∫ 

–δ

( – s)α– â+∞(s, u(s)) ds
‖u‖

∣∣∣∣ <
ε


. (.)

Now we consider | ∫ –δ

δ
( – s)α– â+∞(s,u(s)) ds

‖u‖ |. Due to (C+
 ), we know that there must exist a

constant number M >  such that

x ≥ M implies
∣∣∣∣ tn–( – t)n–â+∞(t, x)

x

∣∣∣∣ <
�(α – n + )

�(α – n + )�(α – n + )
ε


. (.)

Moreover, because â+∞(t, x) is continuous in [δ, –δ]× [, M], there must exist a constant
number M >  such that

∣∣â+∞(t, x)
∣∣ ≤ M for all δ ≤ t ≤  – δ,  ≤ x ≤ M. (.)

For any u ∈ X, we set

Iu =
{

t ∈ (, ) : u(t) < M
}

, Ju =
{

t ∈ (, ) : u(t) ≥ M
}

.

Then by (.), (.), we have

∣∣∣∣
∫ –δ

δ

( – s)α– â+∞(s, u(s)) ds
‖u‖

∣∣∣∣
≤

∫ –δ

δ

( – s)α– |â+∞(s, u(s))|ds
‖u‖

≤
∫

[δ,–δ]∩Iu

( – s)α– |â+∞(s, u(s))|ds
‖u‖ +

∫
[δ,–δ]∩Ju

( – s)α– |â+∞(s, u(s))|ds
‖u‖

≤ M

‖u‖
∫

[δ,–δ]∩Iu

( – s)α– ds

+
∫

[δ,–δ]∩Ju

∣∣∣∣ sn–( – s)n–â∞(s, u(s))
u(s)

∣∣∣∣
∣∣∣∣ u(s)
‖u‖sα–( – s)

∣∣∣∣( – s)α–n+sα–n ds

≤ M

‖u‖
∫ 


( – s)α– ds +

�(α – n + )
�(α – n + )�(α – n + )

ε



∫ 


( – s)α–n+sα–n ds

=
M

α‖u‖ +
ε


. (.)
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By (.), (.), (.), we have

lim
u∈K ,‖u‖→∞

∣∣∣∣
∫ 


( – s)α– â+∞(s, u(s)) ds

‖u‖
∣∣∣∣ = .

Up to now, we have proved that for any t ∈ (, ), we must have

lim
u∈K ,‖u‖→∞

(N+∞u)(t)
‖u‖ = .

So if we divide

un(t) = μnr(L+∞un)(t) + μnr(N+∞un)(t), t ∈ (, ),

by ‖un‖ and let n → ∞, we will have

v∗(t) = μ∗r(L+∞v∗)(t), t ∈ (, ),

i.e.,

v∗ = μ∗r(L+∞v∗).

Recalling the result of Lemma ., we will know that μ∗ = μ+∞
r , which implies C+ joins

( μ+
r , θ ) to ( μ+∞

r , +∞). �

We set the cone

K– :=
{

u ∈ X : u(t) ≤ ,∀t ∈ (, )
}

.

Clearly K– is a solid cone in X.
We set

(L– u)(t) =
∫ 


G(t, s)

a– (s)
sn–( – s)n– u(s) ds,

(L–∞u)(t) =
∫ 


G(t, s)

a–∞(s)
sn–( – s)n– u(s) ds.

Similar to what we have done with L+ and L+∞ we can verify that L– and L–∞ satisfy the
conditions of Lemma ., so we know that r(L– ) >  and r(L–∞) > . We set

μ– = r(L– )–, μ–∞ = r(L–∞)–.

Then we will have the following conclusion.

Theorem . Let (C), (C–
 ), (C–

 ), (C), and (C) hold. Then if μ–∞ < r < μ– or μ– < r <
μ–∞, there must exist at least one negative solution of (.).

Proof The proof is similar to that of Theorem ., so we omit it. �
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5 Examples
Example . Consider the following problem:

(E)

⎧⎨
⎩D




+u(t) + r u(t)+t sin(u(t))
t(–t) = , t ∈ (, ),

t 
 u′′(t)|t= = t 

 u′(t)|t= = t 
 u(t)|t= = u() = .

If we set

(Lu)(t) =
∫ 


G(t, s)

( + s)
s( – s) u(s) ds, (L∞u)(t) =

∫ 


G(t, s)


s( – s) u(s) ds

and

μ = r(L)–, μ∞ = r(L∞)–,

then there must be at least one positive solution and one negative solution of (E) when
μ < r < μ∞.

Proof Let α = 
 , n = , f (t, x) = x+t sin x

t(–t) , we can easily verify that (C), (C+
 ), (C–

 ), (C+
 ),

(C–
 ), (C), (C) hold with a+ (t) = a– (t) = ( + t)( – t), a+∞(t) = a–∞(t) = ( – t), ϕ(t) ≡ ,

and b = . Then applying Theorem . and Theorem . we will complete the proof (we
can verify that μ < μ∞ by Lemma .(d)). �

Example . Consider the following problem:

(E)

{
u′′(t) + r u(t)–arctan u(t)


t(–t) = , t ∈ (, ),

u() = u() = .

If we set

(Lu)(t) =
∫ 


G(t, s)


s( – s)

u(s) ds, (L∞u)(t) =
∫ 


G(t, s)


s( – s)

u(s) ds

and

μ = r(L)–, μ∞ = r(L∞)–,

then there must be at least one positive solution and one negative solution of (E) when
μ∞ < r < μ.

Proof Let α = n = , f (t, x) = x–arctan x


t(–t) , we can easily verify that (C), (C+
 ), (C–

 ), (C+
 ), (C–

 ),
(C), (C) hold with a+ (t) = a– (t) ≡ 

 , a+∞(t) = a–∞(t) ≡ , ϕ(t) ≡ 
 and b = . Then

applying Theorem . and Theorem . we will complete the proof (we can verify that
μ∞ < μ by Lemma .(d)). �
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