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1 Introduction and main results
Consider the nonautonomous second order Hamiltonian systems

{
ü(t) = ∇F(t, u(t)), a.e. t ∈ [, T],
u() – u(T) = u̇() – u̇(T) = ,

(.)

where the constant T > , the function F(t, x) = F(t, x) + F(t, x), and functions F, F ∈
C(R × Rn, R) with conditions that F(t + T , x) = F(t, x) and F(t + T , x) = F(t, x) hold for
all t and x.

Let H
T = {u : [, T] → Rn | u be absolutely continuous, u() = u(T) and u̇ ∈ L([, T],

Rn)} be a Hilbert space with the norm defined by

‖u‖H
T

=
[∫ T



(∣∣u(t)
∣∣ +

∣∣u̇(t)
∣∣)dt

] 


.

We denote the inner products in H
T and Rn by 〈·, ·〉 and (·, ·) respectively.

Define the functional

ϕ(u) =



∫ T



∣∣u̇(t)
∣∣ dt +

∫ T



(
F
(
t, u(t)

)
– F(t, )

)
dt, ∀u ∈ H

T .

It is well known that the solution of problem (.) corresponds to the critical point of ϕ.
As is well known, in much literature one has studied the existence of periodic solutions

for problem (.) with many solvable conditions via a variational principle, such as the
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coercive condition in [] and [], the bi-even subquadratic potential condition in [], the
γ -quasisubadditive potential condition in [], the bounded sublinear gradient condition
in [], the bounded linear gradient condition in [] and [], and other conditions in [–
], etc. To the best of the authors’ knowledge, [] first studied problem (.) with F(t, x)
having the decomposition form F(t, x) = F(t, x) + F(t, x), where F is a subconvex function
and F satisfies

∣∣∇F(t, x)
∣∣ ≤ f (t)|x|α + g(t), (.)

where α ∈ [, ), f , g ∈ L([, T], R+) and


|x|α

[

μ

∫ T


F(t,λx) dt +

∫ T


F(t, x) dt

]
→ +∞, |x| → +∞.

Afterward, [] generalized the corresponding result with α =  (see [], Theorem ).
In this paper, we obtain two new existence results (Theorem . and .) improving the

corresponding results in [, , ] without coercive condition.
A function G : Rn → R is said to be (λ,μ)-subconvex for some λ,μ > , if

G
(
λ(x + y)

) ≤ μ
(
G(x) + G(y)

)
, ∀x, y ∈ Rn.

For our convenience, define two sets G and H as follows:

G =
{

G : R × Rn → R, G(·, x) ∈ L(R, Rn) | G(t + T , x) = G(t, x),

G satisfies (G) and (G)
}

,

where

(G) G(t, x) is measurable in variable t for every x ∈ Rn, continuous in variable x for a.e.
t ∈ [, T] and satisfies |G(t, x)| ≤ a(|x|)b(t) for all x ∈ Rn, a.e. t ∈ [, T], for some a ∈
C(R+, R+) and some b ∈ L([, T], R+),

(G) G(t, x) is (λ,μ)-subconvex about x for some λ,μ > .

H = {h ∈ C(R+, R+) | h satisfies (h) – (h)}, where

(h) there exists a constant K >  such that h(s) ≤ h(t) + K, ∀ ≤ s ≤ t,
(h) there exists a constant C >  such that h(s + t) ≤ C(h(s) + h(t)), ∀s, t ∈ [, +∞),
(h) there exist constants K, K >  and α ∈ [, ) such that

 ≤ h(t) ≤ Ktα + K, ∀t ∈ [, +∞),

(h) h(t) → +∞ as t → +∞.

Theorem . Assume the function F = F + F and there exist T-periodic functions
p, q, f , g ∈ L([, T], R+), G ∈ G and a constant β ∈ [, ) such that

(H) G(t, x) ≤ min{F(t, x), p(t)|x|β + q(t)} for |x| > M and a.e. t ∈ [, T],
(H) there exists a function h ∈H such that |∇F(t, x)| ≤ f (t)h(|x|)+g(t) holds for all x ∈ Rn

and a.e. t ∈ [, T],
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(H) lim inf|x|→+∞ 
h(|x|) [ 

μ

∫ T
 G(t,λx) dt +

∫ T
 F(t, x) dt] > C

T
 (

∫ T
 f (t) dt), where h, C

are as above.

Then problem (.) possesses at least one solution which minimizes ϕ in H
T .

Obviously, if G(t, x) = F(t, x) and h(s) = sα , then Theorem  in [] is the direct corol-
lary of Theorem .. If G(t, x) = F(t, x) ≡ , then Theorem . in [] is a special case of
Theorem .. Functions satisfying Theorem . do really exist, such as Example . and
Example . in Section , which cannot be covered by Theorem  in [], Theorem . in
[] and Theorem . in [].

Theorem . Assume function F = F + F and there exist T-periodic functions s, v ∈
L([, T], R+) such that

(H∗) G(t, x) ≤ min{F(t, x), p(t)|x| + q(t)} for |x| > M and a.e. t ∈ [, T], where G ∈ G ,
(H) there exists a function h ∈ C(R+, R+) satisfying (h), (h), (h) in H, and

(h∗
) there exist constants K, K >  such that  ≤ h(t) ≤ Kt +K, ∀t ∈ [, +∞) such

that F(t, x) ≥ –s(t)h(|x|) – v(t) holds for all x ∈ Rn and a.e. t ∈ [, T], where∫ T
 p(t) dt + CK

∫ T
 s(t) dt < 

T ,

(H) lim inf|x|→+∞ 
μh(|x|)

∫ T
 G(t,λx) dt > C

∫ T
 s(t) dt, where h and C are in (H).

Then problem (.) possesses at least one solution which minimizes ϕ in H
T .

Functions satisfying Theorem . do really exist, such as Example . in Section , which
cannot be covered by Theorem . in [] and Theorem  in [].

Different from [] and [], rather than imposing the subconvex condition and the re-
striction of |x|m (generally,  ≤ m ≤ ) on F(t, x), we use a subconvex condition on the
function G in condition (H) or condition (H∗), which shows that the function F(t, x) in
assumptions (H) and (H∗) can be out of the control of both subconvex condition and
|x|m (∀m ∈ R), such as Example . in Section .

There also exist some multiplicity results for problem (.), if F(t, x) satisfies the follow-
ing condition (H), such as [, , , ] and [].

(H) There exist constants k ∈ N∗, ω = π
T , r > , such that

–



(k + )ω|x| ≤ F(t, x) – F(t, )

≤ –



kω|x| for all |x| ≤ r and a.e. t ∈ [, T].

Among them, [] obtained a multiplicity result if F(t, x) satisfies (.). Afterward, [] gen-
eralized the corresponding results in [] and [].

Different from the multiplicity results in [, , , ] and [], we list our multiplicity
results corresponding to Theorem . and Theorem . respectively.

Theorem . Assume that F = F + F, conditions (H), (H), (H), and (H) hold, then
problem (.) has at least two nonzero solutions in H

T .

If G(t, x) = F(t, x) ≡ , then Theorem . in [] is a special case of our Theorem ..
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Theorem . Assume that F = F + F, conditions (H∗), (H), (H), and (H) hold, then
problem (.) has at least two nonzero solutions in H

T .

There are functions F satisfying Theorem . (Theorem .) but that cannot be covered
by Theorem . in [] (Theorem . in []), such as Example . in Section .

2 Proof of theorems
For every u ∈ H

T , set ũ(t) = u(t) – ū with u = 
T

∫ T
 u(t) dt. Page  of [] tells us that

‖ũ‖
∞ ≤ T



∫ T



∣∣u̇(t)
∣∣ dt (Sobolev’s inequality).

Reference [] tells us that ‖u‖ = (|ū| + ‖u̇‖
L ) 

 is equivalent to the norm ‖u‖H
T

.

The least action principle (see []) If ϕ is weakly lower semicontinuous on a reflexive
Banach space X and has a bounded minimizing sequence, then ϕ has a minimum on X.

Remark . If the functional ϕ is coercive, that is, ϕ(u) → +∞ as ‖u‖ → +∞, then we
have a bounded minimizing sequence {ϕ(um)} such that ϕ(um) → infϕ < +∞. In fact, for
any minimizing sequence {ϕ(um)}, if {um} is unbounded, then ϕ to be coercive implies that
ϕ(um) → +∞, which is a contradiction.

Remark . Under the assumption that F, F ∈ C(R × Rn, R), similar to the proof of
Proposition  of [], we claim that the weak solution satisfying (.) is the desired classical
solution. In fact, if there exists a function û ∈ C(R, Rn) satisfying

∫ T
 ( ˙̂u + ∇F(t, u)) · ḣ dt =

 for ∀h ∈ H
T , then we have

∫ T
 |u̇(t) – ˙̂u(t)| dt = , which implies that |u(t) – û(t)| ≤∫ t

 |u̇(s) – ˙̂u(s)|ds ≤ √
T‖u̇(s) – ˙̂u(s)‖L = , ∀t ∈ [, T]. Hence, u ∈ C(R, Rn).

Lemma . (see Theorem  of []) Let X be a Banach space with a direct sum decompo-
sition X = X ⊕ X with k = dim X < ∞ and let ϕ be a C functional on X with ϕ() = ,
which satisfies (PS) condition. Assume that for some R > ,

{
ϕ(u) ≥ , u ∈ X with ‖u‖ ≤ R,
ϕ(u) ≤ , u ∈ X with ‖u‖ ≤ R.

(.)

Assume also that ϕ is bounded below and infX ϕ < . Then ϕ has at least two nonzero
critical points.

Proof of Theorem . By condition (G), we see that |G(t, x)| ≤ ab(t) holds for |x| ≤ M,
where a = max≤|x|≤M a(|x|). Then by (H), one has

F(t, x) ≥ G(t, x) – ab(t) – M, a.e. t ∈ [, T] and all x ∈ Rn, (.)

where M = maxt∈[,T] max|x|≤M |F(t, x)|.
From (.), (H), and Sobolev’s inequality, one has

∫ T


F

(
t, u(t)

)
dt ≥

∫ T


G

(
t, u(t)

)
dt – M

≥ 
μ

∫ T


G(t,λū) dt –

∫ T


G

(
t, –ũ(t)

)
dt – M
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≥ 
μ

∫ T


G(t,λū) dt –

∫
{t∈[,T]||ũ(t)|>M}

G
(
t, –ũ(t)

)
dt

–
∫

{t∈[,T]||ũ(t)|≤M}
G

(
t, –ũ(t)

)
dt – M

≥ 
μ

∫ T


G(t,λū) dt – ‖ũ‖β

∞

∫ T


p(t) dt –

∫ T


q(t) dt – M

≥ 
μ

∫ T


G(t,λū) dt – M

(‖u̇‖β

L + 
)
, ∀u ∈ H

T , (.)

where constants M = MT + a
∫ T

 b(t) dt > , M = M + a
∫ T

 b(t) dt > , and M =
max{( T

 )
β

∫ T

 p(t) dt,
∫ T

 q(t) dt + M} > .
Using (H), (h)-(h), and Sobolev’s inequality, we have

∣∣∣∣
∫ T



(
F

(
t, u(t)

)
– F(t, ū)

)
dt

∣∣∣∣
=

∣∣∣∣
∫ T



∫ 



(∇F
(
t, ū + sũ(t)

)
, ũ(t)

)
ds dt

∣∣∣∣
≤

∫ T



∫ 



[
f (t)h

(∣∣ū + sũ(t)
∣∣) + g(t)

]∣∣ũ(t)
∣∣ds dt

≤
∫ T



∫ 


Cf (t)

[
h
(|ū|) + h

(
s
∣∣ũ(t)

∣∣)]∣∣ũ(t)
∣∣ds dt

+ K

∫ T


f (t)

∣∣ũ(t)
∣∣dt +

∫ T


g(t)

∣∣ũ(t)
∣∣dt

≤
∫ T


Cf (t)

[
h
(|ū|) + h

(∣∣ũ(t)
∣∣) + K

]∣∣ũ(t)
∣∣dt + ‖ũ‖∞

(
K

∫ T


f (t) dt +

∫ T


g(t) dt

)

≤ C‖ũ‖∞
∫ T



[
h
(|ū|) + h

(‖ũ‖∞
)

+ K
]
f (t) dt + M‖u̇‖L

≤ C

[


CT
‖ũ‖

∞ +
CT


h(|ū|)(∫ T


f (t) dt

)]

+ Ch
(‖ũ‖∞

)‖ũ‖∞
∫ T


f (t) dt + M‖u̇‖L

≤ 


‖u̇‖
L +

C
T


h(|ū|)‖f ‖
L

+ M

[
K

(
T


∫ T



∣∣u̇(t)
∣∣ dt

) α


+ K

]
‖u̇‖L + M‖u̇‖L

=



‖u̇‖
L +

C
T


h(|ū|)‖f ‖
L + M‖u̇‖α+

L + M‖u̇‖L , ∀u ∈ H
T , (.)

where constants Mi > , i = , , , , .
Using (.) and (.), one has

ϕ(u) =


‖u̇‖

L +
∫ T


F

(
t, u(t)

)
dt +

∫ T



(
F

(
t, u(t)

)
– F(t, ū)

)
dt

+
∫ T


F(t, ū) dt –

∫ T


F(t, ) dt
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≥ 


‖u̇‖
L –

C
T


h(|ū|)‖f ‖
L – M

(‖u̇‖β

L + 
)

– M‖u̇‖α+
L – M‖u̇‖L

+

μ

∫ T


G(t,λū) dt +

∫ T


F(t, ū) dt + C, (.)

where C = –
∫ T

 F(t, ) dt.
If ‖u‖ → +∞, but  ≤ |ū| < +∞, then (.), α ∈ [, ), β ∈ [, ), and ‖u‖ = (|ū| +‖u̇‖

L ) 


imply that ϕ(u) → +∞. If ‖u‖ → +∞ with |ū| → +∞, using (.), we have

ϕ(u) ≥ 


‖u̇‖
L – M‖u̇‖α+

L – M‖u̇‖L – M
(‖u̇‖β

L + 
)

+ h(|ū|)[ 
h(|ū|)

(

μ

∫ T


G(t,λū) dt +

∫ T


F(t, ū) dt

)
–

C
T


‖f ‖
L

]

+ C. (.)

By (.), (h), (H), α ∈ [, ), β ∈ [, ), and ‖u‖ = (|ū| +‖u̇‖
L ) 

 , one has ϕ(u) → +∞. So
we have ϕ(u) → +∞ as ‖u‖ → +∞. According to the least action principle and Remark .
and Remark ., we complete our proof. �

Proof of Theorem . (H∗) still implies that (.) holds. Similarly to (.), from (.) and
Sobolev’s inequality, we have

∫ T


F

(
t, u(t)

)
dt ≥ 

μ

∫ T


G(t,λū) dt –

∫
{t∈[,T]||ũ(t)|>M}

G
(
t, –ũ(t)

)
dt

–
∫

{t∈[,T]||ũ(t)|≤M}
G

(
t, –ũ(t)

)
dt – M

≥ 
μ

∫ T


G(t,λū) dt – ‖ũ‖

∞

∫ T


p(t) dt –

∫ T


q(t) dt – M

≥ 
μ

∫ T


G(t,λū) dt –

T


‖u̇‖
L

∫ T


p(t) dt

– M, ∀u ∈ H
T , (.)

where constant M > .
Using (H) and Sobolev’s inequality, we have

∫ T


F

(
t, u(t)

)
dt ≥

∫ T



[
–s(t)h

(∣∣u(t)
∣∣) – v(t)

]
dt

≥ –
[
C

(
h
(|ū|) + h

(‖ũ‖∞
))

+ K
] ∫ T


s(t) dt –

∫ T


v(t) dt

≥ –Ch
(|ū|)∫ T


s(t) dt –

CKT


‖u̇‖
L

∫ T


s(t) dt

– M, ∀u ∈ H
T , (.)

where constant M > .
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From (.) and (.), we know that

ϕ(u) ≥
(




–
T


∫ T


p(t) dt –

CKT


∫ T


s(t) dt

)
‖u̇‖

L +

μ

∫ T


G(t,λū) dt

– Ch
(|ū|)∫ T


s(t) dt – M, ∀u ∈ H

T , (.)

where constant M > .
If ‖u‖ → +∞, but  ≤ |ū| < +∞, then (.),

∫ T
 p(t) dt + CK

∫ T
 s(t) dt < 

T in (H) and
‖u‖ = (|ū| + ‖u̇‖

L ) 
 imply that ϕ(u) → +∞. If ‖u‖ → +∞ with |ū| → +∞, then (.)

implies that

ϕ(u) ≥
(




–
T


∫ T


p(t) dt –

CKT


∫ T


s(t) dt

)
‖u̇‖

L

+ h
(|ū|)[ 

μ

∫ T
 G(t,λū) dt

h(|ū|) – C

∫ T


s(t) dt

]
– M. (.)

By (.), (H), and (H), and ‖u‖ = (|ū| +‖u̇‖
L ) 

 , we get ϕ(u) → +∞. So one has ϕ(u) →
+∞ as ‖u‖ → +∞. According to the least action principle and Remark . and Remark .,
we complete our proof. �

Proof of Theorem . (Theorem .) The idea comes from [].
Step . We claim that functional ϕ satisfies the (PS) condition.
In fact, suppose a sequence {um} is a (PS) sequence, that is, {ϕ(um)} is bounded and

ϕ′(um) →  as m → +∞, then the proof of Theorem . (or Theorem .) tells us that ϕ is
coercive, which implies that {um} is bounded. Hence, there exists a subsequence of {um},
still denoted by {um}, such that um ⇀ u in H

T . By Sobolev’s embedding theorem, we have
um → u in C([, T], Rn). A simple calculation tells us that

∫ T



∣∣u̇m(t) – u̇(t)
∣∣ dt

=
〈
ϕ′(um) – ϕ′(u), um – u

〉
–

∫ T



(∇F
(
t, um(t)

)
– ∇F

(
t, u(t)

)
, um(t) – u(t)

)
dt

→  as m → +∞,

which implies that ‖u̇m – u̇‖L → . So we have um → u in H
T . Hence ϕ satisfies the (PS)

condition.
Step . We check that (.) holds. Let X = H

T , X = X ⊕ X, X = X⊥
 with

X =

{ k∑
j=

(aj cos jωt + bj sin jωt)
∣∣∣ aj, bj ∈ Rn, j = , . . . , k

}
.

A simple calculation tells us

∫ T



∣∣u(t)
∣∣ dt = T

k∑
j=

a
j + b

j


and

∫ T



∣∣u̇(t)
∣∣ dt = Tω

k∑
j=

j a
j + b

j


, ∀u ∈ X.
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By the Sobolev embedding theorem, there exists a constant M >  such that ‖u‖∞ ≤
M‖u‖H

T
.

It follows from the condition (H) that

ϕ(u) ≤ 


∫ T



∣∣u̇(t)
∣∣ dt –




kω
∫ T



∣∣u(t)
∣∣ dt

≤ , ∀u ∈ X with ‖u‖H
T

≤ r
M

. (.)

In the same way, we obtain

ϕ(u) ≥ 


∫ T



∣∣u̇(t)
∣∣ dt –




(k + )ω
∫ T



∣∣u(t)
∣∣ dt

≥ , ∀u ∈ X with ‖u‖H
T

≤ r
M

.

Case . If infX ϕ < , by Lemma ., then we see that ϕ has at least two nonzero critical
points.

Case . If infX ϕ ≥ , by (.), then we get ϕ(u) =  for all u ∈ X with ‖u‖H
T

≤ r
M

.
Therefore, ϕ has infinite many critical points.

We complete our proof. �

3 Examples
Example . Choose T = , functions G ∈ C(R × Rn, R), Fi ∈ C(R × Rn, R) (i = , ), and
r ∈ C(R, Rn) as follows. Let G(t, x) = |x| 

 , F(t, x) = e|x| and F(t, x) = ln( + |x|) + (r(t), x),
where r(t) = (sin(π t), , . . . , ).

We can check that G(t, x) is (,
√

)-subconvex. In fact, |x + y| 
 ≤ ||x| + |y|| 

 ≤  
 (|x| 

 +
|y| 

 ). G(t, x) ≤ min{e|x| , |x| 
 } holds for all t ∈ R, and x ∈ Rn. If we choose a(t) = t 

 and
b(t) ≡ , p(t) ≡ , q(t) ≡ , β = 

 , then assumption (H) holds.
Obviously, |∇F(t, x)| ≤  ln( + |x|) +  holds for all x ∈ Rn and t ∈ R. If we choose

h(s) = ln( + s), f (t) ≡ , and g(t) ≡ , then assumption (H) holds.

We also obtain lim|x|→+∞
√


∫ 
 |x| 

 dt+
∫ 

 ln(+|x|) dt+
∫ 

 (r(t),x) dt

ln(+|x|) → +∞, so assumption (H)
holds for λ =  and μ =

√
.

Therefore, the function F(t, x) = e|x| + ln( + |x|) + (r(t), x) satisfies Theorem .. Mean-
while, the function F(t, x) is out of quadratic growth as |x| → +∞, which extends the sub-
linear conditions for F(t, x) in Theorem  of [], Theorem . of [] and Theorem .
of [].

Example . Choose T = 
 , functions G ∈ C(R × Rn, R), Fi ∈ C(R × Rn, R) (i = , ) and

r ∈ C(R, Rn) as follows. Let G(t, x) = F(t, x) =  sin( π
 t)|x| and

F(t, x) =
cos( π

 t)
 ln( + |x|) |x| +

(
r(t), x

)
,

where r(t) = ( 
 sin( 

π t), , . . . , ).
We can check that G(t, x) is (, )-subconvex. In fact,  sin( π

 t)|x+y| ≤  sin( π
 t)(|x|+

|y|) ≤  sin( π
 t)(|x| + |y|). When |x| is large enough, we see that G(t, x) ≤ min{F(t, x),
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|x|} holds for all t ∈ R. If we choose a(t) = t and b(t) ≡ , p(t) ≡ , q(t) ≡ , then
assumption (H∗) holds.

For F(t, x), there exists a constant L >  such that F(t, x) ≥ – |x|
 – L holds for all x ∈

Rn and t ∈ R. If we choose h(s) = s, K = , K = , s(t) ≡ 
 , v(t) ≡ L, and C = , then

assumptions (H) and (H) hold.
Therefore, the function F(t, x) =  sin( π

 t)|x| + cos( π
 t)

 ln(+|x|) |x| + (r(t), x) satisfies Theo-

rem .. However,
∫ 


 F(t,x) dt

|x| < +∞, so F(t, x) cannot be covered by Theorem . in [] and
Theorem . in [] if we choose h(t) = t. In addition, if the function F(t, x) has the above
decomposition, then we see that F(t, x) is out of control of assumption (H). In this case,
F(t, x) cannot be covered by Theorem ..

Example . Choose T = , ω = π
T , functions Fi ∈ C(R × R, R) (i = , ) and G ∈ C(R ×

R, R) as follows:

F(t, x) =

{

 ex – e

 , |x| > ,
e
 [– 

ωx + ( 
ω + 

 )x – ( 
ω + 

 )x], |x| ≤ ,

F(t, x) =

{

 ln( + x) – 

 ln  +  ln 
 , |x| > ,

 ln 
 [– 

ωx + ( 
ω + 

 )x – ( 
ω + 

 )x], |x| ≤ ,

F(t, x) = F(t, x) + F(t, x) and G(t, x) = 
 |x| 

 .
We can check that G(t, x) is (,

√
)-subconvex. In fact, 

 |x + y| 
 ≤ 

√


 (|x| 
 + |y| 

 ). We
choose L >  large enough, a(t) = t 

 and b(t) = , then we see that |G(t, x)| ≤ a(|x|)b(t)
holds for all x ∈ R and t ∈ R. Setting p(t) = 

 , q(t) ≡ , G(t, x) ≤ min{ 
 |x| 

 , 
 e|x|} holds

for |x| large enough and all t ∈ R. So (H) and (H∗) hold.
For any x ∈ R, we see that | ∂F(t,x)

∂x | ≤  ln( + x) + L holds for t ∈ R and

lim|x|→+∞

∫ 



 |x| 

 dt√
 +

∫ 
 F(t, x) dt

ln( + x)
→ +∞,

hence, assumptions (H) and (H) hold for h(t) = ln( + t), f (t) ≡ , g(t) ≡ L, λ = , and
μ =

√
.

In addition, F(t, x) ≥ –|x| – L holds for a positive constant L, all x ∈ R, and t ∈ R. Set
s(t) ≡ , v(t) ≡ L, h(t) = t, K = , C = , and λ = , μ =

√
, then we have

∫ 
 p(t) dt +

CK
∫ 

 s(t) dt <  and lim|x|→+∞
∫ 



 |x| 

 dt√
|x| → +∞, hence, assumptions (H) and (H)

hold.
Choosing x with |x| small enough, we can only consider the main part – 

 (e + ln )ωx

of F(t, x), so we have – 
 (e + ln ) ∈ (–, – 

 ), which implies that assumption (H) holds for
k = . Therefore, F(t, x) satisfies both Theorem . and Theorem ..

Obviously, F(t, x) is out of quadratic growth as |x| → +∞. But Theorems . and . in
[] imply that ∇F satisfies the sublinearity or linearity condition. So Example . cannot
be covered by Theorems . and . of [].
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