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Abstract

In this paper, we consider the initial-boundary value problem of nonlinear viscoelastic
plate equations with dissipative terms. We prove that, for certain initial data in the
stable set, the decay rate estimate of the energy function is exponential or polynomial
depending on the exponents of the damping terms in both equations by using
Nakao's method. Conversely, for certain initial data in the unstable set, we use the
perturbed energy method to show that the solution blows up in finite time when the
initial energy is not larger than some positive number. This improves earlier results in
the literature.
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1 Introduction
In this paper, we consider the following initial-boundary value problem of the nonlinear
viscoelastic plate equations with dissipative terms:

Uy —y Au— Ay + A?u— Auy + fotgl(t — ) Au(s)ds + |u P 'u,
=filu,v), (xt)eQx(0,T),
Vi —SAV— Avp + A2y — Avy + f(fgz(t —8)Av(s)ds + v |7 v,

=f2(u7 V)’ (x’ t) € QX (0: T)x (1.1)
u(x, 0) = ug(x), u(x,0) =1 (%), x€8,
v(x,0) = vo(x), vi(x,0) =11(x), x€8,

u(x, t) = d,u(x, t) = 0, vix, £) = 0,v(x,£) =0, (x,t) €92 x (0,T),

where Q is a bounded domain in R” (n = 1,2, 3) with smooth boundary 92, y and § are
positive constants, g; : R* — R*, f;: R* — R, i = 1,2, are given functions to be specified
later.

The motivation of our work is due to the initial boundary problem of the plate equation

Uy — Au— Ay + Ay — Auy + alu )" 2u; = blulP2u,  (x,t) € Q x (0, 00),
u(x,0) = ug(x), us(x,0) =u1(x), x€9, 1.2)
u(x, t) = 0,u(x,t)=0, (xt)€d2x(0,T),
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which has been discussed by Di and Shang [1] by considering the existence of global so-
lutions and the asymptotic behavior of global solutions with 7 > p. Here, we understand
Auts, — Ay, alug|"2us, and b|u|P~2u to be the strong dissipation term, the dispersive term,
the nonlinear damping term, and the source term, respectively.

In the absence of the dispersive term and the nonlinear damping term, model (1.2) re-
duces to the following wave equation (1 > 1)

Uy — Au— Aut - Autt :f(u). (1.3)

In 2000, Shang [2] studied the well-posedness, asymptotic behavior, and the finite time
blow-up of the solutions under some suitable conditions on f and for n = 1,2, 3. In 2004,
Zhang and Hu [3] showed the existence and the stability of global weak solutions. In 2007,
Xie and Zhong [4] obtained the existence of global attractors in Hy($2) x Hp(€2), where the
nonlinear term f satisfies a critical exponential growth assumption. In 2008, Xu et al. [5]
used the multiplier method to investigate the asymptotic behavior of solutions for (1.3).
Kafini and Messaoudi [6] considered a nonlinear wave equation and obtained a finite-time
blow-up result with arbitrary positive initial energy. For more related results, the reader
is referred to [7-10].

In the absence of the dispersive term and m = 0, model (1.2) reduces to the wave equation
Uy — A — Ay — Aug + 1, = [ulP2u. (1.4)

Xu and Yang [11] established a blow-up result for certain solutions of (1.4) with arbitrary
positive initial energy, where 1<p<ooifn=1,2and1<p < % if n> 3.

Messaoudi and Mukiawa [12] studied the fourth-order viscoelastic plate equation
t
Uy + Ay — / g(t—s)A*u(s)ds =0
0

in the bounded domain Q = (0, ) x (~/,[) C R? with nontraditional boundary conditions.

The authors established the well-posedness of the solution and a decay result.
Another model related to (1.1) is

Uy — Au+ fotgl(t —s)Au(s)ds+ h(u) =filw,v), (1) eQx(0,T), 15)

Vi — AV + fotgz(t —8)Av(s)ds + hy(ve) =fo(m,v), (x,t) € 2 x(0,7T), ’

where Q is a bounded domain in R” (n = 1,2, 3) with smooth boundary d$2. For problem
(1.5) with /1 (u;) = —=Au, and hy(v¢) = —Avg, Liang and Gao [13] obtained that the decay
estimate of the energy function is exponential with certain initial data in the stable set. On
the contrary, a solution with positive initial energy blows up in finite time when the initial
data is inside the unstable set. For /; (i) = |u;|"™ ‘s, and hy(v;) = |v¢|""tv;, Han and Wang
[14] showed several results concerned with local existence, global existence, and finite-
time blow-up with negative initial energy. The latter blow-up result has been improved
by Messaoudi, Said-Houari, and Guesmia [15, 16] by studying a larger class of initial data
for which the initial energy can take positive values and obtained that the rate of decay
of the total energy depends on those of the relaxation functions. Wu [17] considered the
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following problem for (x,t) € Q2 x (0, T):

= MV} + 1VVI3) Au+ [5g(¢ = 5) Auls)ds + |y sy = fi(u,v),

(1.6)
vie = M(|[Vull} + [[VV]I3)Av + f(f h(t - s)Av(s)ds + |ve|P v, = fo(u,v),

where Q is a bounded domain in R” (n = 1,2,3) with smooth boundary 2. He obtained
that the decay estimate of the energy function is exponential or polynomial depending on
the exponents of the damping terms in both equations, and the blow-up of solution with
nonnegative initial energy was established.

Motivated by previous works, it is interesting to study the global existence, uniform
decay, and finite time blow-up of solution to problem (1.1). Firstly, we establish that the
solution is global in time under certain initial data in the stable set. After that, we show the
decay estimate of solutions by Nakao’s method [18]. Precisely, we establish that the decay
estimate of energy function is exponential or polynomial depending on the parameters
p and gq. Secondly, we study the finite time blow-up of problem (1.1) with y =§ = 1. By
adopting and modifying the methods used in [15] we prove the blow-up of solutions when
the energy is negative or nonnegative and less than the critical value E; (given in (4.3)). In
this way, our results allow a wider region for the blow-up results.

The paper is organized as follow. In Section 2, we present preliminaries and some lem-
mas. In Section 3, the global existence and decay property are derived. Finally, the blow-up
results of (1.1) with y = § =1 are obtained in the case of initial energy being nonnegative.

2 Preliminaries

In this section, we give some lemmas and assumptions. We use the standard Lebesgue
space L?(2) and Sobolev space H}(S2) with their usual products and norms. We use the
embedding H}(Q2) < LP(Q) for2 <p < 2% if n >3 or 2 < p if n = 1,2. In this case, the
embedding constant is denoted by c,, that is,

llellp < cell Vo (2.1)

Next, we give the assumptions for problem (1.1).
(A1) The relaxation functions gi(s) and g(s) are of class C', nonnegative and
nonincreasing for s > 0, and satisfy

0 00
y—/o as)ds=1>0, 8—/0 o(s)ds=k>0.
Concerning the functions fi(u, v) and f2(u, v), we take (see [15])
filw,v)=(m+ 1)(a|u + V"™ Y +v) + b|u|mTf3 |v|mT+1u) (2.2)
and
Lolw,v) = (m+ 1) (alu+v|"  (u+v) + by "% |u| mT”v) (2.3)
with constants a, b > 0. We can easily verify that

ufi(u,v) + vhr(u,v) = (m + 1)F(u,v), (u,v) € R?



Hao and Zhang Boundary Value Problems (2016) 2016:115 Page 4 of 24

where
m+l
F(u,v) = alu +v|™ + 2bluv| = .

(A2) For the nonlinearity, we suppose that

m>1, n=1,2,
(2.4)
1l<m<3, n=3,
and
’ >1) :1,2,
pq= " (2.5)
1<p,gq<5, n=3.

As in [15], we still have the following results.

Lemma 2.1 (Sobolev-Poincaré inequality) Let2 < k < +00 and n < 3. Then there is a con-
stant ¢ = ¢(2, k) such that

lule <clAulla,  ue Hy (). (2.6)
Lemma 2.2 There exist two positive constants cy and c; such that
co(lul™ + ™) < F(u,v) < cr(lu™ + [v™),  (u,v) € R

Lemma 2.3 Suppose that (2.4) holds. Then there exists n > 0 such that, for any (u,v) €
H\(Q) x H(R2), we have

ml ml 2 2\ 2
||M+V|m+1+2||MV||m2+_1 < n(UIVull +kIVv]3) * .

We also need the following technical lemma.

Lemma 2.4 ([15]) Forany g € C' and ¢ € HY(0, T), we have

t d t
—2/0 fﬂg(t—smdxds:E( o¢>—/0g(s)ds||¢>||§>+g<r)||¢||%—g’o¢,

where
p— t — — 2
go(j).—/o g(t S)/Q|¢>(s) ¢(t)| dxds.

Now, we are in a position to state the local existence result to problem (1.1), which can
be established by using arguments similar to those in [14]. We omit the proof.

Theorem 2.5 Let ug,vo € H3(2) and u1, v € Hy(2). Assume that (Al) and (A2) are sat-
isfied. Then there exists a couple solution (u,v) of problem (1.1) such that, for some T > 0,

uel™(0,T;Hy(Q)NIP(Q),  vel™(0,T;Hy(Q)NLT(RQ)),

u € L(0, T; Hy(Q)) NIPH(Q), v € L0, T3 Hy(R)) NLIH(RQ).
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We conclude this section by stating Nakao’s lemma, which will be used in establishing

the decay rate of solutions to problem (1.1).

Lemma 2.6 ([18]) Let ¢(t) be a nonincreasing and nonnegative function on [0,T], T > 1,
such that

@1 () < wo(p(t) - p(t +1)), tel0,T],

where wo > 1 and r > 0. Then we have, for all t € [0, T,
(i) ifr=0, then

d(t) < p(0)e 1",

(ii) ifr>0, then

~i=

o) < (¢7(0) + o' rlt - 11%) 7,
where w; := ln(%) and [t —1]" := max{t -1,0}.
Remark 2.7 For simplicity, we take a = b = 1 in (2.2) and (2.3) throughout this paper.

3 Global existence and energy decay
In this section, we focus our attention on the global existence and decay rate of the solution
to problem (1.1). We first define

t
1) = | Aull + | AVIE + [ Va5 + 1V vell3 + (V —/ gl(S)dS) IVul;
0
t
+ (8 —/ o(s) ds) V|5 +g10Vu+gyoVv—(m+ 1)/ F(u,v)dx, (3.1)
0 Q
1 t
J@) := E(nAun% + | AVIZ + I Va5 + Vv + (y —/0 &) ds) IVull3
t
+ (5 —/ 2(s) ds) ||Vv||§ +goVu+gyo Vv) —/ F(u,v)dx, (3.2)
0 Q
and define the energy function as
1 2 2
E(t):= E(Ilutllz +Ivell3) +J (). (3.3)

Lemma 3.1 Suppose that (Al) and (2.4) hold. Let (u,v) be the solution of problem (1.1).
Then E(t) is a nonincreasing function, that is, for t > 0,

d _ 2 2 1., 1., 1 2

EE(t) ==Vl = IVvelly + §(g1 o Vi) + §(g2 o Vv) - Egl(t)nvunz

1 1 1
- Egz(f)HVVH% - ||u,||§11 - ”VL‘”ZL' (3.4)
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Proof Multiplying (1.1); by u, and (1.2), by v;, integrating over €2, summing up, and then

using integration by parts, we obtain

dll
E[E(””f”% + ey + v IVulls + SIVVIZ + 1 Auly + 1 AVIG + (Va3 + 11Vvell)

—/QF(u,v)dx:|

t
:—||Vut||§—||Vvt||§+/ /gl(t—s)Vu(s).vmdxds
0 Q

¢
+/ /gZ(t—S)VV(S)-Vthxds
0 Ja

pt+l q+1
— Nl = el

Applying Lemma 2.4 to the third and fourth terms on the right-hand side of this equality,
we get (3.4). O

Lemma 3.2 Suppose that (Al) and (2.4) hold. Let (u,v) be the solution of problem (1.1).
Assume further that 1(0) > 0 and

m=1

= (m + 1) @™ (2('” * 1)15(0)> St (3.5)
m—-1
Then
1)>0, ¢>0. (3.6)

Proof Since I(0) > 0, by continuity there exists a maximal time £pax > 0 (possibly tnax = T)
such that

I(t) > O’ t € [O) tmax]r

which implies that, for ¢ € [0, tmax],

m-1 ¢
J(@) = m(HAHII% + 1 AVIS + Va3 + [ Vvell3 + (V —/0 gl(S)dS)HVMH%
t
+ <8—/ gz(s)ds>||Vv||§+gloVu +gzon) + 1(2)
0 m+1
> ol (I1Aull3 + 1| AVI + LI Va3 + kI VV]3). (3.7)
= men AR IAVE : :

Since E(t) is nonincreasing by (3.4), using (3.7) and (3.3), we get, for ¢ € [0, tmax],

I Aully + [1AVI3 + U Va3 + kI VVI3

20m + 1)](t) - 2(m + I)E(t) - 2(m + I)E(O). (3.8)
m—1 m—1

<
- m-1
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Using Lemma 2.2, (2.6), (3.8), and (3.5), we obtain, for ¢ € [0, tyax],

m+1 m+1

(m+1) / Flu,v) dx < (m+ D (25 + v]227)
Q

< (m+ D™ ([ Aully™ + [ Av]yHY)
<o (llAul3 + [AV]3)

<lAull3 + | AV]3. (3.9)
Thus,
1(t) >0, te][0,tnal

By repeating these steps and using the fact that

m-1
2m+1 z
lim (m + 1)c;e™*! <¥E(t)> < <1,
t—>tmax m — 1
this implies that we can take £, = 7. O

Lemma 3.3 Let the assumptions of Lemma 3.2 hold. Then there exists n, > 1 such that
||AM||§ + ||AV||§ <mli(t), tel0,T), (3.10)
1
where n; = Tar-

Proof From (3.9) we have
(m + 1)/ F(u,v)dx < or (| Aull3 + | AV]3).
Q

Letting n; = ﬁ and using (3.1), we obtain (3.10). O

Theorem 3.4 Suppose that (Al) and (A2) hold. Let ug,vo € H3(2) and u1,vi € Hy(R2)
satisfy 1(0) > 0 and (3.5). Then the solution (u,v) of problem (1.1) is global and bounded.
Furthermore, if

o0 o0
+8> ’ +25771 max{/ £1(s) ds,/ £(s) ds}, (3.11)
0 0

then we have the following decay estimates:
(i) ifp=q=1,then, fort >0,

E(t) < E(0)e™,

(ii) ifmax{p,q}> 1, then, fort >0,
1 1 B (2 -1
-1 g-1 — — maxip,qy—
E@t) < ( _maX{p’q?}(O)+rzmax{pT,qT}[t—1]+) ,

where 11 and T, are some positive constants.
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Proof First, to prove that T = 00, it suffices to show that || Au||3 + [[AV]|3 + | Vi |3 + [ Vvell3
is bounded independently of t. Thanks to (3.3), (3.4), and (3.6), we have

E(0) > E(2) > J(¢)
-_— m_
T 2m+1)

+ (y . /0 gl(s)ds)nwn%

2 2 2 2
(IIAMIIZ + AV + [ Vaellz + [1Vvelly

t
+ <8—/ gz(s)ds>||Vv||§+gloVu +gzon) + 1)
0 m+1
m—1
> 2+ 1) (AUl + IIAVIS + [ Vaell3 + 1V vell3)-

Therefore,
I Aull3 + | AVI3 + Va5 + Vvl < a2E(0),
where «; is a positive constant depending only on . Thus, we obtain the global existence.
We further derive the decay rate of the energy function for problem (1.1) by Nakao’s
method [18]. For this purpose, we have to show that the energy function defined by (3.3)
satisfies the hypothesis of Lemma 2.6. Integrating (3.4) over [¢,t + 1], we have

E(t) —E(t +1) =D () + DI (1), (3.12)

where

" t+1 5 1 t+1 ,
Dy (t) = IVull;ds — 5 g oVuds
t t
1 t+1 5 t+1 "
+ E/ allVull; ds+/ ||ut||§+1 ds, (3.13)
t t

1 t+1 1 t+1
DI (¢):= / ||Vvt||%ds— 5/ & oVvds
t t
1 t+1 5 t+1 .
*3 &lIVviiyds + llvell gy ds. (3.14)
t t

By (3.13), (3.14), and the Holder inequality, we observe that

t+1 t+1
/ / |, | dx ds + / / v, |>dxds < cl(Q)D%(t) + CQ(Q)Dg(t), (3.15)
t Q t Q

q-1

-1
where ¢1(2) = VOI(Q)% and ¢, (2) = vol(2) #*T.
By the mean value theorem there exist ; € [t, ¢ + %] and t, € [t + %, t + 1] such that

luce)| + [ve@) | < 4c1(Q)D3(E) + des()D3(E),  i=1,2. (3.16)
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Next, multiplying Eq. (1.1); by « and Eq. (1.1); by v, integrating over Q2 X [f, %], and

using integration by parts, we obtain

ty ty 15) 5}
/ I(t)dt:—/ /uuttdxdt—/ /W”dxdt—/ /Vu-Vutdxdt
5]
/ /Vv Vvtdxdt—/ /Vu Vuy dx dt
/ /VV Vvttdxdt+/ ||Vut||2dt
5]

ty ty ty
+/ ||Vvt||§dt+/ gloVudt+/ & o Vvdt

t 15} t

+ /: /;2 fotgl(t —$)Vu(t) - (Vu(s) - Vu(t)) dsdxdt
+ /tltz /Q /Otgz(t —s)Vy(t) - (Vv(s) - V(b)) dsdx dt

ty 5]
—/ / |ut|p_1utudxdt—/ /|Vt|q‘1vtvdxdt. (3.17)
5] Q f Q

Integrating by parts and applying the Cauchy-Schwarz inequality in the first term of the
right-hand side of (3.17), we obtain

/ / iy dxdt| < Hut(t)H e, / R (3.18)
15) 2 2
/ f wedndt| < 3 |v@)], V@], + / )| de (319)
t Q i=1 t
ty 2 ty
/ /Q vu.vwxdt‘5Z||vm(t,-)||2nw<t,.)nz+ / Vo) de, (3.20)
t i-1 t1
and
2 2 2
V- Vudsde) = Y[, |9l + [ 9wl dr (321)
@ i=1 i

Now, we estimate the third term of the right-hand side of inequality (3.17). By the Cauchy-

Schwarz inequality we have

9]
Vu - Vu,dxdt 5/ IVull2 | Vu |, dt (3.22)
5]
and
ty 5]
/ /Vv'Vvtdxdt 5/ VY2l Vvello dt. (3.23)
t Q 5]
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Since

[ [ ate- 990 (vito) - vutt) ds
QJOo

1

_ 5[ [ ate=9(vul; + |vu ) ds— [ -9Vt - vu) ) ds]
0 0

_/Q/O @ ()| Vu@)|* dsdx
- _%/Q/Otgl(s)|Vu(t)|2dsdx+ %/Otgl(t—s)HVu(s)Hids— %(gl o Vi)
< %/Otgl(t -5 Vils) [ ds 5 0 V2 (3.24)
and
/Q /0 t @t —$5)Vu(e) - (Vv(s) - V(t)) ds dx
< % /0 t @(t-9)|Vus)|; ds - %(gz o V), (3.25)

by (3.18)-(3.25) we have

ty 2 2
/ I@)dt <Y |ue)], |u)], + Y |vee], v ],
5] i=1 i=1

ty t
+/ (Hut(t)Hi+Hvt(t)Hi)dt+/ IVl || Vit || dt
5]

4

t 2
o [ 1vvaivulad s v, vul,

4 i=1

12}

2
Y [V, | Vv ], +2 / (I1Vuell + Vvel13) de
i=1

5]

1 ty t 1 ty t
+5/t1 /0gl(t—s)HVu(s)||§dsdt+§/tl /ng(t—s)||w(s)||§dsdt

1 t 1 t ty
+—/ gloVudt+—/ gzoVth—/ / e [P dix dt
2 t 2 t 51 Q

t
—/ / v |7 v dx db. (3.26)
t Q

Now, we will estimate the right-hand side of (3.26). First, by (3.16), (2.1), and (3.8), letting

B = min{/, k}, we have

et (8], < e/ 31 (QDHE) + 4ex( D3 sup [ Vuls)],

1 <s<ty

§c*<2(m+1)

m)2\/461(9)Df(t)+4Cz(Q)D%(t) sup EZ(s) (3.27)

h=s<ty
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and

7\/4CI(Q)D%(t)+4c2(Q)D%(t) sup E2(s). (3.28)

v, ||, < C*(2<m + 1)) -

p(m—1)

By the Holder inequality and (3.13) we find

ty ty % ) % pl
/ IIVutllzdt§</ 12dt) (/ IIVutllédt> <D (¢). (3.29)
t 5] ol

Then we have

1

b 2m+1)\? oo ,

/ ||Vu||2||wtu2dts( ) D (1) sup EX(s) (3:30)
f B(m—-1) n<s<ty

and similarly we obtain

1

& 2m+1)\?_an L

f ||VV||2||VVt||2dt§< ) D (1) sup EX(s). (3.31)
i ﬁ(m -1) f1<s<ty

By (3.13) and (3.14) we observe that
t+1 t+1 1 1
[ rvuazdse [ ivigds <ot -0t
t t

By the mean value theorem there exist ¢; € [¢, £ + i] and £, € [t + %, t + 1] such that
2 2
| V(|5 + | Vve(e)|, < 4D (1) + 4D5™ (2). (3.32)

From (3.8) and (3.32) we have

vl vuel, < (5o ) Vant 0 antio s B 639
and
Vv, | Vv, < (;((Z:))) ' \/ 4D () + 4D (1) sup E3(s). (3.34)

Applying Young’s inequality to convolution [|¢ * ¥ ||, < [l@||,]1¥|ls with

1 11
—=-+--1 1l=grs=oo,
q r s

and noting thatif g =1, then » =1 and s = 1, we get

1) t 9 t ty 2
/ / @t = )| Vuls) | dsdt < / a0 dt / [Vute) | de
t 0 5]

A}

<(-p) / ® | vuto) | e (3.35)
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and

f /0 @t -9)|Vus)|5dsdt < (5 - B) / | Vv d. (3.36)

From (3.1), (3.9), (3.10), (3.35), (3.36), and (A1) we have

%<// gl(t_s>Hw<s)H§dsdt+/2/ g2<t_s)uw(s)y|§dsdt>

< ’3/ IVl + kI V]2) de

y+8 ﬁ/ < +(m+1)/F(u,v)dx)dt
Q

< %(1 ) /:1 1(2) dt. (3.37)

To estimate the eleventh and twelfth terms on the right-hand side of (3.26), we use (3.37)
to obtain

%/t:z(gloVu+gzoVV)dt = %/tltz/Otgl(t—s)(”Vu(s)—Vu(t)”;)dsdt
+%/j /Otgg(t—s)(HVv(s)—Vv(t)”i)dsdt
< [* [ ate-avuo e |vuo))asa
o[ [ a9l ¢ [0l dsae
< M(n m) / ’ I(t) dt. (3.38)

- 13 t1

Using Holder inequality, (2.1), (3.8), and (3.13), we have

2
/ | /Py dx dt
Q

5]
< / ot el
51

2
p
<c, / et 2 IV ] e

5]

1
2 1 2 1)
S&(M) / ||ut||§+1dt sup E%(S)
5]

B(m—1) t1<s<ty

<c*<M) DX(®) sup E%(s) (3.39)

1 <s<ty

and

|vt|q Ywdxdt| <

() 210, 2h0 549
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Therefore, applying (3.13)-(3.15), (3.27)-(3.31), (3.33)-(3.34), and (3.37)-(3.40) to (3.26) we
obtain

b f 10 dt < de.fr 2 (@DHE) + 4c(QD3(E) sup E3()

1 <s<ty

+c1(Q)D3(t) + c2(Q)D5(2) + By (D:%1 )+ D;%l (t)) sup E2(s)

l1<s<ty

+2(D)" @) + DY 0) + 451\/4D[19+1(t) +4DI(8) sup EZ(s)

+c*/31(D’f(t) +Dg(t)) sup E%(s), (3.41)
where
_(2ms0\ s s-p)
p1:= (,B(m—l)) , Br:=1 25 1 +m).

Note that the assumption

7 5 o0 o0
yas> +2mmax{/ gl(s)ds,/ gz(S)ds}
0 0

gives 8, > 0. Thus,

f N It)dt < cs [\/4c1(sz)Df(t) +4c,(Q)D3(t) sup E3(s) + DX(t) + Da(t)

51 h=s<ty

¢ (D ©+D, () sup EXS)+ D0+ DI (0

1 =s<ily

+ /a0 (0) + 4D (@) sup EA(s)

t1<s<ty
+(D{© +DY®) swp E3()] (3.42)
l1<s<ty
where
e i max{4c.py, c1(), 2(2), 481}

o)

On the other hand, from the definition of J(¢) and I(¢), (3.9), and (3.10) we have

-1 t
J(t) = Z'ZH ) (nAun% + 1 AVIS + Va3 + [Vvell3 + (y —fo gl(s)ds)nwn%

—

m+ ll(t)

t
+ <8 —/ gg(s)ds)HVvH% +goVu+gyo Vv) +
0

m-—1

1
:m<1(t)+(m+l)‘/QF(u,v)dx>+ el

<(1+ =L Ve
_<+mﬂ1)()

= el (t). (3.43)

1(2)



Hao and Zhang Boundary Value Problems (2016) 2016:115 Page 14 of 24

Hence, integrating (3.3) over (#, %) and then using (3.43), (3.42), and (3.15), we deduce

that
iy 1 t ) ) [5)
fE(t)dt=—/ (||ut||2+||vt||2)dt+f J(0)dt
t 2 4 5]

1 (2 ) ) )
=5/ (||ut||2+||vt||2)dt+c4/ o)t
t

5]

<c¢s [D2 +D3(t) \/4c1 ) +4cy(Q)D3(t) sup E? (s)

i =s<lp

(D7 04Dy @) sup EXs)+ D0+ DI(®)

t1<s<ty

+ \/4D’f+1(t) +4DT () sup E3(s)

i =s=ty

+ (D} (t) + Di(8)) sup E%(s)], (3.44)

1 <s<ty

where c5 := c3cs. By integrating (3.4) over [£, £;] we obtain

2 1, 1., 1
E(t):E(t2)+/ (llvut||§+ IIleli—E(gloVu)—g(gzoWF5g1(S)IIVu||§
t

1
+ Egz(S)IIVVH% + el + IIVzIIZﬂ) ds. (3.45)

Since t, — f; > % and E(t) is nonincreasing in ¢, it follows that

iy t 1
/ E(t) dt > / E(tg)dt > —E(tz).
5} 151 2
Then, we have

t ty
E@) < 2/ E(t)dt+/ (”Vut”% + 1V vell3
5% t
1 1 1
- E(g{ o Vi) - E(gé oVv) + igl(s)HVuH%
1 2 p+l
+ igZ(S)HVV”z + ey + vell q+1 ds

<2 / ’ E@)dt + D'\ (t) + DT (). (3.46)

f

Consequently, since E(¢) is nonincreasing, combining (3.44) with (3.46), we obtain

E(t) <cs (D%(t) +D3(t) + \/ 4, (Q)DA(£) + 4es (DA(E)E? (2)

+ (D (1) + Dy (O)E(0) + DY (1) + DI (1)

+ \/ 4D\ (t) + 4DT (DED () + (DV(¢) + DI())E? (t)).
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Then a simple application of Young’s inequality gives, for ¢ > 0,
E(t) = &7 [D}(6) + D3(0) + D™ (6) + DY (1) + D" (1) + DY (1)), (347)

where ¢4 and c¢; are positive constants.
Therefore, we have the following decay estimate.
(i) For p =g =1, from (3.47) and (3.12) we get
E(t) < cs[E(t) - E(t +1)],
where we choose cg > 1. Thus, by Lemma 2.6 we obtain

E(t) <E(0)e™, t>0,

where 77 :=1In =2 e 1

(ii) For max{p, g} > 1, it follows from (3.47) that, for £ > 0,
E@) <or[(1+ D070 + D2 (0)DH0) + (1 + D (2) + D3 2(0)) DA(8) ]

Since Dy (¢) < EP1(£) < EP1(0) and Ds () < E#1(¢) < E#1(0) by (3.12) and (3.4), we have,
fort >0,

E(t) < ¢;[(1+ EF1(0) + E#T (0))D2(t) + (1+ E41 (0) + E 4T (0))D2(1)]

<9 (Df(t) + D%(t)).

p-l g1
2

Then, setting p := max{~-, %>-}, we obtain

E"P(8) < [eo(D2(0) + D3(2))]"*

0(D2p+2(t) + D2p+2(t))

( 2,0 —p+1 t)Dp+l( ) 2p qH(If)DgH(t))
en(

=q

2p-p+l

E (0D () + E - (0)DE (1)

1thMM)

cu (E(t) - E(t +1)), (3.48)

2, +1 2p—q+1
where ¢y := 27 - 09 ? and ¢y := ¢ max(E = (0),E T (0)). Application of Lemma 2.6 to

(3.48) yields

1

E(®) < (E*(0) +maplt-11) 7, ¢20,

with 73 := ¢j.
The proof of Theorem 3.4 is completed. O
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4 Blow-up result
In this section, we deal with the blow-up of solution to problem (1.1) with y =§ =1. In

order to state our result, we make an extra assumption on g; and g,

o o 20m—-1) 2 1)(E; - E(0
max{/o gl(s)ds,/0 gz(s)ds} <min{ 2(2_1), (m(-;rrz(—ll))»f( ))}, (4.1)

where A; and E; are given in (4.3) and (4.4), respectively.
Next, we define the functional G that helps in establishing desired results by

1
G(x):= Exz —-nx™ x>0, (4.2)

where 7 is the constant from Lemma 2.3.

Remark 4.1
(i) We can verify that the functional G is increasing in (0, A1), decreasing in (11, +00),

G(A) — —00 as A — +00, and G has attains the maximum

m-1
E;:=G(x) = 2 4.3
1= Gl = 50— (*3)
at
1 T
A= ) 4.4
! (n(m + 1)) 4.4
(ii) We observe from (3.3), Lemma 2.3, and (4.3) that
1 2
E@t)=J(@) > i (t)— | F(u,v)dx
Q
1 m+l
> 5w2(t)— n(UIVull3 +kIVv3) 2
1
> sz(t) - W™ (t) = G(w(?)), (4.5)
where
w(t) := (1Aul3 + IAVIE + Va3 + 1 Vvell3 + UVl
1
+k|VVII3 +g10 Vi +g o Vv)2. (4.6)

Before we state and prove our main result, we need the following lemma, which is similar

to a lemma from [17] to study some classes of the coupled equations.

Lemma 4.2 Assume that (Al) and (2.4) hold, ug, vy € H3(Q), and uy,vi € H3 (). Let (u,v)
be a solution of (1.1) with initial data satisfying E(0) < E; and w(0) > Ay, that is,

1
(I1Auo 113 + 1AV 13 + IVurll3 + 1Vwill3 + LI Vo 13 + k1 Vvoll3) % > As. (4.7)
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Then there exists Ay > Ay such that, for all t > 0,
w(t) > Asg. (4.8)
Proof The proof is similar to that of Lemma 4.2 in [17]. g

Theorem 4.3 Suppose that (A1), (2.4), and (4.1) hold, ug,vo € H3(RQ), and uy,vi € H)(RQ).
Assume further that m > max(p, q) and 1(0) < 0. Suppose that one of the following is satis-

fied:

(i) E(0)<O0,

(ii) 0 < E(0) < E; and w(0) > A;q.
Then the solution of problem (1.1) blows up at a finite time, that is, there exists T < +00
such that

: 2 2 2 2 2 2 2 2
thTL(Ilutllz +velly + 1Aully + [1AVIS + [[Vaglly + [IVVelly + IVally + VY

m+1

i+ i) = +oo. (4.9)

+ [lull mel

Proof For case (ii), 0 < E(0) < E1, set
H(t):=Ey—-E(t), t>0, (4.10)

where E, := E”TE(O). By (3.4) we see that H'(¢) > 0. Thus, we obtain

H(t)> H(0) = E, — E(0), t>0. (4.11)
Moreover, from (4.5), (4.8), and (4.3) we see that
H(t) = E; — E(¢)
<E - %wz(t) + ‘/QF(u, v)dx

1
<E - - +/F(u,v)dx
2 Q

2

__ M . +fQF(u,v)dx. (4.12)

m +

Then, by (4.11), (4.12), and Lemma 2.2 we have

0 < H(0) < H(t) < / Fv)dx < a(lulld + ). (413)
Q

Let

Alt) :=H"™ @) + e/(uut + V) dx + %/ (|Vu|2 + |Vv|2) dx
Q

Q

+e€ / (Vu-Vu, + Vv-Vv,)dx, (4.14)
Q
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where € and o are positive constants to be specified latter. By taking the derivative of (4.14)
and using Eq. (1.1) with y =8 =1 we get

A() = 1=0)H T (OH' @) + €(lucly + vell3) — e (I Aull; + | AvVI3)

+e(IVaelly + 1Vveli3) = e(IVulls + 11VVI3)

t
+€/ / g(t —$)Vu(s) - Vu(t)dsdx
QJo
t
+ef / gz(t—s)Vv(s)~Vv(t)dsdx—ef(u|ut|p’1ut+v|vt|q’lvt) dx
Jo Q

+ (m + l)e/ F(u,v)dx. (4.15)
Q

Using the Holder and Young inequalities, we observe that

/ /tgl(t = 8)Vu(s) - Vu(t)dsdx
aJo
=/ / - 9Vue) - (Vals) - V) dsdie + / (=) ds| Vulo) |
aJo A
3 t
> —(g1 0 Vu) + Z/o q(s)ds|| Vu(t)Hi (4.16)
and
f / -V V() dsds = (6100 + 5 / a0 ds| o) (4.17)
aJo A

Taking (4.16) and (4.17) into account, using (4.10) and the definition of E(¢) by (3.3) to
substitute for [, F(u,v)dx, (4.15) becomes

A) = (L-0)H(OH' (&) + €ar (luell3 + 1vell3) + €ar (I Vel + [ Vvell3)

+ eaz(HAuH% + ||AV||%) teay(@oVu+gmoVy)+ ea3(||Vu||% + ||Vv||%)

- E/ (ulut Py, + Vlvth‘lvt) dx + (m+1)eH(t) — (m + 1)eE,,
Q

where
m+3 m-1
a) = , a) = ———,
1 2 2 2
-1 2m-1 > =
olg:m—— " max/ g1(S)de/ &s)ds .
2 4 0 0

By (4.1) we observe that as > 0, and then by the definition of w(t) by (4.6) we have

A'@t) = Q-0)H (OH (t) + ear (luell3 + Ivell3) + €as (I Aull3 + [ AvI3)

+eas(IIVull3 + | Vvell3) + eas (U Vul3 + kI VVII3) + €as(gi o Vi + g 0 Vv)

- e/ (u|ut|1’_1ut + V|Vt|q_lvt) dx + (m+1)eH(t) — (m + 1)eE,
Q
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= (1-0)H " ()H'(t) + €ar (lluc|l3 + [[ve]13) + easw(2)

- e/ (slueP My + vlve| T Mv,) dx
Q

+ (m + 1)eH(t) — (m + 1)€E,.

Since w(t) > A, by (4.8) and XA, > A; by Lemma 4.2, we note that

2 % - % 2 2W2(t)
azw (t) — (m+1)E, = az———5—w (£) + asA] —
A A

- (m + 1)E2

> WA () +c3,

= az\i — (m +1)E,.
El+E
2

)L2
where ¢, = a

Furthermore, by the definition of E;, E ) and assumption (4.1) we see that

c3 = agkf —(m+1)E,

_ (mT—l _ 2m4_1max{]'5 g1(S)dS:/O gz(s)ds}>)»%—(m+1)E2

— - 2 *© >
_ (m+1)(E21 E(0) (2m41)?»1 max { /0 a(s)ds, /0 gz(s)ds} >0.

Therefore, based on the above arguments, we conclude that

A = (L-0)H(O)H'(t) + €ar (uell3 + vel13) + ecow?(2)

—€ / (u|ut|p_1ut + V|Vt|q_lvt) dx + (m+1)eH(t).
Q

To proceed further, by the Holder and Young inequalities we have

1 p+l
P* pr
p+l p+l
/|Mt|p uudx| < |p+1 p+1
and
q+1 he
q
g+l
/ vl v ds| < e + o

where 8; and §; are positive constants depending on ¢ and will be specified later.

Then, inserting the last two inequalities into (4.18), we obtain

A() = (L-0)H (OH'(t) + €ar (luell3 + ve|13) + ecow?(2)

p+1 ) T ) 5q+ )
p+ p+ q+
—e(—n ully + =l t||,,+1+—|| 1%+

H
S
i+
un

v q+1>

+ (m + 1)eH(¢).

Page 19 of 24

(4.18)
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At this point, choosing é; and §; such that

el g+l

8,7 =MH (), 8 " =MH (),
we get that

A(t) = (L-o - Me)H* (0)H'(£) + ear(|lucll3 + ve13) + ecaw’(£)

— eMPHP(8)|ullby — eMy HOU(E) V]| E1) + (m + 1)eH (), (4.19)

where M;, M, are positive constants, and M = 1;7 1:411 + qM2 . It follows from (4.13) that

m+1 m+1

MI—PHGP( )<M_p Up(llu”m+1 + ||V||m+1)017
and

M’qHUq( )<M q Uq ”u' m+1 + ||V| m+1 (Tq‘
2

m+1 m+1

Substitution of these two inequalities into (4.19) yields

A) > (L-0 - Me)H ()H'(¢) + €ar (I|ue |3 + I1ve]l3)
+ecawP(t) — M (a2 + vl )P 2

m+1 m+1 p+l

1 1\°9 1
—eMy ] (lullpmiy + Ilmi) VI + (m + D)eH(2).

Since p < m and g < m, we note that

1
||M||p+1 < callulyly < callwllma + [VIma )",

1
||V||q+1 =< Cs||V||m+1 < cs(tllmer + 1V Ilms) T,

m=p m=q
where ¢4 = vol(Q2) #+T and c5 = vol(2) »+1 . Thus,

A'(t) = (L-o - Me)H ™ (t)H'(£) + €ar (|luc 13 + vel13) + ecaw?(2)

UP +1

—eM PC;’PC4(||M| m+1 + ||V| m+1

il mi1)  ellmer + 1VIman)*

—eMy’c] c5(||u||$:}+||v||%:})‘”’ (etllosr + V)T + (m + 1)eH(2)

>(1-0-Me)H™® )+ €ay ||1,tt||2 + el ) +ecyw?(t)
—eM,” UPC7(||M||m+1 1Vl PP 4 (4 1) H(E)

= My ] s ([l yss + 1V]ler) 77D, (4.20)
where the last inequality is derived from

1 1\opP 1
(el + i) < colllmllmen + [V1man) P70,

1 1\°9 1
(a2t + 1) < colsllmer + 1V llar) 77D
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because of
(x+y)* < c6(xA +y*), x%,y>0,1>0,c6 >0, (4.21)

and the constants ¢; = ¢gc4 and cg = coCs.

Now, letting
0<a<min{ mTp  m—4q m=1 } (4.22)
pm+1) gm+1) 2(m+1)
we have
2<opm+1)+p+1<m+l, 2<oqm+1)+qg+1<m+1.
Hence, by the inequality
V15,50 < c(vol(R2), m) (VI3 + IvItD), veHy(R),2<s<m+], (4.23)
we have
lalls ™ < eo (Va3 + ul) (4.24)
and
VA < o (IV VI3 + V1), (4.25)

where ¢9 and cjo are positive constants. Taking (4.24) and (4.25) into consideration and
using the definition of w(z), (4.20) takes the form

A®)= Q-0 -Me)H(OH'(t) + ear(lucll3 + IIvell3) + €calgr o Vs + g2 0 Vv)
+€(c2B = MP P ey = My el er) (1Vull3 + 1VVII3) + (m + 1)eH(2)
+ecr(Aully + [ AVIS + Vil + 1 Vvell3)

— (M e + My ] enn) (lulliy + Vi), (4-26)

m+l m+l

where ¢11 = ¢ - ¢7 - ¢c9g and ¢12 = ¢¢ - €3 - C10-
At this moment, setting a4 = min{c, 8, 1}, decomposing € (m + 1)H(¢) in (4.26) by

e(m+1)H(t) =2a4,eH(t) + (m +1 - 2a4)eH(¢),
and using (4.10) and Lemma 2.2, we obtain

At)= Q-0 -Me)H (OH'(t) + (a1 — aa) (w3 + [vell3)
+e(ca —aa)(I1Aull} + 1AVIS + Vel + [ Vve]l3)

- - 2 2
+€(cB = MP TP ery — My el ery — ag) (I Vull3 + VVI3)
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+€(2asco — (M7 P enn + My e} Ters) ) (lullitl + IIvIIET)

m+1 m+1

+e(cr —ag)(groVu+gro V) + (m+1-2a,)eH(t).
Choosing M; and M, large enough such that

o —ay

cf - M c1 cu—M c1 Ty —ay > 5

-p _op -q 0q
2a4¢o — (M1 ¢ o+ My 012) > d4Co,
we get

A@t)>1-0-Me)H°()H'(t) + eclg(||ut||§ + ||v¢||§) +eca(groVu+gy0Vv)
+eciu (| Aully + 1AVIS + [ Vuell; + [ Vvell3) + ecisH(2)

m+1 m+1

2 2
+ecis(IVally + 1VVI3) +ecar(lulliy + VI

for some positive constants ¢;, i = 13,14,...,17. Once M; and M, are fixed, we pick € > 0
small enough such that

1-0-Me>0
and
A(0) = H7(0) + € /Q(uoul +vov1)dx + — (”VM0||2 + IV )
+€ /Q(Vuo -Vu, + Vvg - Vi) dx > 0. (4.27)
Thus, there exists K > 0 such that

2 2 2 2 2
A'(t) = eK (luelly + 1vells + IVaelly + 1Vvellz + 1 Vuell;

+ VIS + lulli + Vi + H©), (4.28)

m+1 m+1

which, together with (4.27), implies that
A(t) > A(0)>0, t=>0.

On the other hand, by the Holder and Young inequalities, (4.22), and (4.23) we have that

1

<f (tteu + vpv) dx) -
Q

o 1 L 1 1
<255 (lluelly” Naelly ™™ + velly 7 lIvlly™)
1

<as(llul;” ”||M||m+1+||Vt|| ”||V||m+1)

2
< cio(lluely + llvells + IIMII,l,,ff + Vi)

2 2 2 2 1 1
< cao(lluell + Ivells + IVally + IV VIS + el + 1vIi)s (4.29)
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and, similarly,

1
1-0
(/ (Vuy - Vu+ Vv, - Vv) dx)

= T % %
2T (IIVMtllz”IIVMII 7 + Vvl Vvl ™)

2
<cn(IVuell + 1Vvell + IVull 3 + Vv 2”)- (4.30)
By using (4.9) we get
1
Va7 < e < S h (4.31)
S ~ H(0) '
and
1
4.32
< H(O) (4.32)

Substitution of these two inequalities into (4.30) yields

1
=
(/ (Vu, - Vu+ Vv, - Vv) dx> < (HE) + IVl + 1Vvel3). (4.33)
Q

Similarly, we obtain

L
o

o 2
(IVally + 1VvI5) = 1_(IIVMII +1IVvll;7) < casH(2). (4.34)

By using (4.29), (4.33)-(4.34), and (4.13) we get, for ¢t > 0,

1
L

- j=a
AT () < 2T% <H(t) + (/ (uuy + vvt)dx) + (IIVull3 + I Vvl3) =2
Q

1
=
+ (f(Vu~Vut+Vv-Vvt)dx> )
Q

2 2 2 2 2 2
< coa(lluellz + Vel + IV uell3 + Vel + 1 Vall3 + 11V

VI, (4.35)

+ ”u“m+1 m+1

where ¢;, i =18,19,...,24, are positive constants. Combining (4.28) and (4.35), we get
A() > ersAT7 (1), >0, (4.36)

where ¢y5 = %. Integration of (4.36) over (0, £) then yields

1
AT () > A= (0)= Ty t>0. (4.37)

This shows that A(£) blows up in finite time 7" and

l1-0
T<_ 177 (4.38)
oA (0)
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Furthermore, we get from (4.35) that

m+1
m+1

m+1

. 2 2 2 2 2 2
tk}]@_(””t”z +1velly + +1Varelly + 1V Vells + IV ully + 1VVIG + lullyin + Ivii) = +0o.

Thus, the solution of problem (1.1) blows up in finite time.
For case (i), E(0) < 0, we set H(t) = —E(¢) instead of (4.10). Then, applying the same
arguments as in case (ii), we have the desired result. O
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