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Abstract
This paper is concerned with the following semilinear elliptic systems:

⎧
⎨

⎩

–�u + V(x)u = H(x)Fu(x,u, v), x ∈R
N ,

–�v + V(x)v = H(x)Fv(x,u, v), x ∈ R
N ,

u(x) → 0, v(x) → 0 as |x| → ∞,

where V(x), H(x) are nonnegative continuous functions. Under some appropriate
assumptions on V(x), H(x), and F(x,u, v), we prove the existence of infinitely many
small negative-energy solutions by using the fountain theorem established by Zou.
Recent results from the literature are extended.

MSC: 35B38; 35J20

Keywords: semilinear elliptic systems; multiple solutions; variant fountain theorem;
variational methods

1 Introduction
In this paper, we consider the existence and multiplicity of solutions to the following semi-
linear elliptic systems:

⎧
⎪⎨

⎪⎩

–�u + V (x)u = H(x)Fu(x, u, v), x ∈R
N ,

–�v + V (x)v = H(x)Fv(x, u, v), x ∈R
N ,

u(x) → , v(x) →  as |x| → ∞,
(.)

where V (x), H(x) are nonnegative continuous functions, we assume that the functions
V (x), H(x), and F(x, u, v) satisfy the following hypotheses:

(H) V ∈ C(RN ,R) satisfies infx∈RN V (x) ≥ a > , where a >  is a constant. Moreover,
for any M > , meas{x ∈R

N : V (x) ≤ M} < ∞, where meas denotes the Lebesgue mea-
sure in R

N .
(H) F ∈ C(RN ×R

,R), |Fu(x, u, v)| ≤ c(|(u, v)| + |(u, v)|p–), and |Fv(x, u, v)| ≤ c(|(u, v)| +
|(u, v)|q–) for some  < p, q < , where c is a positive constant, and |(u, v)| = (u + v) 

 .
(H) F(x, , ) = , F(x, u, v) ≥  for all (x, u, v) ∈ R

N × R
, and for some  < μ < , there

exists c >  such that F(x, u, v) ≥ c|(u, v)|μ.
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(H) H(x) ≥  and H(x) ∈ L


–p (RN ,R) ∩ L


–q (RN ,R) ∩ L


–μ (RN ,R) ∩ L∞(RN ,R).
(H) F(x, u, v) = F(x, –u, –v) for all (x, u, v) ∈R

N ×R
.

When � is a bounded domain of RN , the problem

⎧
⎪⎨

⎪⎩

–�u = λ(a(x)u + b(x)v) + Fu(x, u, v) in �,
–�v = λ(b(x)u + c(x)v) + Fv(x, u, v) in �,
u(x) = v(x) =  on ∂�,

(.)

which is related to reaction-diffusion systems that appear in chemical and biological phe-
nomena, including the steady and unsteady state situation (see [–]), has been extensively
investigated in recent years. For the results on existence, multiple solutions, and positive
solutions to problem (.), we refer the readers to [, –] and the references therein. Qu
and Tang [] obtained the existence and multiplicity of weak solutions of problem (.) by
using the Ekeland variational principle, the mountain pass theorem, and the saddle point
theorem in critical point theory, and by applying the local linking theorem and the saddle
point theorem some new existence theorems of weak solutions were obtained by Duan et
al. []. In [], by using Morse theory the multiplicity of solutions was obtained for coop-
erative elliptic systems at resonance. Costa and Magalhães [, ] researched subquadratic
perturbation problems of semiliner elliptic systems by minimax methods.

Recently, the problems in the whole space R
N were considered in some works. For ex-

ample, see [–] and the references therein. Cao and Tang [] studied the following
Schrödinger systems:

{
–�u + V (x)u = Fu(x, u, v), x ∈R

N ,
–�v + V (x)v = Fv(x, u, v), x ∈R

N .
(.)

Under suitable assumptions on F(x, u, v), they obtained the existence of infinitely many so-
lutions characterized by the number of nodes of each component. When N ≥ , V (x) = ,
Fu(x, u, v) = p(x)f (v), and Fv(x, u, v) = q(x)g(u), Zhang et al. [] obtained the existence and
nonexistence of entire solutions to (.). Wu [] obtained five new critical point theorems
on the product spaces and studied three existence theorems for the sequence of high-
energy solutions to problem (.), whereas Zhou et al. [] established the existence of
high-energy solutions to (.) under some conditions that are weaker than those in [],
which unify and sharply improve the recent results in [].

Inspired by all these facts, the aim of this paper is to study the multiplicity of small
negative-energy solutions to problem (.) via variational methods, which have been
widely used to study Schrödinger equations; see [–] and the references therein. To
the best of our knowledge, there has been few works concerning this case up to now.

Now, we state our main results.

Theorem . Suppose that conditions (H)-(H) hold. Then problem (.) possesses in-
finitely many solutions {(uk , vk)} satisfying




∫

RN

(|∇uk| + V (x)u
k
)

dx +



∫

RN

(|∇vk| + V (x)v
k
)

dx

–
∫

RN
H(x)F(x, uk , vk) dx → – as k → ∞.
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The remainder of this paper is as follows. In Section , we present some preliminary
results. In Section , we give a proof of the main result.

2 Variational setting and preliminaries
In this section, we outline the variational framework for problem (.) and give some pre-
liminary lemmas.

Let

H(
R

N)
=

{
u ∈ L(

R
N)

: ∇u ∈ L(
R

N)}

with the norm

‖u‖H =
(∫

RN

(|∇u| + |u|)dx
) 


.

Let

X =
{

u ∈ H(
R

N)∣∣
∣

∫

RN

(|∇u| + V (x)u)dx < +∞
}

with the inner product and norm

〈u, v〉X =
∫

RN

(∇u∇v + V (x)uv
)

dx, ‖u‖X = 〈u, u〉 

X .

As usual, for  ≤ p < +∞, we let

‖u‖p =
(∫

RN

∣
∣u(x)

∣
∣p dx

) 
p

, u ∈ Lp(
R

N)
,

and

‖u‖∞ = ess sup
x∈RN

∣
∣u(x)

∣
∣, u ∈ L∞(

R
N)

.

Then E = X × X is a Hilbert space with the inner product

〈
(u, v), (ϕ,ψ)

〉
= 〈u,ϕ〉X + 〈v,ψ〉X , (u, v), (ϕ,ψ) ∈ X × X,

and the norm

∥
∥(u, v)

∥
∥ =

〈
(u, v), (u, v)

〉
= ‖u‖

X + ‖v‖
X , (u, v), (ϕ,ψ) ∈ X × X.

Define the functional I on E by

I(u, v) =


∥
∥(u, v)

∥
∥ –

∫

RN
H(x)F(x, u, v) dx. (.)

Then a weak solution of system (.) is a critical point of I if I is continuously differentiable
on E.

Moreover, we have the following compactness lemma.
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Lemma . Under assumption (H), the embedding E ↪→ Lr(RN ) × Lr(RN ) is continuous
for  ≤ r ≤ ∗, and E ↪→ Lr(RN ) × Lr(RN ) is compact for  ≤ r < ∗.

Proof By Lemma . in [] we know that, under assumption (H), the embedding X ↪→
Lr(RN ) is continuous for r ∈ [, ∗] and that X ↪→ Lr(RN ) is compact for r ∈ [, ∗), that
is, there exist constants Cr >  such that ‖u‖r ≤ Cr‖u‖X , ∀u ∈ X, and for any bounded
sequence {un} ⊂ X, there exists a subsequence of {un} such that un → u in Lr(RN ), r ∈
[, ∗). Therefore, for any (u, v) ∈ E, there exists C >  such that

∥
∥(u, v)

∥
∥r

r ≤ C
(‖u‖r

r + ‖u‖r
r
) ≤ C

(‖u‖r
X + ‖u‖r

X
) ≤ C

∥
∥(u, v)

∥
∥r ,

that is, ‖(u, v)‖r ≤ C‖(u, v)‖, so that E ↪→ Lr(RN )×Lr(RN ) is continuous for  ≤ r ≤ ∗. On
the other hand, suppose that {(un, vn)} ⊂ E are bounded, that is, {un} and {vn} are bounded
in X, then there exist subsequences {un} and {vn} such that

un → u, vn → v in Lr(
R

N)
, r ∈ [

, ∗).

Therefore,

 ≤ ‖un – u‖r
r + ‖vn – v‖r

r ≤ ∥
∥(un, vn) – (u, v)

∥
∥r

r ≤ C
(‖un – u‖r

r + ‖vn – v‖r
r
) → 

as n → ∞, that is,

(un, vn) → (u, v) in Lr(
R

N) × Lr(
R

N)
, r ∈ [

, ∗),

so that E ↪→ Lr(RN ) × Lr(RN ) is compact for r ∈ [, ∗). The proof is complete. �

Lemma . If assumptions (H)-(H) hold, then I ∈ C(E, R),

〈
I ′(u, v), (ϕ,ψ)

〉
=

∫

RN
∇u∇ϕ dx +

∫

RN
V (x)uϕ dx –

∫

RN
H(x)Fu(x, u, v)ϕ dx

+
∫

RN
∇v∇ψ dx +

∫

RN
V (x)vψ dx –

∫

RN
H(x)Fv(x, u, v)ψ dx, (.)

and 	 ′ : E → E∗ is compact, where 	(u, v) =
∫

RN H(x)F(x, u, v) dx.

Proof The proof is similar to that of Lemma . in []; we omit it. �

To complete the proof of our theorem, the following theorem will be needed in our
argument. Let E be a Banach space with norm ‖ · ‖ and E =

⊕
j∈N Xj with dim Xj < ∞ for

any j ∈ N . Set Yk =
⊕k

j= Xj, Zk =
⊕∞

j=k+ Xj. Consider the C functional

ϕλ(u) = A(u) – λB(u), λ ∈ [, ],

where A, B : E →R are two functionals.

Theorem . ([], Theorem .) Suppose that the functional ϕλ(u) satisfies:
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(C) ϕλ(u) maps bounded sets to bounded sets uniformly for λ ∈ [, ]. Furthermore,
ϕλ(–u) = ϕλ(u) for all (λ, u) ∈ [, ] × E.

(C) B(u) ≥ ; B(u) → ∞ as ‖u‖ → ∞ on any finite-dimensional subspace of E.
(C) There exists ρk > rk >  such that

ak(λ) := inf
u∈Zk ,‖u‖=ρk

ϕλ(u) ≥  > bk(λ) := max
u∈Yk ,‖u‖=rk

ϕλ(u), λ ∈ [, ],

dk(λ) := inf
u∈Zk ,‖u‖≤ρk

ϕλ(u) →  as k → ∞ uniformly for λ ∈ [, ].

Then there exist λn →  and u(λn) ∈ Yn such that

ϕ′
λn |Yn

(
u(λn)

)
= , ϕλn

(
u(λn)

) → ck ∈ [
dk(), bk()

]
as n → ∞.

In particular, if {u(λn)} has a convergent subsequence for every k, then ϕ has many non-
trivial critical points {uk} ⊂ E \ {} satisfying ϕ(uk) → – as n → ∞.

3 Proof of the main result
In order to apply Theorem . to prove our main result, we define A, B, and ϕλ on our
working space E by

A(u, v) =


∥
∥(u, v)

∥
∥, B(u, v) =

∫

RN
H(x)F(x, u, v) dx, (.)

and

ϕλ(u, v) = A(u, v) – λB(u, v) =


∥
∥(u, v)

∥
∥ – λ

∫

RN
H(x)F(x, u, v) dx (.)

for all (u, v) ∈ E and λ ∈ [, ]. Obviously, ϕλ(u, v) ∈ C(E, R) for all λ ∈ [, ]. We choose
a completely orthonormal basis {ej : j ∈ N} of X and let Xj = span{ej} for all j ∈ N . Then
Yk = span{e, . . . , ek}, Zk = Y ⊥

k , and E = (Yk × Yk) ⊕ (Zk × Zk). Note that ϕ = I , where I is
defined in (.).

Lemma . Suppose that conditions (H), (H), and (H) hold. Then B(u, v) ≥ . Further-
more, B(u, v) → ∞ as ‖(u, v)‖ → ∞ on any finite-dimensional subspace of E.

Proof Evidently, by (H) and (H), B(u, v) =
∫

RN H(x)F(x, u, v) dx ≥ , Now we claim that
for any finite-dimensional subspace Ẽ ⊂ E, there exists ε >  such that

meas
{

x ∈R
N : H(x)

∣
∣(u, v)

∣
∣μ ≥ ε

∥
∥(u, v)

∥
∥μ} ≥ ε, ∀(u, v) ∈ Ẽ. (.)

Arguing by contradiction, we assume that there exists a sequence {(un, vn)}n∈N ⊂ Ẽ \
{(, )} such that

meas

{

x ∈ R
N : H(x)

∣
∣(un, vn)

∣
∣μ ≥ 

n
∥
∥(un, vn)

∥
∥μ

}

<

n

. (.)

Set (sn, wn) = (un ,vn)
‖(un ,vn)‖ ⊂ Ẽ \ {(, )}, then ‖(sn, wn)‖ =  for all n ∈N, and

meas

{

x ∈ R
N : H(x)

∣
∣(sn, wn)

∣
∣μ ≥ 

n

}

<

n

. (.)
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Since dim Ẽ < ∞, it follows from the compactness of the unit sphere of Ẽ that there exists
a subsequence, say {(sn, wn)}, such that (sn, wn) → (s, w) in Ẽ. It is easy to verify that
‖(s, w)‖ = . In view of the equivalence of the norms on the finite-dimensional space Ẽ,
we have (sn, wn) → (s, w) in L(RN ), that is,

∫

RN

∣
∣(sn, wn) – (s, w)

∣
∣ dx →  as n → ∞. (.)

By (.) and the Hölder inequality we have

∫

RN
H(x)

∣
∣(sn, wn) – (s, w)

∣
∣μ dx

≤ ∥
∥H(x)

∥
∥ 

–μ

(∫

RN

∣
∣(sn, wn) – (s, w)

∣
∣ dx

)μ
 →  as n → ∞. (.)

Therefore, there exist ξ, ξ >  such that

meas
{

x ∈R
N : H(x)

∣
∣(s, w)

∣
∣μ ≥ ξ

} ≥ ξ. (.)

Otherwise, we get

meas

{

x ∈ R
N : H(x)

∣
∣(s, w)

∣
∣μ ≥ 

n

}

= , (.)

which implies that

 ≤
∫

RN
H(x)

∣
∣(s, w)

∣
∣μ+ dx ≤ ‖(s, w)‖


n

≤ C‖(s, w)‖

n
=

C

n
→  as n → ∞.

Hence, (s, w) = , which contradicts with ‖(s, w)‖ = . Therefore, (.) holds.
Now let

� = meas
{

x ∈R
N : H(x)

∣
∣(s, w)

∣
∣μ ≥ ξ

}
,

�n = meas

{

x ∈ R
N : H(x)

∣
∣(s, w)

∣
∣μ <


n

}

,

�c
n = R

N \ �n = meas

{

x ∈R
N : H(x)

∣
∣(s, w)

∣
∣μ ≥ 

n

}

.

Then by (.) and (.) we get

meas(�n ∩ �) = meas
(
� \ (

�c
n ∩ �

))

≥ meas(�) – meas
(
�c

n ∩ �
)

≥ ξ –

n
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for all positive integer n. Let n be large enough such that ξ – 
n ≥ ξ

 and ξ
μ – 

n ≥ ξ
μ+ .

Then we have
∫

RN
H(x)

∣
∣(sn, wn) – (s, w)

∣
∣μ dx

≥
∫

�n∩�

H(x)
∣
∣(sn, wn) – (s, w)

∣
∣μ dx

≥ 
μ

∫

�n∩�

H(x)
∣
∣(s, w)

∣
∣μ dx –

∫

�n∩�

H(x)
∣
∣(sn, wn)

∣
∣μ dx

≥
(

ξ

μ
–


n

)

meas(�n ∩ �) > ,

which is a contradiction with (.). Therefore, (.) holds. For the ε given in (.), let

�(u,v) = meas
{

x ∈R
N : H(x)

∣
∣(u, v)

∣
∣μ ≥ ε

∥
∥(u, v)

∥
∥μ}

, ∀(u, v) ∈ Ẽ \ {
(, )

}
.

Then by (.)

meas(�(u,v)) ≥ ε, ∀(u, v) ∈ Ẽ \ {
(, )

}
. (.)

Combining (H) and (.), we have

B(u, v) ≥
∫

RN
cH(x)

∣
∣(u, v)

∣
∣μ dx ≥

∫

�(u,v)

εc
∥
∥(u, v)

∥
∥μ dx ≥ εc

∥
∥(u, v)

∥
∥μ,

which implies that B(u, v) → ∞ as ‖(u, v)‖ → ∞ on any finite-dimensional space of E. The
proof is completed. �

Lemma . Suppose that (H)-(H) and (H) are satisfied. Then there exists a se-
quence ρk → + as k → ∞ such that ak(λ) := inf(u,v)∈Zk×Zk ,‖(u,v)‖=ρk ϕλ(u, v) ≥  and
dk(λ) := inf(u,v)∈Zk×Zk ,‖(u,v)‖≤ρk ϕλ(u, v) →  as k → ∞ uniformly for λ ∈ [, ], where Zk =
⊕∞

j=k+ Xj = span{ek , . . .} for all k ∈ N .

Proof Let

αk(r) := sup
(u,v)∈Zk×Zk ,‖(u,v)‖=

∥
∥(u, v)

∥
∥

r , ∀k ∈ N , (.)

where ‖(u, v)‖r = (
∫

RN |(u, v)|r) 
r . Then αk(r) →  as k → ∞. Indeed, αk(r) is convergent

since αk(r) are decreasing in k and αk(r) ≥ . Furthermore, for any k, there exists (uk , vk) ∈
Zk × Zk such that ‖(uk , vk)‖ =  and ‖(uk , vk)‖r ≥ αk (r)

 .
For any ϕ ∈ X, ϕ =

∑∞
n= anen, we get

∣
∣〈uk ,ϕ〉X

∣
∣ =

∣
∣
∣
∣
∣

〈

uk ,
∞∑

n=k+

anen

〉

X

∣
∣
∣
∣
∣
≤ ‖uk‖X

∥
∥
∥
∥
∥

∞∑

n=k+

anen

∥
∥
∥
∥
∥

X

≤
∥
∥
∥
∥
∥

∞∑

n=k+

anen

∥
∥
∥
∥
∥

X

→ 

as k → ∞, which implies that uk ⇀  in X. Since the embedding X ↪→ Lr(RN ) is compact,
uk →  in Lr(RN ) for r ∈ [, ∗). The same argument implies that vk →  in Lr(RN ) for
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r ∈ [, ∗). Consequently,

∥
∥(uk , vk)

∥
∥r

r ≤ 
r

(‖uk‖r

r + ‖vk‖r
r
) → as k → ∞,

that is,

αk(r) →  as k → ∞. (.)

By (H) we have

∣
∣F(x, u, v)

∣
∣ =

∣
∣F(x, u, v) – F(x, , )

∣
∣

≤
∫ 



∣
∣Fu(x, tu, tv)

∣
∣|u|dt +

∫ 



∣
∣Fv(x, tu, tv)

∣
∣|v|dt

≤ C
(∣
∣(u, v)

∣
∣ +

∣
∣(u, v)

∣
∣p +

∣
∣(u, v)

∣
∣q). (.)

Therefore, by (.), (.)-(.), and the Hölder inequality we get

ϕλ(u, v) =


∥
∥(u, v)

∥
∥ – λ

∫

RN
H(x)F(x, u, v) dx

≥ 

∥
∥(u, v)

∥
∥ – C

(∥
∥(u, v)

∥
∥

 +
∥
∥H(x)

∥
∥ 

–p

∥
∥(u, v)

∥
∥p

 +
∥
∥H(x)

∥
∥ 

–q

∥
∥(u, v)

∥
∥q



)

≥ 

∥
∥(u, v)

∥
∥ – C

(
α

k ()
∥
∥(u, v)

∥
∥ + α

p
k ()

∥
∥(u, v)

∥
∥p + α

q
k ()

∥
∥(u, v)

∥
∥q). (.)

By (.) there exist a positive integer k such that

Cα
k () ≤ 


, ∀k ≥ k. (.)

Then, by (.), we have

ϕλ(u, v) ≥ 

∥
∥(u, v)

∥
∥ – C

(
α

p
k ()

∥
∥(u, v)

∥
∥p + α

q
k ()

∥
∥(u, v)

∥
∥q). (.)

Let

ρk = max
{(

Cα
p
k ()

) 
–p ,

(
Cα

q
k ()

) 
–q

}
. (.)

Obviously, ρk →  as k → ∞ since p, q ∈ (, ). By (.) and (.) direct computation
shows that

ak(λ) := inf
(u,v)∈Zk×Zk ,‖(u,v)‖=ρk

ϕλ(u, v) ≥ ρ
k


> , ∀k ≥ k.

Moreover, by (.), for any (u, v) ∈ Zk × Zk with ‖(u, v)‖ = ρk , we have

ϕλ(u, v) ≥ –C
(
α

k ()
∥
∥(u, v)

∥
∥ + α

p
k ()

∥
∥(u, v)

∥
∥p + α

q
k ()

∥
∥(u, v)

∥
∥q).
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Therefore,

 ≥ inf
(u,v)∈Zk×Zk ,‖(u,v)‖≤ρk

ϕλ(u, v) ≥ –C
(
α

k ()
∥
∥(u, v)

∥
∥ +α

p
k ()

∥
∥(u, v)

∥
∥p +α

q
k ()

∥
∥(u, v)

∥
∥q).

Since αk() →  as k → ∞, we have

dk(λ) := inf
(u,v)∈Zk×Zk ,‖(u,v)‖≤ρk

ϕλ(u, v) →  as k → ∞ uniformly for λ ∈ [, ].

The proof is completed. �

Lemma . Suppose that (H)-(H) hold. Then for the positive integer k and the sequence
{ρk} obtained in Lemma ., for all k ≥ k, there exist  < rk < ρk such that

bk(λ) := max
(u,v)∈Yk×Yk ,‖(u,v)‖=rk

ϕλ(u, v) <  for all λ ∈ [, ],∀k ≥ k,

where Yk =
⊕k

j= Xj = span{e, . . . ek} for all k ∈ N .

Proof Note that Yk × Yk is a finite-dimensional subspace of E. Then by (.) there exists a
constant εk such that

meas
(
�k

(u,v)
) ≥ εk , ∀(u, v) ∈ Yk × Yk \ {

(, )
}

, (.)

where

�k
(u,v) = meas

{
x ∈R

N : H(x)
∣
∣(u, v)

∣
∣μ ≥ εk

∥
∥(u, v)

∥
∥μ}

, ∀(u, v) ∈ Yk × Yk \ {
(, )

}
.

Combining (.), (H), (H), and (.), for any k ∈ N and λ ∈ [, ], we have

ϕλ(u, v) =


∥
∥(u, v)

∥
∥ – λ

∫

RN
H(x)F(x, u, v) dx

≤ 

∥
∥(u, v)

∥
∥ – c

∫

RN
H(x)

∣
∣(u, v)

∣
∣μ dx

≤ 

∥
∥(u, v)

∥
∥ – c

∫

�k
(u,v)

H(x)
∣
∣(u, v)

∣
∣μ dx

≤ 

∥
∥(u, v)

∥
∥ – cεk

∥
∥(u, v)

∥
∥μ

meas
(
�k

(u,v)
)

≤ 

∥
∥(u, v)

∥
∥ – cε


k
∥
∥(u, v)

∥
∥μ. (.)

For ‖(u, v)‖ = rk < ρk small enough, we have

bk(λ) := max
(u,v)∈Yk×Yk ,‖(u,v)‖=rk

ϕλ(u, v) <  for all λ ∈ [, ],∀k ≥ k,

since μ ∈ (, ). The proof is completed. �

Now we give the proof of Theorem ..
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Proof Obviously, condition (C) in Theorem . holds. By Lemmas .-. conditions (C)
and (C) in Theorem . are also satisfied. Furthermore, by Theorem ., there exist λn → 
and (u(λn), v(λn)) ∈ Yn × Yn such that

ϕ′
λn |Yn×Yn

(
u(λn), v(λn)

)
= ,

ϕλn

(
u(λn), v(λn)

) → ck ∈ [
dk(), bk()

]
as n → ∞.

(.)

For simplicity, in what follows, we always set (un, vn) = (u(λn), v(λn)) for all n ∈N.
Now we claim that the sequence {(un, vn)} obtained in (.) is bounded in E. Indeed, by

(H), (H), (.), (.), and the Hölder inequality we have

∥
∥(un, vn)

∥
∥ ≤ ϕλn

(
(un, vn)

)
+ λn

∫

RN
H(x)F(x, un, vn) dx

≤ C + C
(∥
∥(un, vn)

∥
∥ +

∥
∥(u, v)

∥
∥p

p +
∥
∥(u, v)

∥
∥q

q

)
(.)

for some C > . Since p, q ∈ (, ), (.) implies that {(un, vn)} is bounded in E.
Finally, we show that {(un, vn)} possesses a strong convergent sequence in E. Indeed,

since {(un, vn)} is bounded, there exists (u, v) ∈ E such that

(un, vn) ⇀ (u, v) in E,

(un, vn) → (u, v) in Lp(
R

N) × Lp(
R

N)
, p ∈ [

, ∗),

(un, vn) → (u, v) a.e. on R
N .

By (.) we easily get
∥
∥(un, vn) – (u, v)

∥
∥ =

〈
ϕ′

λn (un, vn) – ϕ′
(u, v), (un, vn) – (u, v)

〉

+
∫

RN
H(x)

(
λnFu(x, un, vn) – Fu(x, u, v)

)
(un – u) dx

+
∫

RN
H(x)

(
λnFv(x, un, vn) – Fv(x, u, v)

)
(vn – v) dx. (.)

Clearly,

〈
ϕ′

λn (un, vn) – ϕ′
(u, v), (un, vn) – (u, v)

〉 → . (.)

Denote

M :=
∫

RN
H(x)

(
λnFu(x, un, vn) – Fu(x, u, v)

)
(un – u) dx,

N :=
∫

RN
H(x)

(
λnFv(x, un, vn) – Fv(x, u, v)

)
(vn – v) dx.

Then by (H), (H), and the Hölder and Minkowski inequalities we have

M ≤ C‖un – u‖

(∫

RN
H(x)

(

∣
∣(un, vn)

∣
∣ + 

∣
∣(un, vn)

∣
∣p– + 

∣
∣(un, vn)

∣
∣q–

+
∣
∣(u, v)

∣
∣ +

∣
∣(u, v)

∣
∣p– +

∣
∣(u, v)

∣
∣q–) dx

) 
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≤ C‖un – u‖

(∫

RN
H(x)

(

∣
∣(un, vn)

∣
∣ +

∣
∣(u, v)

∣
∣
) + H(x)

(

∣
∣(un, vn)

∣
∣p–

+
∣
∣(u, v)

∣
∣p–) + H(x)

(

∣
∣(un, vn)

∣
∣q– +

∣
∣(u, v)

∣
∣q–) dx

) 


≤ C‖un – u‖

(∫

RN
H(x)

(

∣
∣(un, vn)

∣
∣ +

∣
∣(u, v)

∣
∣) + H(x)

(

∣
∣(un, vn)

∣
∣p–

+
∣
∣(u, v)

∣
∣p–) + H(x)

(

∣
∣(un, vn)

∣
∣q– +

∣
∣(u, v)

∣
∣q–)dx

) 


≤ C‖un – u‖

[(∫

RN
H(x)

∣
∣(un, vn)

∣
∣ dx

) 


+
(∫

RN
H(x)

∣
∣(u, v)

∣
∣ dx

) 


+
(∫

RN
H(x)

∣
∣(un, vn)

∣
∣p–

) 


+
(∫

RN
H(x)

∣
∣(u, v)

∣
∣p– dx

) 


+
(∫

RN
H(x)

∣
∣(un, vn)

∣
∣q– dx

) 


dx +
(∫

RN
H(x)

∣
∣(u, v)

∣
∣q– dx

) 

]

≤ C‖un – u‖
[
‖H‖∞

∥
∥(un, vn)

∥
∥

 + ‖H‖∞
∥
∥(u, v)

∥
∥

 + ‖H‖ 
–p

∥
∥(un, vn)

∥
∥p–



+ ‖H‖ 
–p

∥
∥(u, v)

∥
∥p–

 + ‖H‖ 
–q

∥
∥(un, vn)

∥
∥q–

 + ‖H‖ 
–q

∥
∥(u, v)

∥
∥q–



]

≤ C‖un – u‖
(∥
∥(un, vn)

∥
∥

 +
∥
∥(u, v)

∥
∥

 +
∥
∥(un, vn)

∥
∥p–

 +
∥
∥(u, v)

∥
∥p–



+
∥
∥(un, vn)

∥
∥q–

 +
∥
∥(u, v)

∥
∥q–



)
. (.)

Since (un, vn) → (u, v) in Lp(RN ) × Lp(RN ), for any p ∈ [, ∗), we obtain

∫

RN
H(x)

(
λnFu(x, un, vn) – Fu(x, u, v)

)
(un – u) dx →  as n → ∞. (.)

Similarly, we can also obtain

∫

RN
H(x)

(
λnFv(x, un, vn) – Fv(x, u, v)

)
(vn – v) dx →  as n → ∞. (.)

Therefore, by (.)-(.) we get ‖(un, vn) – (u, v)‖ →  as n → ∞.
Now from the last assertion of Theorem . we know that I = ϕ has infinitely many

nontrivial critical points. Therefore, system (.) possesses infinitely many small negative-
energy solutions. The proof is completed. �
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