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Abstract
An approximate analysis of the problem of the transient free convective transfer flow
of a Newtonian non-gray optically thin fluid past an isothermal vertical oscillating
porous plate in the presence of chemical reaction and heat generation/absorption is
studied. The dimensionless governing coupled linear partial differential equations are
solved using a spectral relaxation method. The essence of the method of the
solution-spectral relaxation method SRM is to linearize and decouple the original
system of PDEs to form a sequence of independent linear equations that can be
solved iteratively. The SRM approach applies the spectral collocation method and a
finite different method independently in all underlying independent variables to
obtain approximate solutions of the problem. Detailed computations on the
influence of the chemical reaction parameter A2, the thermal radiation parameter R,
the number Sc, the heat absorption/generation parameter Q1, and the Prandtl
number on the flow velocity, temperature, and concentration distributions are
illustrated graphically and in table format. It is observed that the flow velocity
increases with the increase in either thermal radiation or thermal Grashof number.
The temperature profile increases with the increase in either the thermal radiation
parameter or the heat absorption/generation parameter. The rate of heat transfer
decreases with the increase in the thermal radiation parameter, whereas it increases
with increasing value of the heat generation/absorption parameter.

Keywords: free convection; thermal radiation; heat generation; chemical reaction;
heat and mass transfer; spectral relaxation method

1 Introduction
The phenomenon of free convection arises in the fluid, when temperature changes cause
density variation leading to buoyancy forces acting on the fluid element. This can be seen
in our everyday life in atmospheric flow which is driven by temperature differences. Free
convection flow is a significant factor in several practical applications, which include, for
example, cooling of electronic components, in designs related to thermal insulation, ma-
terial processing, and geothermal systems, etc.
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Extensive research has been conducted on free convection flow past a vertical plate see
for instance Ostrach [] and many others. Free convection at a vertical plate with transpi-
ration was investigated by Kolar and Sastri []. Ramanaiah and Malarvizi [] considered
natural convection adjacent to a surface with three thermal boundary conditions. Pop and
Soundalgekar [] investigated the free convection flow past an accelerated infinite plate.
Raptis et al. [] studied the unsteady free convective flow through a porous medium ad-
jacent to a semi-infinite vertical plate using finite difference scheme. Singh and Soundal-
gekar [] investigated the problem of transient free convection in cold water past an infi-
nite vertical porous plate. Flows past a vertical plate oscillating in its own plane have many
industrial applications. The first exact solution of the Navier-Stokes equation was given by
Stoke [] which is concerned with flow of viscous incompressible fluid past a horizontal
plate oscillating in its own plane. Natural convection effects on the Stokes problem was
further investigated by Soundalgekar []. The same problem was considered by Senapati
et al. [] for an impulsively started or oscillating plate. Gupta et al. [] analyzed flow in the
Ekman layer on an oscillating plate. An exact solution to the flow of a viscous incompress-
ible unsteady flow past an infinite vertical oscillating plate with variable temperature and
mass diffusion by taking into account of the homogeneous chemical reaction of first order
was investigated by Muthucumarswamy and Meenakshisundaram []. Kishore et al. []
studied hydromagnetics flow of a viscous incompressible fluid past an oscillating verti-
cal plate embedded in a porous medium with radiation, viscous dissipation and variable
heat, and mass diffusion. The governing equations were solved numerically. It is observed
that plate oscillation, variable mass diffusion, radiation, viscous dissipation, and a porous
medium affect the flow profiles significantly. The process of heat and mass transfer in free
convection flow have attracted the attention of a number of scholars due to its application
in many branches of science and engineering, viz. in the early stages of melting adjacent to
heated surfaces, in chemical engineering processes which are classified as a mass transfer
processes, in a cooling device. Gupta and Gupta [] studied the heat and mass transfer
corresponding to the similarity solution for the boundary layer flow over an isothermal
stretching sheet subject to blowing or suction. Elbashbeshy [] investigated heat transfer
over a stretching surface with variable and uniform surface heat flux subject to injection
and suction.

In the above mentioned studies the effects of linear heat generation (heat sources/sinks)
have not been considered and due to its versatile applicability to ceramic tiles production,
the study of heat transfer in the presence of a source/sink has acquired newer dimensions.
The study of heat generation or absorption in moving fluids is important in problems deal-
ing with chemical reactions and those concerned with dissociating fluids. Possible heat
generation effects may alter the temperature distribution; and, consequently, the parti-
cle deposition rate in nuclear reactors, electronic chips, and semi-conductor wafers. Also,
heat generation or absorption effects in moving fluids are important in view of several
physical problems, such as fluids undergoing exothermic or endothermic chemical reac-
tions. Vajravelu and Hadjinicolaou [] studied the convective heat transfer in an elec-
trically conducting fluid near an isothermal stretching sheet and they studied the effect
of internal heat generation or absorption. Chamkha [] investigated unsteady convec-
tive heat and mass transfer past a semi-infinite porous moving plate with heat absorption.
Hady et al. [] studied the problem of free convection flow along a vertical wavy surface
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embedded in electrically conducting fluid saturated porous media in the presence of an
internal heat generation or absorption effect.

The growing need for chemical reaction in industries and engineering requires the study
of heat and mass transfer in the presence of different conditions and parameters with a
chemical reaction. There are many transfer processes that are governed by the combined
action of buoyancy forces due to both thermal and mass diffusion in the presence of a
chemical reaction. Chemical reactions can be classified as either homogeneous or hetero-
geneous processes. A homogeneous reaction is one that occurs uniformly through a given
phase. In contrast, a heterogeneous reaction takes place in a restricted region or within
the boundary of a phase. A reaction is said to be of first order if the rate of reaction is
directly proportional to the concentration itself, which has many applications in different
chemical engineering processes and other industrial applications such as polymer pro-
duction, manufacturing of ceramics or glassware, and food processing []. It has many
applications in nuclear reactor and combustion, solar collectors, drying, dehydration op-
erations in chemical and food processing plants, polymer production, etc. The effect of
a chemical reaction on a moving isothermal vertical surface with suction has been con-
sidered by Muthucumarswamy []. Considering this in the study of a chemical reaction,
Das et al. [] considered the effects of a first-order chemical reaction on the flow past
an impulsively started infinite vertical plate with constant heat flux and mass transfer.
Muthucumarswamy [] and [] studied a first-order homogeneous chemical reaction
on flow past an infinite vertical plate. Anderson et al. in  have studied the diffusion of
a chemically reactive species from a linearly stretching sheet. Anjalidevi and Kandasamy
[] investigated the effect of a chemical reaction on the flow along a semi-infinite horizon-
tal plate in the presence of heat transfer. Reference [] studied the effect of a chemical re-
action on the flow in the presence of heat transfer and magnetic field. Muthucumarswamy
and Ganesan [] analyzed the effect of a chemical reaction on the unsteady flow past an
impulsively started semi-infinite vertical plate, which is subject to uniform heat flux. On
the other hand, radiation heat transfer effects from a porous wall on free convective flow
are very important in space technology and high temperature processes, and very little is
known about the effects of radiation on the boundary layer of a radiative fluid past a body.
The inclusion of radiation effects in the energy equation leads to a highly non-linear par-
tial differential equation. Actually, many processes in new engineering areas occur at high
temperature and knowledge of radiation heat transfer becomes imperative for the design
of the pertinent equipment. Nuclear power plants, gas turbines, and the various propul-
sion devices for aircraft, missiles, satellites, and space vehicles are examples of such engi-
neering areas. The radiation effects of the free convective flow of a gas past a semi-infinite
flat plate was studied by Soundalgekar et al. [] using the Cogley-Vincenti-Giles equilib-
rium model []. Hossain and Takhar [] studied the effects of radiation of an optically
dense viscous incompressible fluid past a heated vertical plate with uniform free stream
velocity and surface temperature. In similar research work, Makinde [] investigated the
effect of thermal radiation on the free convective flow and mass transfer past a moving
vertical porous plate using a superposition method and reported that increase in thermal
radiation intensity will definitely enhance the fluid velocity and promote a boundary layer
within the flow regime. In this analysis, consideration had been given to gray gases that
emit and absorb, but do not scatter thermal radiation; they noted that the Rosseland dif-
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fusion approximation provides one of the most straightforward simplifications of the full
integro-partial differential equations.

In view of the significance of the radiation effect as well as the chemical reaction and
heat generation effects, we propose in the present paper to investigate the effects of ra-
diation on free convective heat and mass transfer past an isothermal vertical oscillating
porous plate in the presence of a chemical reaction and heat generation, using a spec-
tral relaxation method. The governing boundary layer equations are transformed using
dimensionless quantities to yield a coupled linear system of partial differential equations.
The transformed governing equations are an approach using a spectral relaxation method.
The spectral relaxation method is a new numerical method, proposed by Motsa [], that
can be used to solve linear and non-linear systems of boundary value problems. Our main
objectives are to study the effect of the radiation parameter and heat generation on the flow
and transport characteristics using SRM. Our work is an extension to the work done by
Muthucumaraswamy and Janakiraman [] by considering the effect of thermal diffusion
and heat generation on the flow and heat and mass transfer.

2 Problem formulation
Unsteady flow of a viscous incompressible fluid past an impulsively started infinite isother-
mal vertical oscillating plate with mass diffusion, in the presence of homogeneous chem-
ical reaction of the first order, thermal radiation and a heat generation source, is inves-
tigated. We consider an unsteady flow of a viscous incompressible fluid which is initially
at rest and surrounds an infinite vertical plate with temperature T∞ and concentration
C′∞. The x-axis is taken along the plate in the vertically upward direction and the y-axis
is taken normal to the plate. Initially, it is assumed that the plate and the fluid are of the
same temperature and concentration. At time t′ > , the plate starts oscillating in its own
plane with frequency ω′ and the temperature of the plate is raised to Tw and the concen-
tration level near the plate is also raised to C′

w. It is assumed that there exists a first-order
chemical reaction between the fluid and the species concentration. The contribution of
the thermal radiative heat loss is based on a Rosseland approximation. Most of the effort
in understanding fluid radiation is devoted to the derivation of a reasonable simplification.
The Rosseland approximation requires that the medium is optically dense and radiation
travels only a short distance before being scattered or absorbed. Then by Rosseland and
Boussinesq’s approximations, the unsteady flow is governed by the following equations:

∂v′
o

∂y′ = , ()

∂u′

∂t′ + v′
o
∂u′

∂y′ = ν
∂u′

∂y′ + gβt(T – T∞) + gβc
(
C′ – C′

∞
)
, ()

∂T
∂t′ + v′

o
∂T
∂y′ = α

∂T
∂y′ –


ρcp

∂qr

∂y′ + Q(T – T∞), ()

∂C
∂t′ + v′

o
∂C
∂y′ = D

∂C
∂y′ + kc

(
C – C′

∞
)
, ()

subject to

t′ ≤ : u′ = , T = T∞, C′ = C′
∞, ∀y′, ()
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t′ > : u′ = Uo cosω′t′, T = Tw, C′ = C′
w, at y′ = ,

u′ = , T∗ = T∞, C′ = C′
∞, at y′ → ∞. ()

The continuity equation on integration gives

v′
o = Vo, ()

where Vo is the normal velocity of suction and injection at the wall according to whether
Vo >  or Vo < , respectively, Vo =  represents a non-permeable wall. As the plate is
assumed to be infinite in length, the physical variables are functions of y′ and t′ only. Here
u′ is the velocity in the x′ direction, the time t′, g is the acceleration due to gravity, βt is the
volumetric coefficient of thermal expansion, βc the volumetric coefficient of expansion for
concentration, T the temperature of the fluid near the plate, T∞ is the temperature of the
fluid far away from the plate, C the species concentration in the fluid far away from the
plate, C′∞ the species concentration at the plate, τ the characteristic time, ν the kinematic
viscosity, ρ the density, Cp the specific heat at constant pressure, α the thermal diffusivity,
and D is the mass diffusion coefficient.

In this paper, the effect of thermal radiation is studied on the flow to further establish the
radiative heat loss due to thermal radiation during convection. It is necessary to point out
that most of the effort in understanding the fluid thermal radiation is primarily devoted to
the derivation of reasonable simplification of the model []. One of these models was pro-
posed by Cogley et al. [] with the assumption that the fluid is in the optically thin limit
and accordingly the fluid does not absorb its own radiation but only absorbs the radiation
emitted by the flow boundaries. But for optically thick fluid such as gas,the self-absorption
rises and the situation become difficult. However, such a problem can be simplified by us-
ing the so-called Rosseland approximation (Rosseland, ). The Rosseland approxima-
tion requires that the medium is optically dense and radiation travels only a short distance
before being scattered or absorbed. We are concerned with the study of thermal radiation
of heat within the optically thick fluid before the heat is scattered. Hence radiative heat
transfer is taken into account and the Rosseland equation is used to model the thermal
radiation of the working fluid. The Rosseland equation is a simplified model of radiative
transfer equation (RTE). When the working fluid has a great extinction coefficient, it can
be treated as an optically thick fluid. qr is the radiative heat flux and is defined using the
Rosseland approximation [, ] as

qr = –
σ ∗

K∗
∂T

∂y′ ,

where σ ∗ is Stefan-Boltzmann constant and K∗ is called the absorption coefficient. We
assumed that the temperature difference within the flow regime is sufficiently small such
that T can be expressed as a linear function of the free stream temperature of the flow.
This can be derived by expanding T in a Taylor series about T∞ and neglecting higher-
order terms. We consider the Taylor series expansion of a function f (x) about x,

f (x) = f (x) + (x – x)f ′(x) +



(x – x)f ′′(x) + · · · +

n!

(x – x)nf n(x). ()
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Likewise, we have an expansion of T about T∞. Set f (x) = T and f (x) = f (T∞) = T∞ in
the above equation. Neglecting higher orders, we obtain

T = T
∞T – T

∞. ()

Thus


ρ∞Cp

∂qr

∂y′ = –
σ ∗T∞

ρ∞CpK∗
∂T
∂y′ . ()

To facilitate approximate solutions to the model, we introduce the following dimension-
less quantities:

u =
u′

Vo
, τ =

t′V 
o

ν
, η =

y′Vo

ν
, φ =

C – C′∞
C′

w – C′∞
, ()

θ =
T – T∞
Tw – T∞

, Gr =
gβtν(Tw – T∞)

V 
o

, Gc =
gβcν(C′

w – C′∞)
V 

o
, ()

Pr =
μCp

α
, Sc =

ν

D
, A =

νkc

V 
o

,

ω =
ω′ν
V 

o
, Q =

νQ
V 

o
, R =

σ ∗T∞
νK∗ ,

()

into the governing equations ()-() and obtain

∂u
∂τ

–
∂u
∂η

=
∂u
∂η

+ Grθ + Gcφ, ()

Pr
∂θ

∂τ
– Pr

∂θ

∂η
=

(
 +

R


)
∂θ

∂η + PrQθ , ()

∂φ

∂τ
–

∂φ

∂η
=


Sc

∂φ

∂η – Aφ, ()

subject to the transformed boundary conditions:

τ ≤ : u = , θ = , φ = , ∀η, ()

τ > : u = cosωτ , θ = , φ = , at η = ,

u = , θ = , φ = , at η → ∞, ()

where R is the thermal radiation parameter, Pr is the Prandtl number, A is the chemical
reaction parameter, ω is the phase angle, Gr is the thermal Grashof number, Gc is the
Grashof mass number, Sc is the Schmidtl number, and Q is the heat absorption generation
parameter.

3 Numerical method: spectral relaxation method (SRM)
Here, we discuss the application of the numerical method called the spectral relaxation
method (SRM) to obtain an approximate solution of the partial differential equations ()-
() subject to conditions ()-(). In the application of SRM, it is fundamental to apply
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an efficient linearization technique to derive a system of linear equations that can be dis-
cretized using basic discretization scheme.

The SRM as proposed by Motsa [, ] adopts the Gauss-Seidel approach to decouple
non-linear systems of equations. Similarly, in this section we apply the Gauss-Seidel tech-
nique to linearize and decouple the system of equations ()-(). Afterward, the equations
of the resulting system are discretized to obtain iterative schemes that evaluate the linear
terms at the current iterating level, denoted by (r + ), and the non-linear terms at the pre-
vious level, represented as (r). Adopting the SRM steps mentioned above on the systems
of non-linear partial differential equations yields the following linear PDEs:

∂ur+

∂η +
∂ur+

∂η
+ a,r(η, τ ) =

∂ur+

∂τ
, ()

(
 +

R


)
∂θr+

∂η + Pr
∂θr+

∂η
+ PrQθr+ = Pr

∂θr+

∂τ
, ()


Sc

∂φr+

∂η +
∂φr+

∂η
– Aφr+ =

∂φr+

∂τ
, ()

subject to

ur+(, τ ) = cos(ωτ ), θr+(, τ ) = , φr+(, τ ) = , ()

ur+(∞, τ ) = , θr+(∞, τ ) = , φr+(∞, τ ) = , ()

where the coefficient parameter a,r is defined as

a,r(η, τ ) = Grθr + Gcφr .

The initial approximation for solving equations ()-() are obtained at τ =  with due
consideration of the boundary conditions ()-(). Hence, u(η, τ ), θ(η, τ ), φ(η, τ ) are
given as

u(η, τ ) = cos(ωτ ) exp

(
–

η



)
, ()

θ(η, τ ) = erfc

(√
Prη


)
, ()

φ(η, τ ) = erfc

(√
Scη


)
. ()

The system of equations ()-() can be solved iteratively for the unknown functions
by adopting the initial approximations given in ()-() as starting values. The iteration
schemes (), (), and () are solved iteratively for ur+(η, τ ), θr+(η, τ ), and φr+(η; τ )
when r = , , , . . . .

To solve the system of equations ()-(), the equations are first discretized using the
Chebyshev spectral collocation method with respect to an η independent variable and,
second, the implicit forward finite difference method in the τ direction. The finite differ-
ence scheme is used with centering about a mid-point between τ n+ and τ n. The mid-point
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of the scheme is expressed as

τ n+ 
 =

τ n+ + τ n


.

Thus, implementing the centering about τ n+ 
 for the unknown functions, say u(η, τ ) and

its associated derivative, we obtain

u
(
ηj, τ n+ 


)

= un+ 


j =
un+

j + un
j


,

(
∂u
∂τ

)n+ 


=
un+

j + un
j

τ
. ()

Suppose we apply the Chebyshev spectral collocation method on the system of equations
()-() before applying the finite differences. We obtain

(
D + D

)
ur+ + a,r =

∂ur+

∂τ
, ur+(x, τ ) = cos(ωτ ), ur+(xNx , τ ) = , ()

((
 +

R


)
D + PrD + PrQ

)
θr+ = Pr

∂θr+

∂τ
,

θr+(x, τ ) = , θr+(xNx , τ ) = ,
()

((


Sc

)
D + D – A

)
φr+ =

∂φr+

∂τ
, φr+(x, τ ) = , φr+(xNx , τ ) = , ()

ur+ =

⎡

⎢
⎢⎢
⎢⎢⎢
⎢
⎣

ur+(x, τ )
ur+(x, τ )

...
ur+(xNx–, τ )

ur+(xNxτ )

⎤

⎥
⎥⎥
⎥⎥⎥
⎥
⎦

, θr+ =

⎡

⎢
⎢⎢
⎢⎢⎢
⎢
⎣

θr+(x, τ )
θr+(x, τ )

...
θr+(xNx–, τ )
θr+(xNx , τ )

⎤

⎥
⎥⎥
⎥⎥⎥
⎥
⎦

,

φr+ =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

φr+(x, τ )
φr+(x, τ )

...
φr+(xNx–, τ )
φr+(xNx , τ )

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

, ar+ =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

ar+(x, τ )
ar+(x, τ )

...
ar+(xNx–, τ )
ar+(xNx , τ )

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

.

()

Now we apply the forward finite difference scheme defined in equation () to equations
()-(), in the τ -direction with centering about the mid-point τ n+ 

 to obtain the fol-
lowing systems of decoupled equations:

Pun+
r+ = E + L, ()

Pθ
n+
r+ = E + L, ()

Pφ
n+
r+ = E + L, ()

subject to the following initial and boundary conditions:

ur+
(
xNx , τ n) = θr+

(
xNx , τ n) = φr+

(
xNx , τ n) = , ()

ur+
(
x, τ n) = w′, θr+

(
x, τ n) = φr+

(
x, τ n) = , n = , , . . . , ()
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ur+(ηj, ) = w′ exp

(
–

η
j



)
, θr+(ηj, ) = erfc

(√
Prηj



)
, ()

φr+(ηj, ) = erfc

(√
Scηj



)
, j = , , , . . . , Nx, ()

where w′ = cosωτ . The matrices above are defined as follows:

P =
(



(
D + D

)
–

I
τ

)
, ()

P =
(




((
 +

R


)
D + PrD + PrQI

)
– Pr

I
τ

)
, ()

P =
(




((


Sc

)
D + D – AI

)
–

I
τ

)
, ()

E =
(

–


(
D + D

)
–

I
τ

)
, ()

E =
(

–



((
 +

R


)
D + PrD + PrQI

)
– Pr

I
τ

)
, ()

E =
(

–



((


Sc

)
D + D – AI

)
–

I
τ

)
, ()

L = –an+ 


,r , L = , L = . ()

We note that I is an identity matrix of size (Nx + ) ∗ (Nx + ), U, �, and � are the vectors
of the unknown functions u; θ and φ evaluated at the grid points and  is a zero vector of
size (Nx + ) ∗ . The boundary conditions ()-() are imposed on the first and last rows
of ()-() as follows:

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

  · · ·  

P,k–

  · · ·  

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎣

un+
r+,

un+
r+,
...

un+
r+,Nx

⎤

⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

  · · ·  

E,k–

  · · ·  

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎣

un
r+,

un
r+,
...

un
r+,Nx

⎤

⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎦

+

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

w′

L



⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

, ()

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

  · · ·  

P,k–

  · · ·  

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎣

θn+
r+,

θn+
r+,
...

θn+
r+,Nx

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

  · · ·  

E,k–

  · · ·  

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎣

θn
r+,

θn
r+,
...

θn
r+,Nx

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎦

+

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣



L



⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

, ()

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

  · · ·  
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where

un+
r+,j = ur+

(
xj, τ n), θn+

r+,j = θr+
(
xj, τ n),

φn+
r+,j = φr+

(
xj, τ n), j = , , , , . . . , Nx.

()

Hence, by adopting the initial approximations given by equations ()-() for u(τ ,η),
θ(τ ,η) and φ(τ ,η), respectively, equations ()-() are solved iteratively to obtain ap-
proximate solutions for the unknown functions Ur+(τ ,η), θr+(τ ,η), and φr+(τ ,η), with
r = , , , , . . . .

From the velocity, temperature, and concentration profiles, we now study the effects of
the various parameters on the skin-friction coefficient, the local heat transfer rate (Nusselt
number), and the mass transfer rate (Sherwood number). In practical engineering appli-
cations, the physical quantities of practical values are the local skin friction coefficient, the
local Nusselt number of the flow, and the Sherwood number. These are defined according
to [] as

Skin friction coefficient: τ ∗ =
ρν( ∂u′

∂y′ )|y′=

ρV 


, ()

Nusselt number: Nu = –
kν( ∂T

∂y′ )|y′=

V 
 (Tw – T∞)

, ()

Sherwood number: Sh = –
Dν( ∂C

∂y′ )|y′=

V 
 (C′

w – C′∞)
. ()

Using the dimensional quantities in equations ()-(), the quantities above can be repre-
sented by

τ ∗ =
∂u
∂η

∣∣
∣∣
η=

, ()

Nu = –
∂θ

∂η

∣∣
∣∣
η=

, ()

Sh = –
∂φ

∂η

∣
∣∣
∣
η=

. ()

4 Results and discussion
We have presented an approximate solution for the non-dimensional velocity, tempera-
ture, and concentration profiles at various values of pertinent parameters of the flow, in
Figures -. For the purpose of numerical validation of our work, we have taken fixed val-
ues of A = Gr = Gc = , Pr = ., ω = π/, R = ., Sc = ., and τ = ., so as to obtain
a clear insight into the physics of the problem. Figure  represents the effect of the Prandtl
number Pr on the velocity, temperature, and concentration profiles of the flow field. It
is obvious that the Prandtl number has no significant impact on the concentration pro-
files of the flow as shown in Figure  and equation (), but the velocity and temperature
profiles of the flow decrease as the Prandtl number increases. The temperature and ther-
mal boundary layer thickness are decreased corresponding to an increase in the values of
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Figure 1 Effect of Prandtl number Pr on velocity, temperature, and concentration profiles of the flow.

Figure 2 Effect of chemical reaction parameter A2 on velocity, temperature, and concentration
profiles of the flow.
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Figure 3 Effect of phase angle ω on velocity, temperature, and concentration profiles of the flow.

Figure 4 Effect of Grashof number Gr on velocity, temperature, and concentration profiles of the flow.
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Figure 5 Effect of Grashof mass number Gc on velocity, temperature, and concentration profiles of
the flow.

Figure 6 Effect of thermal radiation parameter R on velocity, temperature, and concentration profiles
of the flow.
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Figure 7 Effect of Schmidt number Sc on velocity, temperature, and concentration profiles of the flow.

Figure 8 Effect of heat absorption parameter Q1 on velocity, temperature, and concentration profiles
of the flow.
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the Prandtl number. The Prandtl number is inversely proportional to the thermal diffu-
sivity. A larger Prandtl number implies smaller diffusivity. This smaller thermal diffusivity
shows a reduction in the momentum and thermal boundary layer thickness. Figure  illus-
trates the influence of the non-dimensional chemical reaction parameter A on the veloc-
ity, temperature, and concentration profile of the flow. The effect of the chemical reaction
parameter is very important in the concentration field. It can be inferred from Figure 
that the velocity and concentration profiles of the fluid decrease with increasing values of
the chemical reaction parameter A. This is because an increase in the chemical reaction
parameter speeds up the rate of the reactants on the flow and consequently reduces the
concentration distribution of the reacting species. The chemical reaction increases the
rate of interfacial mass transfer. The chemical reaction reduces the local concentration,
and it thus increases its concentration gradient and its flux. There is little or no significant
effect of the chemical reaction parameter on the temperature profile of the flow. That is,
we observe that A has a negligible effect on the temperature distribution of the flow.

The graph of velocity, temperature, and concentration profiles at different values of the
phase angle ω are shown in Figure . The numerical results show that an increase in the
phase angle ω results in a reduction of the velocity distribution but has a negligible effect
on the temperature and concentration profiles. Figure , first graph, shows the influence
of the thermal buoyancy force parameter Gr on the velocity. As can be seen from this
figure, the velocity profile increases with the increase in the values of the thermal buoy-
ancy parameter (i.e. the thermal Grashof number). It is observed that the velocity profile
momentarily increases in the boundary layer region. The buoyancy force acts like a favor-
able pressure gradient, which accelerates the fluid within the boundary layer and hence
increases the boundary layer thickness. The solutal buoyancy force parameter Gc has the
same effect on the velocity profile as Gr (see Figure (left)). There is little or no signifi-
cant effect of the thermal Grashof number on the temperature and concentration profiles
of the flow. Figure  depicts the effect of varying thermal radiation parameter R on the
flow velocity, temperature, and concentration flow. We observe that the thermal radiation
enhances convective flow in such a way that the flow velocity increases with the increase
in the thermal radiation parameter R. We observe that the thermal radiation enhances
heat transfer as the thermal boundary layer thickness increases with the increase in the
thermal radiation. The temperature distribution is enhanced with an increase in the ther-
mal radiation parameter. Larger values of thermal radiation parameter provide more heat
to the working fluid, which results in an enhancement in the temperature and thermal
boundary layer thickness. There is no significant effect of the thermal radiation param-
eter on the concentration distribution in flow. The effect of the Schmidt number Sc on
the flow profiles is shown in Figure . It can be seen from the figures that, as the Schmidt
number increases, the flow velocity and volume fraction (concentration profile) decrease
across the boundary layer region. A higher Schmidt number implies a lower Brownian
diffusion coefficient, which will give rise to a shorter penetration depth for the concentra-
tion boundary layer. The effect of the Schmidt number on the temperature distribution
is not significant. Figure  illustrates the influence of the heat absorption coefficient Q

on the velocity, temperature, and concentration distributions. Physically, the presence of
heat absorption (thermal sink) on a flow often leads to a net reduction in the flow veloc-
ity. This behavior is seen from the first part of Figure  in which the velocity decreases as
Q increases. The hydrodynamic boundary layer decreases as the heat absorption effects
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Table 1 Computational values of skin-friction coefficient, local heat transfer rate (Nusselt
number) and Sherwood number at various values of the thermal radiation parameter R when
Gr = Gc = 2, Pr = 0.72, A2 = 2, ω = π /6, Sc = 0.62, Q1 = 0.5, and τ = 0.5

R τ∗ Nu Sh

0.0 2.7973670712 0.4188946992 1.3794604542
0.5 2.8373439852 0.3592776848 1.3794604542
1 2.8690666406 0.3198857845 1.3794604542
1.5 2.8953500265 0.2910196053 1.3794604542
1.8 2.9091812522 0.2769640603 1.3794604542
2.0 2.9177411262 0.2686161833 1.3794604542

Table 2 Computational values of skin-friction coefficient and local heat transfer rate (Nusselt
number) and Sherwood number at various values of heat generation/absorption parameter
Q1 when Gr = Gc = 2, Pr = 0.72, A2 = 2, ω = π /6, Sc = 0.62, R = 0.5, and τ = 0.5

Q1 τ∗ Nu Sh

0.0 2.7550051157 0.5537767389 1.3794604542
0.5 2.8373439852 0.3592776848 1.3794604542
1.0 2.9309483388 0.1351747152 1.3794604542
1.5 3.0378401707 0.1255127534 1.3794604542

increase. Figure (right) depicts the effects of the heat absorption parameter Q on the
temperature distribution. It is observed that the boundary layer generated more heat en-
ergy into the flow and thereby raised the temperature profile of the flow. This is because
when heat is gained, the buoyancy force increases the temperature profile.

Numerical results of the skin-friction coefficient τ∗, the Nusselt number Nu, and
the Sherwood number Sh against the thermal radiation parameter and heat absorp-
tion/generation parameter are presented in tabular form in Tables  and . The influence of
thermal radiation on the skin friction coefficient, the Nusselt number, and the Sherwood
number is shown in Table . We clearly observe from the table that the absolute values of
the skin-friction coefficient increases as the thermal radiation parameter R increases. The
thermal radiation parameter has an opposite effect on the Nusselt number. It is seen in
Table  that the skin-friction coefficient and the local heat transfer rate (Nusselt number)
increase with the increase in the heat generation parameter.

5 Conclusion
This study presented an approximate analysis on the problem of a transient free convective
transfer flow of a Newtonian non-gray optically thin fluid past an isothermal vertical oscil-
lating porous plate in the presence of a chemical reaction and heat generation/absorption.
The coupled non-linear governing equations were solved using the spectral relaxation
method. In this paper, the spectral collocation method derived in terms of Lagrange inter-
polation polynomials and adapted to decoupled non-linear systems of partial differential
equations using relaxation techniques has been applied. The application of the method
was found to be straightforward because it does not depend on any linearization, expan-
sions and the discretization of the ordinary or partial derivatives whcih has its basis on
simple formulas. The influence of various physical parameters such as the heat genera-
tion parameter, the Prandtl number, the Schmidtl number, thermal radiation, etc., were
also investigated and analyzed. Our findings reveal that:



Fagbade and Omowaye Boundary Value Problems  (2016) 2016:97 Page 17 of 18

	 Buoyancy parameters such as the thermal Grashof number and the mass Grashof num-
ber increase the velocity distribution within the momentum boundary layer.

	 The presence of heat absorption enhances the temperature distribution and reduces the
fluid velocity profile.

	 The concentration distribution decreases with increasing value of the chemical reaction
parameter.

	 Both the velocity and the temperature profiles increase with increasing values of thermal
radiation parameter.
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