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Abstract
The existence and uniqueness of positive solutions are obtained for singular
fourth-order four-point boundary value problem with p-Laplace operator
[ϕp(u′′(t))]′′ = f (t,u(t)), 0 < t < 1, u(0) = 0, u(1) = au(ξ ), u′′(0) = 0, u′′(1) = bu′′(η), where
f (t,u) is singular at t = 0, 1 and u = 0. A fixed point theorem for mappings that are
decreasing with respect to a cone in a Banach space plays a key role in the proof.
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1 Introduction
In this paper, we investigate the existence and uniqueness of positive solutions for the
singular fourth-order differential equation involving the p-Laplace operator

[
ϕp

(
u′′(t)

)]′′ = f
(
t, u(t)

)
, t ∈ (, ), (.)

with the four-point boundary conditions

u() = , u() = au(ξ ), u′′() = , u′′() = bu′′(η), (.)

where ϕp(t) = |t|p–t, p > ,  < ξ ,η < ,  ≤ a < /ξ ,  ≤ bp– < /η, and f (t, x) is singular
at t = ,  and x = . Here by a positive solution u of SBVP (.)-(.) we mean a solution
u ∈ C[, ] with ϕp(u′′) ∈ C(, ) ∩ C[, ] satisfying u(t) >  on (, ).

It is well known that the bending of elastic beam can be described by some fourth-order
boundary value problems. There are extensive studies on fourth-order boundary value
problems with diverse boundary conditions by using different methods, for instance, [–
] and the references therein.

Recently, in the case  ≤ a < ,  ≤ b < , using the lower and upper solution method and
the Schauder fixed-point theorem, Zhang and Liu [] proved that the SBVP (.)-(.) has
at least one positive solution under the following assumptions:

(H) f ∈ C((, ) × (,∞), [,∞)), and f (t, x) is nonincreasing in x;

© 2016 Pei and Wang. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-016-0600-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-016-0600-0&domain=pdf
mailto:wlb_math@163.com


Pei and Wang Boundary Value Problems  (2016) 2016:92 Page 2 of 9

(H) For any constant λ > ,  <
∫ 

 H(s, s)f (s,λs( – s)) ds < ∞;
(H) There exist a continuous function a(t) in [, ] and a fixed positive number k such

that a(t) ≥ kt( – t), t ∈ [, ], and

∫ 


G(t, r)ϕ–

p

(∫ 


H(r, s)f

(
s, a(s)

)
ds

)
dr := b(t) ≥ a(t), t ∈ [, ],

∫ 


G(t, r)ϕ–

p

(∫ 


H(r, s)f

(
s, b(s)

)
ds

)
dr ≥ a(t), t ∈ [, ],

where G(t, s), H(t, s) will be given in Section .

The purpose of this paper is to improve the existence results of []. Using a fixed point
theorem for mappings that are decreasing with respect to a cone in a Banach space, we
obtain the existence and uniqueness of positive solutions of SBVP (.)-(.). We note that,
in our proofs, we just assume that (H) and (H) of [] with (H) of [] removed. Our
study is motivated by the papers [, ].

In addition, we note that we also obtained the uniqueness of a positive solution for SBVP
(.)-(.).

The rest of the paper is organized as follows. The fixed point theorem of Gatica et al.
[] and some definitions and lemmas are given in Section . The main results on the
existence of positive solutions for SBVP (.)-(.) are presented in Section .

2 Preliminary
Let B be a Banach space. A nonempty closed set K ⊂ B is called a cone if the following
conditions are satisfied:

(i) au + bv ∈ K for all u, v ∈ K and all a, b ≥ ;
(ii) u, –u ∈ K imply u = .
Given a cone K , a partial order 	 is induced on B as follows; u 	 v for u, v ∈ B iff v–u ∈ K

(for clarity, we sometimes write u 	 v (w.r.t. K )). For u, v ∈ B with u 	 v, we denote by 〈u, v〉
the closed order interval between u and v, that is, 〈u, v〉 = {w ∈ B : u 	 w 	 v}. A cone K is
normal in B if there exists δ >  such that ‖e +e‖ ≥ δ for all e, e ∈ K with ‖e‖ = ‖e‖ = .

Lemma . ([, ]) Let B be a Banach space, K a normal cone in B, D a subset of K such
that if u, v ∈ D with u 	 v, then 〈u, v〉 ⊂ D, and let T : D → K be a continuous mapping that
is compact on any closed order interval contained in D. Suppose that there exists u ∈ D
such that Tu is defined and Tu and Tu are order-comparable to u. Then T has a
fixed point in D, provided that either

(I) Tu 	 u and Tu 	 u or u 	 Tu and u 	 Tu, or
(II) the complete sequence of iterates {Tnu}∞n= is defined and there exists v ∈ D such

that Tv ∈ D and v 	 Tnu for all n ≥ .

Let G(t, s) denote the Green function for

–u′′ = , u() = , u() = αu(ξ ).
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Then by [] the Green function G(t, s) can be expressed as follows:

G(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s ∈ [, ξ ] :

{
t

–aξ
[( – s) – a(ξ – s)], t ≤ s,

s
–aξ

[( – t) – a(ξ – t)], s ≤ t,

s ∈ [ξ , ] :

{
t

–aξ
( – s), t ≤ s,


–aξ

[s( – t) + aξ (t – s)], s ≤ t.

Lemma . ([]) The Green function G(t, s) has the following properties:

t( – t)G(s, s) ≤ G(t, s) ≤ G(s, s) for (t, s) ∈ [, ] × [, ].

Let B = C[, ] denote the Banach space of continuous functions with norm

‖u‖ = sup
t∈[,]

∣∣u(t)
∣∣, ∀u ∈ B,

and let K = {u ∈ B : u(t) ≥  on [, ]} be the cone of nonnegative functions in B. It is easy
to see that K is a normal cone in B. Now we define the subset D ⊂ K as

D :=
{

u ∈ K : there exists λ(u) >  such that u(t) ≥ λt( – t) on [, ]
}

.

Moreover, define T : D → K by

(Tu)(t) :=
∫ 


G(t, τ )ϕ–

p

(∫ 


H(τ , s)f

(
s, u(s)

)
ds

)
dτ , ∀u ∈ D,

where

H(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s ∈ [,η] :

{
t

–bp–η
[( – s) – bp–(η – s)], t ≤ s,

s
–bp–η

[( – t) – bp–(η – t)], s ≤ t,

s ∈ [η, ] :

{
t

–bp–η
( – s), t ≤ s,


–bp–η

[s( – t) + bp–η(t – s)], s ≤ t.

Then T is well defined. In fact, from Lemma . we have

t( – t)H(s, s) ≤ H(t, s) ≤ H(s, s) for (t, s) ∈ [, ] × [, ].

It can be easily verified that

∣
∣H ′

t(t, s)
∣
∣ ≤

{
+b

–bp–η
s,  ≤ s ≤ t,

+b
–bp–η

( – s),  ≤ t ≤ s.

It follows from conditions (H) and (H) that, for each u ∈ K ,
∣∣
∣∣

∫ 


H ′

τ (τ , s)f
(
s, u(s)

)
ds

∣∣
∣∣ ≤

∫ 



∣
∣H ′

τ (τ , s)
∣
∣f

(
s,λs( – s)

)
ds

≤  + b
 – bp–η

[∫ τ


sf

(
s,λs( – s)

)
ds

+
∫ 

τ

( – s)f
(
s,λs( – s)

)
ds

]
:= v(τ ).
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By the Fubini theorem and (H) it is easy to show that v(τ ) ∈ L[, ], and hence
∫ 

 H(τ , s)f (s, u(s)) ds ∈ C[, ]. Thus, T is well defined, and also from Lemma . we have
that, for all u ∈ D and t ∈ [, ],

(Tu)(t) =
∫ 


G(t, τ )ϕ–

p

(∫ 


H(τ , s)f

(
s, u(s)

)
ds

)
dτ

≤
∫ 


G(τ , τ )ϕ–

p

(∫ 


H(τ , s)f

(
s, u(s)

)
ds

)
dτ .

Hence,

‖Tu‖ ≤
∫ 


G(τ , τ )ϕ–

p

(∫ 


H(τ , s)f

(
s, u(s)

)
ds

)
dτ .

On the other hand, by Lemma ., for all u ∈ D and t ∈ [, ], we have

(Tu)(t) =
∫ 


G(t, τ )ϕ–

p

(∫ 


H(τ , s)f

(
s, u(s)

)
ds

)
dτ

≥ t( – t)
∫ 


G(τ , τ )ϕ–

p

(∫ 


H(τ , s)f

(
s, u(s)

)
ds

)
dτ .

Thus,

(Tu)(t) ≥ t( – t)‖Tu‖, t ∈ [, ]. (.)

This implies that Tu ∈ D, that is, T : D → D, and hence, it can be verified that u ∈ D is a
positive solution of SBVP (.)-(.) iff Tu = u.

3 Main results
In this section, we first establish an existence theorem of positive solutions for SBVP (.)-
(.) by applying Lemma ..

Before proceeding with our existence result for SBVP (.)-(.), we will define a se-
quence of functions that are modifications of f and have none of the singularities of f at
u = . To this end, we define a sequence of functions fn : (, ) × [,∞) → [,∞) by

fn(t, u) = f
(
t, max

{
u, t( – t)/n

})
.

Note that, for n = , , . . . , fn satisfies (H). Also, for n = , , . . . ,

fn(t, u) ≤ f (t, u), (t, u) ∈ (, ) × (,∞), (.)

fn(t, u) ≤ f
(
t, t( – t)/n

)
, (t, u) ∈ (, ) × [,∞). (.)

We now state and prove our existence result for SBVP (.)-(.).

Theorem . Assume that conditions (H) and (H) are satisfied. Then SBVP (.)-(.)
has at least one positive solution u∗ ∈ D.
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Proof We define the sequence of mappings Tn : K → K by

(Tnu)(t) :=
∫ 


G(t, τ )ϕ–

p

(∫ 


H(τ , s)fn

(
s, u(s)

)
ds

)
dτ , ∀u ∈ K .

Then by (.) and condition (H), Tn is well defined and bounded. We note that Tn is a
continuous mapping by Lebesgue’s dominated convergence theorem. Also, it is easy to
show by (H) and the continuity of G(t, s) that {(Tnu)(t) : u ∈ K} is equicontinuous, and
hence Tn is a compact mapping by the Arzelà-Ascoli theorem.

In addition, observe that for all n and u ∈ K , Tnu satisfies the boundary conditions (.).
Furthermore, for each n, since Tn satisfies (H), it follows that Tn is nonincreasing relative
to the cone K . Also, it is clear that  	 Tn() and  	 T

n () for each n. Thus, by Lemma .,
for each n, there exists un ∈ K such that Tnun = un. Hence, for each n, un(t) satisfies the
boundary conditions (.).

Now we claim that there exist R > r >  such that

r ≤ ‖un‖ ≤ R for all n.

Firstly, we shall prove the right-hand side inequality. Assume to the contrary that the
inequality is false. Then by passing to a subsequence and relabeling, without loss of gen-
erality, we may assume that

lim
n→∞‖un‖ = ∞ and ‖un‖ ≤ ‖un+‖ for all n.

Similarly to the proof of (.), we can easily show that, for any u ∈ K ,

(Tnu)(t) ≥ t( – t)‖Tnu‖, t ∈ [, ]. (.)

Since Tnun = un for each n, it follows that

un(t) ≥ t( – t)‖un‖ ≥ t( – t)‖u‖, t ∈ [, ].

Then assumptions (H) and (H) and inequality (.) yield that, for any  ≤ t ≤  and n,

un(t) =
∫ 


G(t, τ )ϕ–

p

(∫ 


H(τ , s)fn

(
s, un(s)

)
ds

)
dτ

≤
∫ 


G(τ , τ )ϕ–

p

(∫ 


H(s, s)f

(
s, un(s)

)
ds

)
dτ

≤
∫ 


G(τ , τ ) dτ · ϕ–

p

(∫ 


H(s, s)f

(
s, s( – s)‖u‖

)
ds

)
:= M.

Thus, ‖un‖ ≤ M for all n. This is a contradiction to limn→∞ ‖un‖ = ∞.
Next, we prove the left-hand side inequality. Assume to the contrary that the inequality is

false. By passing to a subsequence and relabeling we may assume without loss of generality
that limn→∞ ‖un‖ = . Then we have

lim
n→∞ un(t) =  uniformly on [, ]. (.)
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Since f (t, u) is singular at u = , by the finite covering theorem there exists δ >  such that,
for t ∈ [ξ /, ξ ] and  < x < δ, we have

f (t, x) >


ξ ( – ξ )

[∫ ξ

ξ /
H(s, s) ds

]–

.

By (.) there exists n ≥  such that, for any n ≥ n,

 < un(t) < δ/,  < t( – t)/n < δ/, t ∈ [ξ /, ξ ].

Hence, for any n ≥ n, we have

un(ξ ) =
∫ 


G(ξ , τ )ϕ–

p

(∫ 


H(τ , s)fn

(
s, un(s)

)
ds

)
dτ

≥
∫ ξ

ξ /
G(ξ , τ )ϕ–

p

(∫ ξ

ξ /
H(τ , s)fn

(
s, un(s)

)
ds

)
dτ

≥
∫ ξ

ξ /
G(ξ , τ )ϕ–

p

(
τ ( – τ )

∫ ξ

ξ /
H(s, s)f (s, δ/) ds

)
dτ

≥
∫ ξ

ξ /
G(ξ , τ )ϕ–

p

(
ξ ( – ξ )



∫ ξ

ξ /
H(s, s)f (s, δ/) ds

)
dτ

≥
∫ ξ

ξ /
G(ξ , τ )ϕ–

p () dτ =
∫ ξ

ξ /
G(ξ , τ ) dτ =

ξ ( – ξ )
( – aξ )

,

which implies ‖un‖ ≥ ξ(–ξ )
(–aξ ) . This is a contradiction to limn→∞ ‖un‖ = .

In summary, we conclude our claim. Furthermore, from (.) we have

rt( – t) 	 un 	 R (w.r.t.K), n = , , . . . . (.)

This implies that the sequence {un} belongs to the closed order interval 〈rt( – t), R〉 ⊂ D.
It is easy to see that the restriction of T to 〈rt( – t), R〉 is a compact mapping. Hence, there
exists a subsequence of {Tun} that converges to some u∗ ∈ K . Relabel the subsequence as
the original sequence so that limn→∞ ‖Tun – u∗‖ = .

Also, by (.) there exists n such that, for all n ≥ n,

t( – t)/n ≤ rt( – t) ≤ un(t) on [, ].

For all n ≥ n and t ∈ [, ], we have

(Tun)(t) – un(t) = (Tun)(t) – (Tnun)(t)

=
∫ 


G(t, τ )

[
ϕ–

p

(∫ 


H(τ , s)f

(
s, un(s)

)
ds

)

– ϕ–
p

(∫ 


H(τ , s)fn

(
s, un(s)

)
ds

)]
dτ

= .
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This implies limn→∞ ‖Tun – un‖ = . It follows, in turn, that limn→∞ ‖un – u∗‖ = , and
thus u∗ ∈ 〈rt( – t), R〉 ⊂ D and

u∗ = lim
n→∞ Tun = T

(
lim

n→∞ un

)
= Tu∗.

In summary, we have u∗ ∈ D and Tu∗ = u∗. This completes the proof of the theorem. �

Theorem . Assume that conditions (H) and (H) are satisfied. Then SBVP (.)-(.)
has exactly one positive solution u∗ ∈ D.

Proof The existence of positive solution to SBVP (.)-(.) immediately follows from The-
orem .. Thus, we only need to show the uniqueness.

Suppose that u(t) and u(t) are two positive solutions of SBVP (.)-(.). Then, by (H)
and (H), u(t) and u(t) are both the solutions of the following boundary value problem:

u′′(t) + ϕ–
p

(∫ 


H(t, s)f

(
s, u(s)

)
ds

)
= ,  < t < ,

u() = , u() = au(ξ ).

Let w(t) = u(t) – u(t) on [, ]. Without loss of generality, we may assume that w() ≥ .
Now we show that w(t) ≡  on [, ]. There are two cases to consider.

Case . w() > . In this case, we have w(t) ≥  on [, ]. Assume by contradiction that
there exists t ∈ (, ) such that w(t) < . Since w() =  and w() > , there exist t, t ∈
[, ) with t < t < t such that

w(t) <  on (t, t), w(t) = w(t) = .

It follows that, for each t ∈ (t, t),

w′′(t) = u′′
 (t) – u′′

(t)

= –ϕ–
p

(∫ 


H(t, s)f

(
s, u(s)

)
ds

)
+ ϕ–

p

(∫ 


H(t, s)f

(
s, u(s)

)
ds

)
≤ .

Hence, w(t) ≥  on [t, t], which is a contradiction to w(t) <  on (t, t). Therefore, w(t) ≥
 on [, ]. Consequently, for each t ∈ (, ),

w′′(t) = –ϕ–
p

(∫ 


H(t, s)f

(
s, u(s)

)
ds

)
+ ϕ–

p

(∫ 


H(t, s)f

(
s, u(s)

)
ds

)
≥ .

Thus, w(t) is concave upward on [, ]. Since w() >  and w() = αw(ξ ), we have w(ξ ) > ,
and hence since  < α < /ξ , we have

w() <

ξ

w(ξ ),

which is a contradiction to the upward concavity of w(t) on [, ].
Case . w() = . In this case, we have w(t) ≡  on [, ]. Assume to the contrary that

the conclusion is false. Then, there exists t ∈ (, ) such that w(t) �= . Without loss of
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generality, we may assume that w(t) > . Since w() = w() = , there exist t, t ∈ [, ]
with t < t < t such that

w(t) >  on (t, t), w(t) = w(t) = .

It follows that, for each t ∈ (t, t),

w′′(t) = –ϕ–
p

(∫ 


H(t, s)f

(
s, u(s)

)
ds

)
+ ϕ–

p

(∫ 


H(t, s)f

(
s, u(s)

)
ds

)
≥ .

Since w(t) = w(t) = , we have that

w(t) ≤  for t ∈ (t, t),

which is a contradiction to w(t) >  on (t, t).
In summary, w(t) ≡  on [, ]. This completes the proof of the theorem. �
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