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Abstract
The one-dimensional time-fractional advection-diffusion equation with the Caputo
time derivative is considered in a line segment. The fundamental solution to the
Dirichlet problem and the solution of the problem with a constant boundary
condition are obtained using the integral transform technique. The numerical results
are illustrated graphically.

MSC: 26A33; 45K05

Keywords: fractional calculus; Caputo fractional derivative; non-Fickian diffusion;
fractional advection-diffusion equation; Mittag-Leffler function

1 Introduction
The constitutive equation for the matter flux (see, for example, [])

j = –a grad c + vc, ()

where a denotes the diffusivity coefficient, v is the velocity vector, in combination with
the balance equation for mass results in the standard advection-diffusion equation (under
assumption v = const):

∂c
∂t

= a�c – v · grad c. ()

Equation () can be interpreted in terms of diffusion or heat conduction with additional
velocity field as well as in terms as transport processes in porous media, Brownian motion
or groundwater hydrology [–]. In the case of one spatial coordinate x, the advection-
diffusion equation () takes the form

∂c
∂t

= a
∂c
∂x – v

∂c
∂x

. ()

In the last few decades, an increasing interest has been observed in the study of equa-
tions with derivatives of fractional order which have many applications in physics, geo-
physics, geology, rheology, engineering and bioengineering [–]. The time-nonlocal
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generalizations of the constitutive equation () were analyzed in [] (compare this analy-
sis with that of the generalized Fourier or Fick law carried out in [, –]). In the case
of the ‘long-tail’ power kernel, the generalized constitutive equation for the mass flux has
the following form []:

j = D–α
RL

[
–a grad c(t) + vc(t)

]
, ()

where Dα
RLc(t) is the Riemann-Liouville fractional derivative of the order α [–]:

Dα
RLc(t) =

dn

dtn

[


�(n – α)

∫ t


(t – τ )n–α–c(τ ) dτ

]
, n –  < α < n. ()

Here �(α) is the gamma function. In combination with the balance equation for mass, the
constitutive equation () leads to the time-fractional advection-diffusion equation

∂αc
∂tα

= a�c – v · grad c ()

with the Caputo fractional derivative of the order α [–]:

dαc(t)
dtα

=


�(n – α)

∫ t


(t – τ )n–α– dnc(τ )

dτ n dτ , n –  < α < n. ()

A comprehensive survey of research on the fractional advection diffusion equation as
well as of the numerical methods used for its solving can be found in []. In the literature
there are only several papers in which the analytical solutions of fractional advections dif-
fusion equation were considered [–]. In the present paper, we investigate the Dirichlet
problem for equation () in a line segment  < x < L. Two types of boundary conditions
are considered: the Dirac delta boundary condition for the fundamental solution and the
constant boundary condition for the sought-for function.

2 The fundamental solution to the Dirichlet problem
We study the time-fractional advection-diffusion equation in a line segment  < x < L,

∂αc
∂tα

= a
∂c
∂x – v

∂c
∂x

,  < α ≤ . ()

As usually a > , v > ,  < t < ∞.
The advection diffusion equation () is considered under the zero initial condition

t =  : c(x, t) = , ()

and the Dirichlet boundary conditions at the ends of the segment:

x =  : c(x, t) = gδ(t), ()

x = L : c(x, t) = , ()

where δ(t) is the Dirac delta function. The constant multiplier g has been introduced to
obtain the nondimensional quantity displayed in the figures.
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The new sought-for function

c(x, t) = exp

(
vx
a

)
u(x, t) ()

reduces the considered initial-boundary-value problem to the following one:

∂αu
∂tα

= a
∂u
∂x –

v

a
u, ()

t =  : u(x, t) = , ()

x =  : u(x, t) = gδ(t), ()

x = L : u(x, t) = . ()

To solve the Dirichlet problem under examination, we use the finite sin-Fourier trans-
form with respect to the spatial coordinate x. Such a transform is the convenient reformu-
lation of the sin-Fourier series in the domain  ≤ x ≤ L:

F
{

u(x)
}

= ũ(ξk) =
∫ L


u(x) sin(ξkx) dx, ()

F–{ũ(ξk)
}

= u(x) =

L

∞∑

k=

ũ(ξk) sin(ξkx), ()

with

ξk =
kπ

L
, k = , , , . . . . ()

The finite sin-Fourier transform of the second order derivative of a function is calculated
according to the relation

F
{

du(x)
dx

}
= –ξ 

k ũ(ξk) + ξk
[
u() – (–)ku(L)

]
. ()

Application of the finite sin-Fourier transform () to equation () using (), (), and
() leads to

∂αũ(ξk , t)
∂tα

=
(

–aξ 
k –

v

a

)
ũ(ξk , t) + aξkgδ(t), ()

t =  : ũ(ξk , t) = . ()

Next, we use the Laplace transform with respect to the time t. Recall that the Caputo
fractional derivative for the Laplace transform requires the knowledge of the initial values
of the function and its integer derivatives of the order k = , , . . . , n –  [–]:

L
{

dαu(t)
dtα

}
= sαu∗(s) –

n–∑

k=

u(k)(+)
sα––k ,  < α < n, ()

where s is the transform variable.
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Applying the Laplace transform to equation () under the initial condition () gives

ũ∗(ξk , s) = ag
ξk

sα + aξ 
k + v

a

. ()

Inversion of the integral transforms results in the solution

u(x, t) =
agtα–

L

∞∑

k=

ξk sin(ξkx)Eα,α

[
–
(

aξ 
k +

v

a

)
tα

]
, ()

where the formula [–]

L–
{

sα–β

sα + b

}
= tβ–Eα,β

(
–btα

)
()

has been used with Eα,α being the Mittag-Leffler function in two parameters α and β :

Eα,β (z) =
∞∑

n=

zn

�(αn + β)
, α,β > . ()

Returning to the quantity c(x, t) according to (), we finally get the fundamental solution
to the Dirichlet problem:

c(x, t) =
agtα–

L
exp

(
vx
a

) ∞∑

k=

ξk sin(ξkx)Eα,α

[
–
(

aξ 
k +

v

a

)
tα

]
. ()

Using the nondimensional quantities

x̄ =
x
L

, ξ̄k = Lξk = kπ , v̄ =
vL
a

, κ =
√

atα/

L
, c̄ =

Lc
agtα– , ()

we obtain

c̄(x̄,κ) =  exp

(
v̄x̄


) ∞∑

k=

ξ̄k sin(ξ̄kx̄)Eα,α

[
–κ

(
ξ̄ 

k +
v̄



)
tα

]
. ()

The fundamental solution () is shown in Figures - for different values of the order
of fractional derivative α, the time parameter κ , and the drift parameter v̄.

3 Constant boundary value of a function
Next, we consider the time-fractional advection-diffusion equation () under zero initial
condition () and the Dirichlet boundary condition with constant boundary values of the
sought-for function:

x =  : c(x, t) = c, ()

x = L : c(x, t) = . ()
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Figure 1 Dependence of the fundamental solution (30)
on distance x̄ and the order α of fractional derivative
(v̄ = 2, κ = 0.2).

Figure 2 Dependence of the fundamental solution (30)
on distance x̄ and the order α of fractional derivative
(v̄ = 2, κ = 1).

Figure 3 Dependence of the fundamental solution (30)
on distance x̄ and the time parameter κ (v̄ = 2, α = 0.5).

Figure 4 Dependence of the fundamental solution (30)
on distance x̄ and the drift parameter v̄ (α = 0.5, κ = 0.2).

As above, the new function u is introduced according to (), and the Laplace transform
with respect to time t and the finite sin-Fourier transform with respect to the spatial co-
ordinate x give the solution in the transform domain:

ũ∗(ξk , s) = acξk


s(sα + aξ 
k + v

a )
. ()
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Taking into account that


s(sα + aξ 

k + v
a )

=


aξ 
k + v

a

[

s

–
sα–

sα + aξ 
k + v

a

]
()

we obtain

ũ∗(ξk , s) =
acξk

aξ 
k + v

a

[

s

–
sα–

sα + aξ 
k + v

a

]
()

or, after inversion of the integral transforms,

u(x, t) =
c

L

∞∑

k=

ξk sin(ξkx)
ξ 

k + v

a

{
 – Eα

[
–
(

aξ 
k +

v

a

)
tα

]}
. ()

In this case Eα(z) is the Mittag-Leffler function in one parameter α:

Eα(z) =
∞∑

n=

zn

�(αn + )
, α > . ()

Taking into account the following series []:

∞∑

k=

k sin(kz)
k + b =

π


sinh[(π – z)b]

sinh(πb)
()

and returning to the quantity c(x, t) according to (), we get

c(x, t) = c exp

(
vx
a

){
sinh[ v

a (L – x)]
sinh( vL

a )

–

L

∞∑

k=

ξk sin(ξkx)
ξ 

k + v

a

Eα

[
–
(

aξ 
k +

v

a

)
tα

]}

()

and in the nondimensional form

c̄(x̄,κ) = exp

(
v̄x̄


){
sinh[ v̄

 ( – x̄)]
sinh( v̄

 )

– 
∞∑

k=

kπ sin(kπ x̄)
(kπ ) + v̄



Eα

[
–κ

(
(kπ ) +

v̄



)]}

, ()

where

c̄ =
c
c

, ()

and the other nondimensional quantities are the same as in ().
The solution () is presented in Figures - for different values of the order of fractional

derivative α, the time parameter κ , and the drift parameter v̄.
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Figure 5 Dependence of the solution (40) on distance x̄
and the order α of fractional derivative (v̄ = 2, κ = 0.2).

Figure 6 Dependence of the solution (40) on distance x̄
and the order α of fractional derivative (v̄ = 2, κ = 1).

Figure 7 Dependence of the solution (40) on distance x̄
and the time parameter κ (v̄ = 2, α = 0.5).

Figure 8 Dependence of the solution (40) on distance x̄
and the drift parameter v̄ (α = 0.5, κ = 0.2).

4 Conclusions
We have considered the time-fractional advection-diffusion equation with the Caputo
fractional derivative in a domain  < x < L. The Laplace transform with respect to time t
and the finite sin-Fourier transform with respect to the spatial coordinate x have been
used. The fundamental solution to the Dirichlet problem and the solution to the prob-
lem with a constant boundary condition for the sought-for function have been obtained.
The results of numerical calculations are displayed in the figures for different values of the
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nondimensional spatial variable x̄, the drift parameter v̄, the time parameter κ , and the or-
der of the time-fractional derivative α. To evaluate the Mittag-Leffler functions Eα,α(–x)
and Eα(–x) we have used the algorithms suggested in [] (the interested reader is also
referred to the Matlab programs that implement these algorithms []). It should be em-
phasized that the first term in curly brackets in the solution () satisfies the boundary
condition () and (), whereas the second one equals zero at the ends of a line segment
 < x < L due to ().
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