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1 Introduction
Recently, boundary value problems of nonlinear fractional differential equations have
been addressed by several researchers. Fractional differential equations arise in many en-
gineering and scientific disciplines as the mathematical modeling of systems and processes
in the fields of physics, chemistry, control theory, biology, economics, blood flow phenom-
ena, signal and image processing, biophysics, aerodynamics, fitting of experimental data,
etc. For details, see [–] and the references therein.

Impulsive differential equations, which provide a natural description of observed evolu-
tion processes, are regarded as important mathematical tools for a better understanding
of several real world problems in the applied sciences. Recently, the boundary value prob-
lems of impulsive differential equations of integer order have been studied extensively in
the literature (see [, –, –]). In [, ], Wang et al. gave a new concept of some im-
pulsive differential equations with fractional derivative, which is a correction of that of
piecewise continuous solutions used in [, , –].

This paper is strongly motivated by the above research papers. We investigate the ex-
istence and uniqueness of solutions for a mixed boundary value problem of nonlinear
impulsive differential equations of fractional order given by

⎧
⎪⎨

⎪⎩

CDq
+ u(t) = f (t, u(t)), t ∈ J ′,

�u(tk) = Ik(u(tk)), �u′(tk) = Jk(u(tk)), k = , , . . . , p,
u() + u′() = , u() + u′() = ,

(.)
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where CDq
+ is the Caputo fractional derivative of order q ∈ (, ), f ∈ C(J × R, R). Ik , Jk ∈

C(R, R), J = [, ], J ′ = J \ {t, t, . . . , tp}, the {tk} satisfy  = t < t < t < · · · < tp < tp+ = ,
p ∈ N , �u(tk) = u(t+

k ) – u(t–
k ), �u′(tk) = u′(t+

k ) – u′(t–
k ), where u(t+

k ) and u(t–
k ) represent the

right and left limits of u(t) at t = tk .
A function u ∈ PC(J , R) is said to be a solution of problem (.) if u(t) = uk(t) for

t ∈ (tk , tk+) and uk ∈ C([, tk+], R) satisfies CDq
+ u(t) = f (t, u(t)) a.e. on (, tk+) with the re-

striction that uk(t) on [, tk) is just uk–(t) and the conditions �u(tk) = Ik(u(tk)), �u′(tk) =
Jk(u(tk)), k = , , . . . , p with u() + u′() = , u() + u′() = .

The rest of this paper is organized as follows. In Section , we give some notations, recall
some concepts and preparation results. In Section , we give the main results, the first
result based on Banach contraction principle, the second result based on Krasnoselskii’s
fixed point theorem. Two examples are given in Section  to demonstrate the application
of our main results.

2 Preliminaries
In this section, we introduce preliminary facts which are used throughout this paper.

Let J = [, t], J = (t, t], . . . , Jp– = (tp–, tp], Jp = (tp, ]. We have

PC(J) =
{

u : [, ] → R | u ∈ C
(
J ′), and u

(
t+
k
)
, u

(
t–
k
)

exist, and

u
(
t–
k
)

= u(tk),  ≤ k ≤ p
}

.

Obviously, PC(J) is a Banach space with the norm

‖u‖PC = sup
≤t≤

∣
∣u(t)

∣
∣.

Definition . The fractional integral of order q of a function f : [,∞) → R is defined as

Iq
+f (t) =


�(q)

∫ t



f (s)
(t – s)–q ds, t > , q > , (.)

provided the right side is point-wise defined on (,∞), where �(·) is the gamma function.

Definition . The Caputo derivative of fractional order q for a function f : [,∞) → R
is defined as

CDq
+ f (t) =


�(n – q)

dn

dtn

∫ t



f (s) –
∑n–

k=
sk

k! f
(k)()

(t – s)q–n+ ds, t > , n = –[–q], (.)

where [q] denotes the integer part of the real number q.

Remark . In the case f (t) ∈ Cn[, +∞), there is CDq
+ f (t) = In–q

+ f (n)(t). That is to say that
Definition . is just the usual Caputo’s fractional derivative. In this paper, we consider an
impulsive problem, so Definition . is appropriate.

Lemma . ([]) Let M be a closed, convex, and nonempty subset of a Banach space X,
and A, B the operators such that

() Ax + By ∈ M whenever x, y ∈ M;
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() A is compact and continuous;
() B is a contraction mapping.

Then there exists z ∈ M such that z = Az + Bz.

Lemma . ([]) The set F ⊂ PC([, T], Rn) is relatively compact if and only if:
(i) F is bounded, that is, ‖x‖ ≤ C for each x ∈ F and some C > ;

(ii) F is quasi-equicontinuous in [, T]. That is to say that for any ε >  there exists δ > 
such that if x ∈ F ; k ∈ N ; τ, τ ∈ (tk–, tk], and |τ – τ| < δ, we have |x(τ) – x(τ)| < ε.

Lemma . ([]) For q > , the general solution of the fractional differential equation
CDq

+ u(t) =  is given by

u(t) = c + ct + ct + · · · + cn–tn–,

where ci ∈ R, i = , , , . . . , n – , n = –[–q].

In view of Lemma ., it follows that

Iq
+

(CDq
+ u

)
(t) = u(t) + c + ct + ct + · · · + cn–tn–,

where ci ∈ R, i = , , , . . . , n – , n = –[–q].

Lemma . Let q ∈ (, ) and h : J → R be continuous. A function u given by

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


�(q)

∫ t
 (t – s)q–h(s) ds + –t

�(q)
∫ 

 ( – s)q–h(s) ds

+ –t
�(q–)

∫ 
 ( – s)q–h(s) ds, t ∈ [, t];


�(q)

∫ t
 (t – s)q–h(s) ds + –t

�(q)
∫ 

 ( – s)q–h(s) ds

+ –t
�(q–)

∫ 
 ( – s)q–h(s) ds + ( – t)

∑p
j= Jj(u(tj))( – tj)

+ ( – t)
∑p

j= Ij(u(tj)) – (t – tj)
∑p

j=k+ Jj(u(tj)) –
∑p

j=k+ Ij(u(tj)),

t ∈ (tk , tk+], k = , , . . . , p – ;


�(q)
∫ t

 (t – s)q–h(s) ds + –t
�(q)

∫ 
 ( – s)q–h(s) ds

+ –t
�(q–)

∫ 
 ( – s)q–h(s) ds + ( – t)

∑p
j= Jj(u(tj))( – tj)

+ ( – t)
∑p

j= Ij(u(tj)), t ∈ (tp, tp+],

(.)

is a unique solution of the following impulsive problem:

⎧
⎪⎪⎨

⎪⎪⎩

CDq
+ u(t) = h(t), t ∈ J ′,

�u(tk) = Ik(u(tk)), �u′(tk) = Jk(u(tk)), k = , , . . . , p,

u() + u′() = , u() + u′() = .

(.)

Proof With Lemma ., a general solution u of the equation CDq
+ u(t) = h(t) on each in-

terval (tk , tk+] (k = , , , . . . , p) is given by

u(t) =


�(q)

∫ t


(t – s)q–h(s) ds + ak + bkt, for t ∈ (tk , tk+], (.)
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where t =  and tp+ = . Then we have

u′(t) =


�(q – )

∫ t


(t – s)q–h(s) ds + bk , for t ∈ (tk , tk+]. (.)

We have

u() = a, u′() = b,

u() =


�(q)

∫ 


( – s)q–h(s) ds + ap + bp,

u′() =


�(q – )

∫ 


( – s)q–h(s) ds + bp.

So applying the boundary conditions (.), we have

a + b = , (.)


�(q)

∫ 


( – s)q–h(s) ds +


�(q – )

∫ 


( – s)q–h(s) ds + ap + bp = . (.)

Furthermore, using the impulsive condition �u′(tk) = u′(t+
k ) – u′(t–

k ) = Jk(u(tk)), we derive

bk = bk– + Jk
(
u(tk)

)
, (.)

bk = bp –
p∑

j=k+

Jj
(
u(tj)

)
(k = , , . . . , p – ). (.)

In the same way, using the impulsive condition �u(tk) = u(t+
k ) – u(t–

k ) = Ik(u(tk)), we
derive

ak + bktk = ak– + bk–tk + Ik
(
u(tk)

)
, (.)

which by (.) implies that

ak = ak– – Jk
(
u(tk)

)
tk + Ik

(
u(tk)

)
. (.)

Thus

ak = ap +
p∑

j=k+

Jj
(
u(tj)

)
tj –

p∑

j=k+

Ij
(
u(tj)

)
(k = , , , . . . , p – ). (.)

Combining (.), (.), (.) with (.) yields

ap =


�(q)

∫ 


( – s)q–h(s) ds +


�(q – )

∫ 


( – s)q–h(s) ds

– 
p∑

j=

Jj
(
u(tj)

)
(tj – ) + 

p∑

j=

Ij
(
u(tj)

)
, (.)
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bp = –


�(q)

∫ 


( – s)q–h(s) ds –


�(q – )

∫ 


( – s)q–h(s) ds

+
p∑

j=

Jj
(
u(tj)

)
(tj – ) –

p∑

j=

Ij
(
u(tj)

)
. (.)

Furthermore, by (.), (.), (.), (.) we have

ak =


�(q)

∫ 


( – s)q–h(s) ds +


�(q – )

∫ 


( – s)q–h(s) ds

– 
p∑

j=

Jj
(
u(tj)

)
(tj – ) + 

p∑

j=

Ij
(
u(tj)

)

+
p∑

j=k+

Jj
(
u(tj)

)
tj –

p∑

j=k+

Ij
(
u(tj)

)
(k = , , , . . . , p – ), (.)

bk = –


�(q)

∫ 


( – s)q–h(s) ds –


�(q – )

∫ 


( – s)q–h(s) ds

+
p∑

j=

Jj
(
u(tj)

)
(tj – ) –

p∑

j=

Ij
(
u(tj)

)

–
p∑

j=k+

Jj
(
u(tj)

)
(k = , , , . . . , p – ). (.)

Hence for k = , , , . . . , p – , (.) and (.) imply

ak + bkt =
 – t
�(q)

∫ 


( – s)q–h(s) ds +

 – t
�(q – )

∫ 


( – s)q–h(s) ds

+ ( – t)
p∑

j=

Jj
(
u(tj)

)
( – tj) + ( – t)

p∑

j=

Ij
(
u(tj)

)

– (t – tj)
p∑

j=k+

Jj
(
u(tj)

)
–

p∑

j=k+

Ij
(
u(tj)

)
. (.)

For k = p, (.) and (.) imply

ak + bkt =
 – t
�(q)

∫ 


( – s)q–h(s) ds +

 – t
�(q – )

∫ 


( – s)q–h(s) ds

+ ( – t)
p∑

j=

Jj
(
u(tj)

)
( – tj) + ( – t)

p∑

j=

Ij
(
u(tj)

)
. (.)

Now it is clear that (.), (.), (.) imply that (.) holds.
Conversely, assume that u satisfies (.). By a direct computation, it follows that the

solution given by (.) satisfies (.). �

3 Main results
This section deals with the existence and uniqueness of solutions to problem (.).
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Theorem . Let f : J × R → R be a continuous function. Suppose there exist positive con-
stants L, L, L, M, M such that

(A) |f (t, x) – f (t, y)| ≤ L|x – y|, for all t ∈ J , x, y ∈ R;
(A) |Ik(x) – Ik(y)| ≤ L|x – y|, |Jk(x) – Jk(y)| ≤ L|x – y|, |Ik(x)| ≤ M, |Jk(x)| ≤ M,

x, y ∈ R, k = , , . . . , p,
with

L ≤ �(q + )
( + q)

, L

[


�(q + )
+


�(q)

]

+ p(L + L) < .

Then problem (.) has a unique solution on J .

Proof Define an operator T : PC(J) → PC(J)

(Tu)(t) :=


�(q)

∫ t


(t – s)q–f

(
s, u(s)

)
ds +

 – t
�(q)

∫ 


( – s)q–f

(
s, u(s)

)
ds

+
 – t

�(q – )

∫ 


( – s)q–f

(
s, u(s)

)
ds + ( – t)

p∑

j=

Jj
(
u(tj)

)
( – tj)

+ ( – t)
p∑

j=

Ij
(
u(tj)

)
– (t – tj)

p∑

j=k+

Jj
(
u(tj)

)
–

p∑

j=k+

Ij
(
u(tj)

)
,

t ∈ (tk , tk+], k = , , , . . . , p.

Let supt∈J |f (t, )| = M, and Br = {u ∈ PC(J , R) | ‖u‖PC ≤ r}, where

r ≥ 
[

 + q
�(q + )

M + p(M + M)
]

.

Step . We show that TBr ⊂ Br .
For u ∈ Br , t ∈ J , we have

∣
∣(Tu)(t)

∣
∣

≤ 
�(q)

∫ t


(t – s)q–∣∣f

(
s, u(s)

)∣
∣ds +


�(q)

∫ 


( – s)q–∣∣f

(
s, u(s)

)∣
∣ds

+


�(q – )

∫ 


( – s)q–∣∣f

(
s, u(s)

)∣
∣ds + 

p∑

j=

∣
∣Jj

(
u(tj)

)∣
∣

+ 
p∑

j=

∣
∣Ij

(
u(tj)

)∣
∣ +

p∑

j=k+

∣
∣Jj

(
u(tj)

)∣
∣ +

p∑

j=k+

∣
∣Ij

(
u(tj)

)∣
∣

≤ 
�(q)

[∫ t


(t – s)q–∣∣f

(
s, u(s)

)
– f (s, )

∣
∣ds +

∫ t


(t – s)q–∣∣f (s, )

∣
∣ds

]

+


�(q)

[∫ 


( – s)q–∣∣f

(
s, u(s)

)
– f (s, )

∣
∣ds +

∫ 


( – s)q–∣∣f (s, )

∣
∣ds

]

+


�(q – )

∫ 


( – s)q–∣∣f

(
s, u(s)

)
– f (s, )

∣
∣ds
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+


�(q – )

∫ 


( – s)q–∣∣f (s, )

∣
∣ds + 

p∑

j=

∣
∣Jj

(
u(tj)

)∣
∣

+ 
p∑

j=

∣
∣Ij

(
u(tj)

)∣
∣ +

p∑

j=k+

∣
∣Jj

(
u(tj)

)∣
∣ +

p∑

j=k+

∣
∣Ij

(
u(tj)

)∣
∣

≤ Lr
�(q + )

+
M

�(q + )
+

Lr
�(q + )

+
M

�(q + )
+

Lr
�(q)

+
M

�(q)

+ pM + pM + pM + pM

= L
 + p

�(q + )
r +

 + p
�(q + )

M + p(M + M).

Since

L ≤ �(q + )
( + q)

, r ≥ 
[

 + q
�(q + )

M + p(M + M)
]

,

we have

∣
∣(Tu)(t)

∣
∣ ≤ r, TBr ⊂ Br .

Step . T is a contraction mapping.
For x, y ∈ Br and t ∈ J , we have

∣
∣(Tx)(t) – (Ty)(t)

∣
∣

=

∣
∣
∣
∣
∣


�(q)

∫ t


(t – s)q–f

(
s, x(s)

)
ds +

 – t
�(q)

∫ 


( – s)q–f

(
s, x(s)

)
ds

+
 – t

�(q – )

∫ 


( – s)q–f

(
s, x(s)

)
ds + ( – t)

p∑

j=

Jj
(
x(tj)

)
(tj – )

+ ( – t)
p∑

j=

Ij
(
x(tj)

)
– (t – tj)

p∑

j=k+

Jj
(
x(tj)

)
–

p∑

j=k+

Ij
(
x(tj)

)

–

[


�(q)

∫ t


(t – s)q–f

(
s, y(s)

)
ds +

 – t
�(q)

∫ 


( – s)q–f

(
s, y(s)

)
ds

+
 – t

�(q – )

∫ 


( – s)q–f

(
s, y(s)

)
ds + ( – t)

p∑

j=

Jj
(
y(tj)

)
(tj – )

+ ( – t)
p∑

j=

Ij
(
y(tj)

)
– (t – tj)

p∑

j=k+

Jj
(
y(tj)

)
–

p∑

j=k+

Ij
(
y(tj)

)
]∣
∣
∣
∣
∣

≤ 
�(q)

∫ t


(t – s)q–∣∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣
∣ds

+


�(q)

∫ 


( – s)q–∣∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣
∣ds

+


�(q – )

∫ 


( – s)q–∣∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣
∣ds
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+ 
p∑

j=

∣
∣Jj

(
x(tj)

)
– Jj

(
y(tj)

)∣
∣ + 

p∑

j=

∣
∣Ij

(
x(tj)

)
– Ij

(
y(tj)

)∣
∣

+
p∑

j=k+

∣
∣Jj

(
x(tj)

)
– Jj

(
y(tj)

)∣
∣ +

p∑

j=k+

∣
∣Ij

(
x(tj)

)
– Ij

(
y(tj)

)∣
∣

≤ L

�(q + )
‖x – y‖PC +

L

�(q + )
‖x – y‖PC +

L

�(q)
‖x – y‖PC

+ 
p∑

j=

L‖x – y‖PC + 
p∑

j=

L‖x – y‖PC

+
p∑

j=k+

L‖x – y‖PC +
p∑

k=j+

L‖x – y‖PC

≤ L

�(q + )
‖x – y‖PC +

L

�(q)
‖x – y‖PC + pL‖x – y‖PC

+ pL‖x – y‖PC + pL‖x – y‖PC + pL‖x – y‖PC

=
[

L

(


�(q + )
+


�(q)

)

+ p(L + L)
]

‖x – y‖PC .

Since

L

(


�(q + )
+


�(q)

)

+ p(L + L) < ,

T is a contraction mapping. Thus, the conclusion follows by the contraction mapping
principle. �

Theorem . Assume that |f (t, u)| ≤ μ(t) for all (t, u) ∈ J × R where μ ∈ L/σ (J , R) and
σ ∈ (, q – ), furthermore, there exist positive constants L, L, M, M such that |Ik(x) –
Ik(y)| ≤ L|x – y|, |Jk(x) – Jk(y)| ≤ L|x – y|, |Ik(x)| ≤ M, |Jk(x)| ≤ M, x, y ∈ R, k = , , . . . , p,
with p(L + L) < . Then problem (.) has at least one solution on J .

Proof Choose

r ≥ ‖μ‖
L


σ (J)

[


�(q)( q–σ

–σ
)–σ

+


�(q – )( q–σ–
–σ

)–σ

]

+ p(M + M)

and denote

Br =
{

u ∈ PC(J , R) | ‖u‖PC ≤ r
}

.

Define the operators P and Q on Br as

(Pu)(t) =


�(q)

∫ t


(t – s)q–f

(
s, u(s)

)
ds +

 – t
�(q)

∫ 


( – s)q–f

(
s, u(s)

)
ds

+
 – t

�(q – )

∫ 


( – s)q–f

(
s, u(s)

)
ds,
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(Qu)(t) = ( – t)
p∑

k=

Jk
(
u(tk)

)
( – tk) + ( – t)

p∑

k=

Ik
(
u(tk)

)

– (t – tk)
p∑

k=j+

Jk
(
u(tk)

)
–

p∑

k=j+

Ik
(
u(tk)

)
.

For any u, v ∈ Br and t ∈ J , using the condition that |f (t, u)| ≤ μ(t) and the Hölder inequal-
ity,

∫ t



∣
∣(t – s)q–f

(
s, u(s)

)∣
∣ds

≤
(∫ t


(t – s)

q–
–σ ds

)–σ (∫ t



(
μ(s)

) 
σ ds

)σ

≤
‖μ‖

L

σ (J)

( q–σ

–σ
)–σ

,

∫ t



∣
∣( – s)q–f

(
s, u(s)

)∣
∣ds

≤
(∫ t


( – s)

q–
–σ ds

)–σ (∫ t



(
μ(s)

) 
σ ds

)σ

≤
‖μ‖

L

σ (J)

( q–σ

–σ
)–σ

,

∫ t



∣
∣( – s)q–f

(
s, u(s)

)∣
∣ds

≤
(∫ t


( – s)

q–
–σ ds

)–σ (∫ t



(
μ(s)

) 
σ ds

)σ

≤
‖μ‖

L

σ (J)

( q–σ–
–σ

)–σ
.

Therefore,

‖Pu + Qv‖PC

≤
‖μ‖

L

σ (J)

�(q)( q–σ

–σ
)–σ

+
‖μ‖

L

σ (J)

�(q – )( q–σ–
–σ

)–σ

+ pM + pM + pM + pM

= ‖μ‖
L


σ (J)

(


�(q)( q–σ

–σ
)–σ

+


�(q – )( q–σ–
–σ

)–σ

)

+ p(M + M).

Thus Pu + Qv ∈ Br . It is obvious that Q is a contraction mapping (the proof is just similar
to Theorem .). On the other hand, the continuity of f implies that the operator P is
continuous. Also, P is uniformly bounded on Br since

‖Pu‖PC ≤
‖μ‖

L

σ (J)

�(q)( q–σ

–σ
)–σ

+
‖μ‖

L

σ (J)

�(q – )( q–σ–
–σ

)–σ
≤ r.

Now we prove the quasi-equicontinuity of the operator P.
Let � = J × Br , fmax = sup(t,u)∈� |f (t, u)|. For any tk < τ < τ ≤ tk+, we have

∣
∣(Pu)(τ) – (Pu)(τ)

∣
∣

=
∣
∣
∣
∣


�(q)

∫ τ


(τ – s)q–f

(
s, u(s)

)
ds +

 – τ

�(q)

∫ 


( – s)q–f

(
s, u(s)

)
ds
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+
 – τ

�(q – )

∫ 


( – s)q–f

(
s, u(s)

)
ds –


�(q)

∫ τ


(τ – s)q–f

(
s, u(s)

)
ds

–
 – τ

�(q)

∫ 


( – s)q–f

(
s, u(s)

)
ds –

 – τ

�(q – )

∫ 


( – s)q–f

(
s, u(s)

)
ds

∣
∣
∣
∣

≤ fmax

�(q)

∣
∣
∣
∣

∫ τ



[
(τ – s)q– – (τ – s)q–]ds +

∫ τ

τ

(τ – s)q– ds
∣
∣
∣
∣

+
∣
∣
∣
∣
(τ – τ)fmax

�(q)

∫ 


( – s)q– ds

∣
∣
∣
∣ +

∣
∣
∣
∣
(τ – τ)fmax

�(q – )

∫ 


( – s)q– ds

∣
∣
∣
∣

≤ fmax

[
(τ – τ)q + τ

q
 – τ

q
 + τ – τ

�(q + )
+

τ – τ

�(q)

]

,

which tends to zero as τ → τ. This shows that P is quasi-equicontinuous on the interval
(tk , tk+]. It is obvious that P is compact by Lemma ., so P is relatively compact on Br .

Thus all the assumptions of Lemma . are satisfied and problem (.) has at least one
solution on J . �

4 Example
Example . Consider the following impulsive fractional boundary value problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CD


+u(t) = 

(t+)
sin u(t)
+u(t) , t ∈ [, ], t 
= 

 ,

�u( 
 ) = |u( 

 )|
+|u( 

 )| , �u′( 
 ) = |u( 

 )|
+|u( 

 )|
u() + u′() = , u() + u′() = .

(.)

Obviously, L = /, L = /, L = /, M = /, M = /, p = ,

�(q + )
( + q)

=

√

π


, L <

�(q + )
( + q)

,

L

(


�(q + )
+


�(q)

)

+ p(L + L) =



√

π
+




< .

Thus, all the assumptions in Theorem . are satisfied. Hence, the impulsive fractional
boundary value problem (.) has a unique solution on [, ].

Example . Consider the following impulsive fractional boundary value problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CD


+u(t) = et

(t+)
|u(t)|

+|u(t)| , t ∈ [, ], t 
= 
 ,

�u( 
 ) = +|u( 

 )|
+|u( 

 )| , �u′( 
 ) = |u( 

 )|
+|u( 

 )|
u() + u′() = , u() + u′() = .

(.)

Set

f (t, u) =
et

(t + )
|u|

 + |u| , (t, u) ∈ [, ] × [,∞).

Obviously,

∣
∣f (t, u)

∣
∣ ≤ et

(t + ) .



Bai et al. Boundary Value Problems  (2016) 2016:63 Page 11 of 11

Set

L = L = , M = , M =  and μ(t) =
et

(t + ) ∈ L([, ], R
)
.

Thus, all the assumptions in Theorem . are satisfied. Hence, the impulsive fractional
boundary value problem (.) has at least one solution on [, ].
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