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Abstract
In view of the Avery-Peterson fixed point theorem, this paper investigates the
existence of three positive solutions for the second-order boundary value problem
with integral boundary conditions

⎧
⎨

⎩

u′′(t) + h(t)f (t,u(t),u′(t)) = 0, 0 < t < 1,
u(0) – αu′(0) =

∫ 1
0 g1(s)u(s)ds,

u(1) + βu′(1) =
∫ 1
0 g2(s)u(s)ds.

The interesting point is that the nonlinear term involves the first-order derivative
explicitly.
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1 Introduction
In this paper, we consider the positive solutions of the following boundary value problem:

⎧
⎪⎨

⎪⎩

u′′(t) + h(t)f (t, u(t), u′(t)) = ,  < t < ,
u() – αu′() =

∫ 
 g(s)u(s) ds,

u() + βu′() =
∫ 

 g(s)u(s) ds,
(.)

where α and β are nonnegative constants.
Boundary value problems of ordinary differential equations arise in kinds of different

areas of applied mathematics and physics. Many authors have studied two-point, three-
point, multi-point boundary value problems for second-order differential equations ex-
tensively, see [–] and the references therein. In recent years, boundary value problems
with integral boundary conditions also arise in thermal conduction, chemical engineering,
underground water flow, and plasma physics. Some authors have investigated boundary
value problems with integral boundary conditions; see [–]. Boucherif [] considered
the following problem:

⎧
⎪⎨

⎪⎩

y′′(t) = f (t, y(t)),  < t < ,
y() – ay′() =

∫ 
 g(s)y(s) ds,

y() – by′() =
∫ 

 g(s)y(s) ds,
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where f : [, ] × R → R is continuous, g, g ∈ C([, ] → [, +∞)), a, b ≥ . By using
Krasnoselskii’s fixed point theorem, the existence of positive solutions was obtained.

To the best knowledge of the authors, no work has been done for boundary value prob-
lem (.) by applying the Avery-Peterson fixed point theorem. In this paper, we will study
the existence of three positive solutions of BVP (.). Now, we give the following assump-
tions:

(H) f ∈ C([, ] × [,∞) × (–∞,∞), [,∞)), h ∈ C([, ], [,∞));
(H) g, g ∈ C([, ], [,∞)), and  ≤ σ + σ < , ρ =  – σ – σ + σσ – σσ > , where

σ =
∫ 



α + s
 + α + β

g(s) ds, σ =
∫ 



 + β – s
 + α + β

g(s) ds,

σ =
∫ 



α + s
 + α + β

g(s) ds, σ =
∫ 



 + β – s
 + α + β

g(s) ds.

2 Preliminaries
In this section, we present the Avery-Peterson fixed point theorem and some lemmas.

Theorem . ([]) Let P be a cone in a real Banach space E. Let γ and θ be nonnegative
continuous convex functional on P. Let α be a nonnegative continuous concave functional
on P, and let ψ be a nonnegative continuous functional on P satisfying ψ(λx) ≤ λψ(x) for
 ≤ λ ≤ , such that for some positive numbers M and d,

α(x) ≤ ψ(x) and ‖x‖ ≤ Mγ (x)

for all x ∈ P(γ , d). Suppose that T : P(γ , d) → P(γ , d) is a completely continuous operator
and there exist positive numbers a, b, and c with a < b such that

(C) {x ∈ P(γ , θ ,α, b, c, d) | α(x) > b} 	= ∅ and α(Tx) > b for x ∈ P(α, b; θ , c;γ , d);
(C) α(Tx) > b for x ∈ P(α, b;γ , d) with θ (Tx) > c;
(C)  /∈ R(γ ,ψ , a, d) and ψ(Tx) < a for x ∈ R(γ ,ψ , a, d) with ψ(x) = a.

Then T has at least three fixed points x, x, x ∈ P(γ , d) such that γ (xi) ≤ d for i = , , ;
b < α(x); a < ψ(x) with α(x) < b; ψ(x) < a.

Let E = (C[, ],‖ · ‖) be the Banach space with the maximum norm

‖u‖ = max
{

max
≤t≤

∣
∣u(t)

∣
∣, max

≤t≤

∣
∣u′(t)

∣
∣
}

.

Denote by P

P =
{

u ∈ E | u(t) ≥ , and u(t)is concave on [, ]
}

.

Lemma . If (H) holds, then for p(t) ≥ , t ∈ [, ], the boundary value problem

u′′(t) + p(t) = ,  < t < , (.)

u() – αu′() =
∫ 


g(s)u(s) ds, u() + βu′() =

∫ 


g(s)u(s) ds, (.)
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has a unique solution

u(t) =
∫ 


G(t, s)p(s) ds +

∫ 


R(t, s)

∫ 


G(s, τ )p(τ ) dτ ds,

where

G(t, s) =

{
(α+t)(+β–s)

+α+β
,  ≤ t ≤ s ≤ ,

(α+s)(+β–t)
+α+β

,  ≤ s ≤ t ≤ ,
(.)

and

R(t, s) =
[( – σ)( + β – t) + σ(α + t)]g(s) + [σ( + β – t) + ( – σ)(α + t)]g(s)

ρ( + α + β)
.

Remark . Here we point out that the form of u(t) is different from the corresponding
part of [], but their proofs are similar, we omit them here.

It is obvious that G(t, s) ≥  for (t, s) ∈ [, ] × [, ] if α ≥ , β ≥ .

Lemma . ([]) Let α ≥ , β ≥ . Then for t, s ∈ [, ], we have

γG(s, s) ≤ G(t, s) ≤ G(s, s),

where  < γ < .

∀u ∈ P, we define

(Tu)(t) =
∫ 


G(t, s)h(s)f

(
s, u(s), u′(s)

)
ds

+
∫ 


R(t, s)

∫ 


G(s, τ )h(τ )f

(
τ , u(τ ), u′(τ )

)
dτ ds. (.)

By Lemma ., u(t) is a solution of BVP (.) if and only if u is a fixed point of T .

Lemma . If conditions (H) and (H) hold, then T : P → P is completely continuous.

Proof In virtue of the definitions of T , G(t, s), R(t, s), we see, for each u ∈ P, that there is
Tu ≥ , t ∈ [, ]. From (Tu)′′(t) = –h(t)f (t, u(t), u′(t)) ≤ , we deduce that Tu is concave on
[, ]. Therefore, T : P → P. A standard argument indicates that T : P → P is completely
continuous. �

Lemma . ([]) If u ∈ P, δ ∈ (, 
 ), then u(t) ≥ δ max≤t≤ u(t), t ∈ [δ,  – δ].

Lemma . For u ∈ P, if (H) holds, then

max
≤t≤

u(t) ≤  + α

 – σ – σ
max
≤t≤

∣
∣u′(t)

∣
∣.
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Proof The fact that u(t) = u() +
∫ t

 u′(s) ds implies that

u(t) ≤ u() + max
≤t≤

∣
∣u′(t)

∣
∣.

Simultaneously,

u() = αu′() +
∫ 


g(s)u(s) ds ≤ α max

≤t≤

∣
∣u′(t)

∣
∣ + max

≤t≤
u(t)

∫ 


g(s) ds.

Hence,

max
≤t≤

u(t) ≤ ( + α) max
≤t≤

∣
∣u′(t)

∣
∣ + max

≤t≤
u(t)

∫ 


g(s) ds,

i.e.,

max
≤t≤

u(t) ≤  + α

 –
∫ 

 g(s) ds
max
≤t≤

∣
∣u′(t)

∣
∣ =

 + α

 – σ – σ
max
≤t≤

∣
∣u′(t)

∣
∣. �

3 Main result
Let

γ (u) = max
≤t≤

∣
∣u′(t)

∣
∣, θ (u) = ψ(u) = max

≤t≤
u(t), α(u) = min

δ≤t≤–δ
u(t),

where γ and θ are nonnegative continuous convex functionals, ψ is a nonnegative con-
tinuous functional, α is a nonnegative continuous concave functional on the cone P.

With Lemmas . and ., for all u ∈ P, we have

δθ (u) ≤ α(u) ≤ θ (u) = ψ(u), ‖u‖ = max
{
θ (u),γ (u)

} ≤  + α

 – σ – σ
γ (u).

For convenience, put

m = min
{

R(t, s) | t, s ∈ [, ]
}

, M = max
{

R(t, s) | t, s ∈ [, ]
}

,

m = min

{∣
∣
∣
∣
∂R(t, s)

∂t

∣
∣
∣
∣

∣
∣
∣ t, s ∈ [, ]

}

, M = max

{∣
∣
∣
∣
∂R(t, s)

∂t

∣
∣
∣
∣

∣
∣
∣ t, s ∈ [, ]

}

,

L =
 + α + β

 + α + β

∫ 


h(s) ds + M

∫ 


G(s, s)h(s) ds,

M = δγ( + m)
∫ –δ

δ

G(s, s)h(s) ds, N = ( + M)
∫ 


G(s, s)h(s) ds.

Now, we are in the position to give our main result.

Theorem . Let conditions (H) and (H) hold, and there exist positive numbers a, b, d
with  < a < b < δd such that

(A) f (t, x, y) ≤ d
L , for (t, x, y) ∈ [, ] × [, +α

–σ–σ
d] × [–d, d],

(A) f (t, x, y) > b
M , for (t, x, y) ∈ [δ,  – δ] × [b, b

δ
] × [–d, d],

(A) f (t, x, y) < a
N , for (t, x, y) ∈ [, ] × [, a] × [–d, d].
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Then BVP (.) has at least three positive solutions u, u, and u ∈ P(γ , d) satisfying

max
≤t≤

∣
∣u′

i(t)
∣
∣ ≤ d, i = , , ,

and

min
δ≤t≤–δ

u(t) > b, max
≤t≤

u(t) > a, with min
δ≤t≤–δ

u(t) < b, max
≤t≤

u(t) < a.

Proof Now we prove that T satisfies the conditions of the Avery-Peterson fixed point the-
orem which will give the existence of three fixed points of T .

We first of all show that T : P(γ , d) → P(γ , d). If u ∈ P(γ , d), then

γ (u) = max
≤t≤

∣
∣u′(t)

∣
∣ ≤ d.

In view of Lemma ., we have

max
≤t≤

u(t) ≤  + α

 – σ – σ
d,

then (A) implies that f (t, u(t), u′(t)) ≤ d
L . By the concavity of Tu on [, ], we have

γ (Tu) = max
≤t≤

∣
∣(Tu)′(t)

∣
∣ = max

{∣
∣(Tu)′()

∣
∣,

∣
∣(Tu)′()

∣
∣
}

≤
∣
∣
∣
∣

∫ 



 + β – s
 + α + β

h(s)f
(
s, u(s), u′(s)

)
ds

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ 


h(s)f

(
s, u(s), u′(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ 



∂R(t, s)
∂t

∫ 


G(s, τ )h(τ )f

(
τ , u(τ ), u′(τ )

)
dτ ds

∣
∣
∣
∣

≤
(

 +
 + β

 + α + β

)∫ 


h(s)f

(
s, u(s), u′(s)

)
ds

+
∫ 



∣
∣
∣
∣
∂R(t, s)

∂t

∣
∣
∣
∣

∫ 


G(τ , τ )h(τ )f

(
τ , u(τ ), u′(τ )

)
dτ ds

≤  + α + β

 + α + β

d
L

∫ 


h(s) ds + M

d
L

∫ 


G(s, s)h(s) ds

=
d
L

· L = d.

Thus, T : P(γ , d) → P(γ , d).
Second, we confirm the condition (C) of Theorem .. By choosing u(t) ≡ b

δ
,  ≤ t ≤ ,

we get

α(u) =
b
δ

> b, θ (u) =
b
δ

, γ (u) =  < d.

Therefore {u ∈ P(γ , θ ,α, b, b
δ
, d) | α(u) > b} 	= ∅. Hence, if u ∈ {P(γ , θ ,α, b, b

δ
, d) | α(u) > b},

then b ≤ u(t) ≤ b
δ

, |u′(t)| ≤ d, δ ≤ t ≤  – δ. By (A), we have f (t, u(t), u′(t)) > b
M , δ ≤ t ≤
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 – δ. Combining the definition of α with Lemma ., we obtain

α(Tu) = min
δ≤t≤–δ

(Tu)(t) ≥ δ max
≤t≤

(Tu)(t)

= δ max
≤t≤

[∫ 


G(t, s)h(s)f

(
s, u(s), u′(s)

)
ds

+
∫ 


R(t, s)

∫ 


G(s, τ )h(τ )f

(
τ , u(τ ), u′(τ )

)
dτ ds

]

≥ γδ

[

 +
∫ 


R(t, s) ds

]∫ 


G(s, s)h(s)f

(
s, u(s), u′(s)

)
ds

≥ γδ( + m)
∫ –δ

δ

G(s, s)h(s)f
(
s, u(s), u′(s)

)
ds

> γδ( + m)
b
M

∫ –δ

δ

G(s, s)h(s) ds

=
b
M

· M = b.

This shows that condition (C) of Theorem . is satisfied.
Third, if u ∈ P(γ ,α, b, d) and θ (Tu) > b

δ
, then

α(Tu) = min
δ≤t≤–δ

(Tu)(t) ≥ δ max
≤t≤

(Tu)(t) = δθ (Tu) > δ · b
δ

= b.

Thus, condition (C) of Theorem . follows.
Finally, we show that (C) of Theorem . holds. Clearly, ψ() =  < a, so  /∈ R(γ ,ψ , a, d).

Suppose that u ∈ R(γ ,ψ , a, d) with ψ(u) = a, then  ≤ u(t) ≤ a, t ∈ [, ]. By (A), we get

ψ(Tu) = max
≤t≤

(Tu)(t)

= max
≤t≤

[∫ 


G(t, s)h(s)f

(
s, u(s), u′(s)

)
ds

+
∫ 


R(t, s)

∫ 


G(s, τ )h(τ )f

(
τ , u(τ ), u′(τ )

)
dτ ds

]

≤ max
≤t≤

[

 +
∫ 


R(t, s) ds

]∫ 


G(s, s)h(s)f

(
s, u(s), u′(s)

)
ds

= ( + M)
∫ 


G(s, s)h(s)f

(
s, u(s), u′(s)

)
ds

< ( + M)
a
N

∫ 


G(s, s)h(s) ds

=
a
N

· N = a.

Condition (C) of Theorem . is also satisfied.
Therefore, Theorem . implies that BVP (.) has at least three positive solutions u,

u, and u such that

max
≤t≤

∣
∣u′

i(t)
∣
∣ ≤ d, i = , , ,
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and

min
δ≤t≤–δ

u(t) > b, max
≤t≤

u(t) > a, min
δ≤t≤–δ

u(t) < b, max
≤t≤

u(t) < a.

The proof of Theorem . is complete. �

In the following we give an example to illustrate our result.

4 Example
Example . Consider the following boundary value problem:

{
u′′(t) + f (t, u(t), u′(t)) = ,  < t < ,
u() – u′() = 


∫ 

 u(s) ds, u() + u′() =
∫ 

 su(s) ds,
(.)

where

f (t, x, y) =

{


 t + x + 
 ( y

× ), x ≤ ,


 t +  ×  + 
 ( y

× ), x > .
(.)

Let δ = 
 , a = 

 , b = , d = ×, after a direct calculation, we get σ = 
 , σ = 

 , σ = 
 ,

σ = 
 , ρ = 

 , γ = 
 , m = 

 , M = 
 , M = 

 , m = , L = 
 , M = 

 , N = 
 .

Then f (t, x, y) satisfies

f (t, x, y) ≤ d
L

= . × , for (t, x, y) ∈ [, ] × [
, . × ] × [

– × ,  × ];

f (t, x, y) >
b
M

= ., for (t, x, y) ∈
[




,



]

× [, ] × [
– × ,  × ];

f (t, x, y) <
a
N

= ., for (t, x, y) ∈ [, ] ×
[

,



]

× [
– × ,  × ].

All conditions of Theorem . are satisfied. By Theorem ., BVP (.) has at least three
positive solutions u, u, u such that

max
≤t≤

∣
∣u′

i(t)
∣
∣ ≤  × , i = , , , (.)

and

min

 ≤t≤ 



u(t) > , max
≤t≤

u(t) >



, min

 ≤t≤ 



u(t) < , max
≤t≤

u(t) <



. (.)
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