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Abstract
This paper is concerned with the existence, nonexistence, uniqueness, and
multiplicity of positive solutions for a class of eigenvalue problems of nonlinear
fractional differential equations with a nonlinear integral term and a disturbance
parameter in the boundary conditions. By using fixed point index theory we give the
critical curve of eigenvalue λ and disturbance parameter μ that divides the range of
λ and μ for the existence of at least two, one, and no positive solutions for the
eigenvalue problem. Furthermore, by using fixed point theorem for a sum operator
with a parameter we establish the maximum eigenvalue interval for the existence of
the unique positive solution for the eigenvalue problem and show that such a
positive solution depends continuously on the parameter λ for given μ. In particular,
we give estimates for the critical value of parameters. Two examples are given to
illustrate our main results.
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1 Introduction and preliminaries
Fractional differential equations have been extensively investigated in recent years, due to
a wide range of applications in various fields of sciences and engineering such as control,
porous media, electromagnetic, and so forth; see [–] and the references therein. Since
the integral boundary value problems can better describe the actual phenomenon, the ex-
istence of positive solutions for fractional integral boundary value problems has attracted
considerable attention, and fruits from research into it emerge continuously. For a small
sample of such a work, we refer the reader to [–] and the references therein.

On the other hand, the eigenvalue problems are one of the most active fields in differ-
ential equation theories, and the eigenvalue problems of nonlinear fractional differential
equations have been concerned by some authors; see [–]. Recently, [] and [] stud-
ied the fractional eigenvalue problems with integral boundary conditions and obtain some
interesting results. By the Guo-Krasnoselskii fixed point theorem Wang et al. [] inves-
tigated the eigenvalue interval for the existence and nonexistence of at least one positive
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solution for the following eigenvalue problem:

⎧
⎪⎨

⎪⎩

CDα
+ x(t) + λf (t, x(t)) = ,  < t < , n < α ≤ n + , n ≥ , n ∈ N ,

x() = x′′() = x′′′() = · · · = x(n)() = ,
x() = ξ

∫ 
 x(s) ds,

where  < ξ <  and f ∈ C([, ]×R+, R+). At the same time, when we apply the methods of
the differential equations to solve actual problems, it is inevitable that there always exists
disturbance that has great influence on the existence of solutions. Jia and Liu [] studied
the following boundary value problem:

⎧
⎪⎨

⎪⎩

–CDα
+ x(t) = f (t, x(t)),  < t < ,

mx() – nx′() = ,
mx() + nx′() =

∫ 
 k(s)x(s) ds + a,

where  < α ≤ , f ∈ C([, ]×R+, R+), mi, ni ≥ , m
i + n

i > , i = , , k ∈ C(R+, R+), a ∈ R+.
They discussed the impact of disturbance parameters a on the existence of positive so-
lutions by the method of upper and lower solutions, fixed point index theory, and the
Schauder fixed point theorem. Given the above, it is worthwhile to study the eigenvalue
problem of nonlinear fractional differential equations with nonlinear integral and distur-
bance parameter in the boundary conditions. To the best of authors’ knowledge, there are
few papers reported on this topic.

In this paper, we will study the following eigenvalue problem of a fractional differential
equation (FEP):

⎧
⎪⎨

⎪⎩

CDα
+ x(t) + λf (t, x(t)) = ,  < t < ,

ax() – bx′() = ,
x() =

∫ 
 k(s)g(x(s)) ds + μ,

()

where CDα
+ is the Caputo fractional derivative of order α,  < α ≤ , λ,μ ≥ . Throughout

this paper, we assume that f ∈ C([, ] × R+, R+), g ∈ C(R+, R+), k ∈ C([, ], R+), k �≡ ,
R+ = [, +∞), a, b ∈ R+, a + b > , and a

a+b < α – .
The FEP () seems to be studied for the first time. The purpose of this paper is to find

the critical curve of parameters λ and μ dividing the range of λ and μ for the existence
of at least two, one, and no positive solutions and to establish the maximum eigenvalue
interval for the existence of the unique positive solution for the eigenvalue problem. The
main tools used in this paper are fixed point index theory, the fixed point theorem of a
sum operator with a parameter, and a sufficient and necessary condition for the existence
of a fixed point for a concave operator. In particular, the positivity of a solution x(t) of FEP
() means that x(t) ≥  for t ∈ [, ] and x(t) >  for t ∈ (, ).

The paper is organized as follows. In Section , we establish an operator equation that is
equivalent to FEP () and present properties of solutions of FEP (). In Section , we obtain
the critical curve of λ and μ and establish an eigenvalue interval for the existence of at least
two, one, and no positive solutions for FEP () according to the range of the disturbance
parameter μ. These results show that the impact of the parameter μ on the eigenvalue
interval for the existence of positive solutions and on their number. In Section , under
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some mild assumption, we establish the maximum eigenvalue interval for the existence of
the unique positive solution for FEP () and show that such a positive solution depends
continuously on the parameter λ. In particular, we give estimates for the critical values of
parameters. Finally, two examples are given to illustrate our main results.

For convenience of the readers, we first present some basic notation and results that will
be used in the proofs of our theorems. We refer to [–] for details.

Definition . Let x : (, +∞) → R be a function, and α > . The Riemann-Liouville frac-
tional integral of order α of x is defined by

Iα
+ x(t) =


�(α)

∫ t


(t – s)α–x(s) ds,

provided that the integral exists. The Caputo fractional derivative of order α of x is defined
by

CDα
+ x(t) =


�(n – α)

∫ t


(t – s)n–α–x(n)(s) ds,

provided that the right side is pointwise defined on (, +∞), where n = [α]+, n– < α < n,
and � denotes the gamma function. If α = n, then CDα

+ x(t) = x(n)(t).

Lemma . If x ∈ ACn[, ], then the Caputo fractional derivative CDα
+ x(t) exists almost

everywhere on [, ], where ACn[, ] = {x ∈ Cn–[, ] | x(n–) is absolutely continuous}, and
n is the smallest integer greater than or equal to α.

Lemma . If x ∈ Cn[, ], then

Iα
+

CDα
+ x(t) = x(t) + C + Ct + Ct + · · · + Cn–tn–,

where n is the smallest integer greater than or equal to α.

In the rest of this section, we present some notation and some known results on cone
theory. We refer to [, ], and [] for details.

Let E be a real Banach space partially ordered by a cone P ⊂ E, that is, x ≤ y iff y–x ∈ P. If
x ≤ y and x �= y, then we write x < y or y > x. By θ we denote the zero element of E. A cone
P is said to be normal if there exists a positive number N , called the normal constant
of P, such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖. For u, v ∈ E, u ≤ v, denote [u, v] = {x ∈ E |
u ≤ x ≤ v}.

Given e >  (i.e., e ∈ P and e �= θ ), set

Pe =
{

x ∈ E | there exist l = l(x) > , l = l(x) >  such that le ≤ x ≤ le
}

,

P∗
e =

{
x ∈ E | there exists l = l(x) >  such that  ≤ x ≤ le

}
,

then Pe ⊂ P∗
e ⊂ P.

Let D ⊂ E. An operator T : D → E is said to be increasing if for x, y ∈ D, x ≤ y ⇒ Tx ≤ Ty.
An element x∗ ∈ D is called a fixed point of T if Tx∗ = x∗.
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Lemma . ([, ]) Let P be a cone of E, and � be a bounded open subset in E with
θ ∈ �. Assume that T : P ∩ � → P is a completely continuous operator.

(i) If Tx �= ρx for x ∈ P ∩ ∂� and ρ ≥ , then i(T , P ∩ �, P) = .
(ii) If Tx �= x and ‖Tx‖ ≥ ‖x‖ for x ∈ P ∩ ∂�, then i(T , P ∩ �, P) = .

Lemma . ([]) Let P be a normal cone of E, A, T : P → P be increasing and satisfy
(G) A(Pe) ⊂ P∗

e and A(rx) ≥ rAx for x ∈ Pe and r ∈ (, );
(G) T(Pe) ⊂ Pe, and there exists τ ∈ (, ) such that T(rx) ≥ rτ Tx for x ∈ Pe, r ∈ (, ).

Then there exists λ∗ >  such that λA + T has a unique fixed point xλ ∈ Pe for λ ∈ [,λ∗)
and has no fixed point in Pe for λ ≥ λ∗. Moreover, such a fixed point xλ has the following
properties:

(i) the recurrent sequence un = λAun– + Tun– (n = , , . . .) for any u ∈ Pe converges
to xλ, that is, limn→+∞ ‖un – xλ‖ = ;

(ii) xλ is increasing in λ for λ ∈ [,λ∗);
(iii) xλ is continuous with respect to λ for λ ∈ [,λ∗).

Lemma . ([]) Let P be a normal cone in E, and T : P → P be an increasing operator.
Suppose that T(Pe) ⊂ Pe and for any r ∈ (, ) and [y, z] ⊂ Pe, there exists η(r, y, z) >  such
that

T(rx) ≥ r
(
 + η(r, y, z)

)
Tx, ∀x ∈ [y, z], r ∈ (, ).

Then T has a unique fixed point x∗ in Pe if and only if there exist u, v ∈ Pe such that u ≤
Tu ≤ Tv ≤ v. Moreover, for any initial value u ∈ Pe and the recurrent sequence un = Tun–

(n = , , . . .), we have limn→+∞ ‖un – x∗‖ = .

2 Properties of positive solutions and equivalent operator equation
In this section, we will apply Lemma . to present the existence and uniqueness results
for a solution of a linear fractional boundary value problem; moreover, we present the
operator equation equivalent to FEP (). This is important for our research.

We set E = C[, ], the Banach space of all continuous functions on [, ] with the norm
‖x‖ = max{|x(t)| | t ∈ [, ]}. Let P = {x ∈ C[, ] | x(t) ≥ , t ∈ [, ]}. It is clear that P is a
normal cone with normal constant .

For y, z ∈ C[, ], consider the linear fractional boundary value problem (BVP)

⎧
⎪⎨

⎪⎩

CDα
+ x(t) + y(t) = ,  < t < ,

ax() – bx′() = ,
x() =

∫ 
 k(s)z(s) ds + μ.

()

Lemma . BVP () has a unique solution

x(t) =
∫ 


G(t, s)y(s) ds +

at + b
a + b

∫ 


k(s)z(s) ds +

at + b
a + b

μ, ()

where

G(t, s) =


�(α)

{
(at+b)(–s)α–

a+b – (t – s)α–,  ≤ s ≤ t ≤ ,
(at+b)(–s)α–

a+b ,  ≤ t ≤ s ≤ .
()
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Proof From Lemma . we have

x(t) = –


�(α)

∫ t


(t – s)α–y(s) ds + c + ct,

x′(t) = –


�(α – )

∫ t


(t – s)α–y(s) ds + c.

By the boundary conditions in BVP () we get

ac + bc = , –


�(α)

∫ 


( – s)α–y(s) ds + c + c =

∫ 


k(s)z(s) ds + μ.

Hence,

c =
b

a + b

[


�(α)

∫ 


( – s)α–y(s) ds +

∫ 


k(s)z(s) ds + μ

]

,

c =
a

a + b

[


�(α)

∫ 


( – s)α–y(s) ds +

∫ 


k(s)z(s) ds + μ

]

.

This means that

x(t) =
∫ 


G(t, s)y(s) ds +

at + b
a + b

∫ 


k(s)z(s) ds +

at + b
a + b

μ.

The proof is complete. �

Lemma . The function G(t, s) defined by () satisfies

 ≤ G(t, s) ≤ (at + b)( – s)α–

(a + b)�(α)
, t, s ∈ [, ],

and maxt∈[,] G(t, s) = G(s, s), s ∈ [, ].

Proof From () we easily see that

G(t, s) ≤ (at + b)( – s)α–

(a + b)�(α)
, t, s ∈ [, ].

For  ≤ s < t ≤ , by () we have

∂G(t, s)
∂t

=


�(α)

(
a( – s)α–

a + b
–

α – 
(t – s)–α

)

≤ ( – s)α–

�(α)

(
a

a + b
– (α – )

)

< , ()

which implies that

G(s, s) > G(t, s) > G(, s) = ,  ≤ s < t < . ()

So, the continuity of G(t, s) leads to

 ≤ G(t, s) ≤ G(s, s),  ≤ s ≤ t ≤ .

It is clear by () that also  ≤ G(t, s) ≤ G(s, s) for  ≤ t ≤ s ≤ . This ends the proof. �
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Lemma . Let y, z ∈ C([, ], R+). Then, for arbitrary given  < σ < , the unique solution
x(t) of BVP () satisfies

x(t) ≥ γ e(t)‖x‖, t ∈ [,σ ],

where

 < γ =
aσ + b
a + b

– σα– <  and e(t) =
at + b
a + b

, t ∈ [, ].

Proof By Lemmas . and . we have

x(t) ≤ e(t)
[


�(α)

∫ 


( – s)α–y(s) ds +

∫ 


k(s)z(s) ds + μ

]

, t ∈ [, ].

Moreover,

‖x‖ ≤ 
�(α)

∫ 


( – s)α–y(s) ds +

∫ 


k(s)z(s) ds + μ. ()

For  ≤ s ≤ t ≤ σ , () implies that

G(t, s) ≥ G(σ , s) =


�(α)

(
aσ + b
a + b

( – s)α– – (σ – s)α–
)

. ()

This, together with

∂G(σ , s)
∂s

≥ α – 
�(α)

(
(σ – s)α– – ( – s)α–) > ,

gives

G(t, s) ≥ G(σ , s) ≥ G(σ , ) =


�(α)

(
aσ + b
a + b

– σα–
)

=
γ

�(α)
>  ()

and  < γ < . From (), (), and () we have

x(t) ≥ γ

�(α)

∫ t


y(s) ds + e(t)

(


�(α)

∫ 

t
( – s)α–y(s) ds +

∫ 


k(s)z(s) ds + μ

)

≥ γ e(t)
(


�(α)

∫ 


( – s)α–y(s) ds +

∫ 


k(s)z(s) ds + μ

)

≥ γ e(t)‖x‖, t ∈ [,σ ].

This ends the proof. �

Lemma . A function x(t) is a solution of FEP () if and only if x(t) is a solution of the
integral equation

x(t) = λ

∫ 


G(t, s)f

(
s, x(s)

)
ds +

at + b
a + b

(∫ 


k(s)g

(
x(s)

)
ds + μ

)

. ()
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Proof According to Lemma ., it is evident that the solution of FEP () is the solution of
the integral equation ().

On the other hand, if x ∈ C[, ] is the solution of (), then

x′(t) = –
λ

�(α – )

∫ t


(t – s)α–f

(
s, x(s)

)
ds +

aλ

(a + b)�(α)

∫ 


( – s)α–f

(
s, x(s)

)
ds

+
a

(a + b)

(∫ 


k(s)g

(
x(s)

)
ds + μ

)

.

It is easy to see that x′ ∈ AC[, ] and x ∈ AC[, ]. From Lemma . we obtain that CDα
+ x

exists almost everywhere on [, ]. Noting that

x′′(t) = –
d
dt

(
λ

�(α – )

∫ t


(t – s)α–f

(
s, x(s)

)
ds

)

= –λ
d
dt

Iα–
+ f

(
t, x(t)

)
,

we can conclude that CDα
+ x(t) = –λf (t, x(t)) and x is the solution of FEP (). The proof is

complete. �

By Lemmas . and . we can get the following result.

Lemma . If x ∈ P\{θ} is a solution of FEP (), then x(t) ≥  for t ∈ [, ] and x(t) >  for
t ∈ (, ), that is, x(t) is a positive solution of FEP ().

For given  < σ < σ < , let

K =
{

x ∈ P | x(t) ≥ γe(t)‖x‖, t ∈ [σ,σ]
}

,

where γ = aσ+b
a+b – σα–

 , and e(t) is defined as in Lemma .. It is easy to show that K ⊂ P
is also a cone in E.

Define the operators A, Tμ, C(λ,μ) : P → E by

(Ax)(t) =
∫ 


G(t, s)f

(
s, x(s)

)
ds,

(Tμx)(t) =
(∫ 


k(s)g

(
x(s)

)
ds + μ

)

e(t),

(C(λ,μ)x)(t) = λ(Ax)(t) + (Tμx)(t).

It is clear by Lemma . that x is a solution of FEP () if and only if C(λ,μ)x = x.

Lemma . The operator C(λ,μ) : P → K is completely continuous.

Proof According to Lemma ., it is easy to verify that C(λ,μ)(P) ⊂ K .
Let D ⊂ P be a bounded set. Then there exists a constant M >  such that ‖x‖ ≤ M for

x ∈ D. Since f and g are continuous, there exists a constant M >  such that

max
t∈[,],κ∈[,M]

f (t,κ) ≤ M, max
κ∈[,M]

g(κ) ≤ M.
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Hence, from Lemma . we have

(Ax)(t) ≤ M

�(α)

∫ 


( – s)α– ds, (Tμx)(t) ≤ M

∫ 


k(s) ds + μ, x ∈ D,

that is, A(D) and Tμ(D) are uniformly bounded.
It is clear that G(t, s) is uniformly continuous on [, ] × [, ], which implies that for any

ε > , there exists δ >  such that

∣
∣G(t, s) – G(t, s)

∣
∣ <

ε

M

for t, t ∈ [, ] with |t – t| < δ and s ∈ [, ]. Therefore,

∣
∣(Ax)(t) – (Ax)(t)

∣
∣ ≤

∫ 



∣
∣G(t, s) – G(t, s)

∣
∣f

(
s, x(s)

)
ds < ε, x ∈ D,

which means that A(D) is equicontinuous. Noting that

∣
∣(Tμx)(t) – (Tμx)(t)

∣
∣ ≤

(

M

∫ 


k(s) ds + μ

)

|t – t|, x ∈ D,

we can show that B(D) are equicontinuous. Applying the Arzelà-Ascoli theorem, we obtain
that A and Tμ are completely continuous. Moreover, C(λ,μ) is completely continuous. This
completes the proof. �

3 Existence and nonexistence results
In this section, we apply Lemma . to establish the eigenvalue intervals for the existence
of at least two, one, and no positive solutions for FEP () according to the range of the
disturbance parameter μ. We assume the following conditions:

(H) f (t, x) is nondecreasing in x ∈ [, +∞) for fixed t ∈ [, ];
(H) g(x) is nondecreasing in x ∈ [, +∞);
(H) there exists r >  such that g(r)

∫ 
 k(s) ds < r;

(H) g∞ := lim infx→+∞ g(x)
x > a+b

γ(aσ+b)
∫ σ
σ

k(s) ds and
∫ σ
σ

k(s) ds > ;

(H) f∞ := lim supx→+∞ mint∈[σ,σ]
f (t,x)

x = +∞.
In this section, we assume that f (t, ) �≡ , t ∈ [, ].

Lemma . Suppose that (H) and (H) hold. If x∗ ∈ P is a fixed point of C(λ,μ) and λ +μ �=
, then x∗ �= θ ; moreover, x∗ is a positive solution of FEP ().

Proof From (H) and (H) it is clear that

x∗(t) =
(
C(λ,μ)x∗)(t) ≥ λ

∫ 


G(t, s)f (s, ) ds + μe(t),

together with λ + μ �=  leads to x∗ �= θ . It follows from Lemma . that x∗ is a positive
solution of FEP (). This completes the proof. �

From Lemma . we have C(λ,μ)(P) ⊂ K . If (H) and (H) hold and λ + μ �= , then by
Lemma ., x∗ ∈ K is not a fixed point of C(λ,μ), which implies that x∗ is not a positive
solution of FEP ().
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Lemma . Suppose that (H) and (H) hold.
(i) If there exist λ,μ >  such that C(λ,μ) has a fixed point x ∈ K , then C(λ,μ) has a

fixed point x ∈ K for any  ≤ λ ≤ λ,  ≤ μ ≤ μ, λ + μ �= .
(ii) If there exist λ′

,μ′
 >  such that C(λ′

,μ′
) has no fixed points in K , then C(λ,μ) has no

fixed points in K for λ ≥ λ′
, μ ≥ μ′

.

Proof From (H) and (H) it is easy to show that C(λ,μ) : K → K is an increasing operator.
For any  ≤ λ ≤ λ and  ≤ μ ≤ μ with λ + μ �= , we have

(C(λ,μ)x)(t) ≤ (C(λ,μ)x)(t) = x(t), t ∈ [, ].

Set w = x, wn = C(λ,μ)wn–, n = , , . . . , then

w(t) ≥ w(t) ≥ · · · ≥ wn(t) ≥ · · · ≥ λ

∫ 


G(t, s)f (s, ) ds + μe(t).

By Lemma ., {wn} converges to a fixed point x of C(λ,μ) in K .
It is evident that conclusion (i) implies conclusion (ii). This completes the proof. �

Denote fm(x) = maxt∈[,] f (t, x) for x ≥ . If (H) holds, then fm(x) >  for x ≥ .

Theorem . Suppose that (H), (H), and (H) hold. Then there exist λ,μ >  such
that C(λ,μ) has at least one fixed point x ∈ K for  ≤ λ ≤ λ and  ≤ μ ≤ μ with λ + μ �= .

Proof Setting

λ =
(r – g(r)

∫ 
 k(s) ds)�(α + )

fm(r)
, μ =

r – g(r)
∫ 

 k(s) ds


,

and w(t) = re(t), we have

(C(λ,μ)w)(t) ≤ e(t)
(

λ

�(α)

∫ 


( – s)α–f (s, r) ds + g(r)

∫ 


k(s) ds + μ

)

≤ e(t)
(

λfm(r)
�(α + )

+ g(r)
∫ 


k(s) ds + μ

)

= w(t), t ∈ [, ].

Let wn = C(λ,μ)wn–, n = , , . . . . Similarly to the proof of Lemma ., we obtain that {wn}
converges to a fixed point x of C(λ,μ) in K . Applying Lemma ., the proof can be com-
pleted. �

Theorem . Suppose that (H), (H), and (H) hold. If g(x) is strictly increasing in x ∈
[, +∞), then there exist μ∗ >  and λ∗ : [,μ∗] → [, +∞) satisfying

λ∗(μ) >  as  ≤ μ < μ∗, λ∗(μ) ≥  as μ = μ∗, ()

such that
(i) FEP () has at least two positive solutions for  ≤ μ < μ∗ and  < λ < λ∗(μ);
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(ii) FEP () has at least one positive solution for  ≤ μ ≤ μ∗, λ = λ∗(μ) or μ = μ∗,
 ≤ λ ≤ λ∗(μ∗) or  < μ ≤ μ∗, λ = ;

(iii) FEP () has no positive solutions for  ≤ μ ≤ μ∗, λ > λ∗(μ) or μ > μ∗, λ ≥ .

Proof We prove all statements by five steps.
Step . Set

� = {μ ≥  | ∃λ > , xλ ∈ K s.t., C(λ,μ)xλ = xλ} ()

and

μ∗ = sup�. ()

By Theorem . we obtain that � is nonempty and  < μ∗ ≤ +∞. If μ∗ = +∞, then there
exists an increasing sequence {μn}+∞

 ⊂ � such that limn→+∞ μn = +∞. By () there exist
λn >  and xn ∈ K such that C(λn ,μn)xn = xn. There are two cases to be considered.

Case . {xn}+∞
 is bounded, that is, there exists a constant M >  such that ‖xn‖ ≤ M for

n = , , . . . . Then we have

M ≥ ‖xn‖ = ‖C(λn ,μn)xn‖ ≥ μn → +∞,

which is a contradiction.
Case . {xn}+∞

 is unbounded, that is, there exists a subsequence of {xn}+∞
 , still denoted

by {xn}+∞
 , such that limn→+∞ ‖xn‖ = +∞.

Choose ε >  such that g∞ – ε > a+b
γ(aσ+b)

∫ σ
σ

k(s) ds . By (H) there exists N >  such that

g(x) ≥ (g∞ – ε)x for x ≥ N. Choose n such that ‖xn‖ > a+b
γ(aσ+b) N. Then

min
t∈[σ,σ]

xn (t) ≥ γ(aσ + b)
a + b

‖xn‖ ≥ N.

Moreover,

‖xn‖ = ‖C(λn ,μn )xn‖ ≥
∫ σ

σ

k(s)g
(
xn (s)

)
ds ≥ (g∞ – ε)

∫ σ

σ

k(s)xn (s) ds

≥ ‖xn‖(g∞ – ε)
γ(aσ + b)

a + b

∫ σ

σ

k(s) ds > ‖xn‖,

which is a contradiction. Consequently,  < μ∗ < +∞; moreover,

[
,μ∗) ⊂ �. ()

Step . When μ = μ∗, we prove that there exist λ̄ ≥  and x̄ ∈ K such that C(λ̄,μ∗)x̄ = x̄.
By () there exists an increasing sequence {μn}+∞

 ⊂ � such that limn→+∞ μn = μ∗. By
() there exist λn >  and xn ∈ K such that C(λn ,μn)xn = xn. Arguing similarly to Case , we
can show that {xn}+∞

 is bounded, that is, there exists a constant M >  such that ‖xn‖ ≤ M,
n = , , . . . . Arguing similarly to Case , we obtain that {λn}+∞

 is bounded and denote
λ′ = sup{λn | n = , , . . .}.
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On the other hand, from

∣
∣xn(t) – xn(t)

∣
∣ ≤ λ′

∫ 



∣
∣G(t, s) – G(t, s)

∣
∣f (s, M) ds

+
a|t – t|

a + b

(

g(M)
∫ 


k(s) ds + μ∗

)

it follows that {xn}+∞
 is equicontinuous. By the Arzelà-Ascoli theorem we conclude that

{xn}+∞
 is relatively compact. Hence, there exist subsequences {λni} ⊂ {λn} converging to

λ̄ ≥  and {xni} ⊂ {xn} converging to x̄ ∈ K . Since

xni (t) = λni

∫ 


G(t, s)f

(
s, xni (s)

)
ds + e(t)

(∫ 


k(s)g

(
xni (s)

)
ds + μni

)

,

by taking the limit we have

x̄(t) = λ̄

∫ 


G(t, s)f

(
s, x̄(s)

)
ds + e(t)

(∫ 


k(s)g

(
x̄(s)

)
ds + μ∗

)

,

that is,

C(λ̄,μ∗)x̄ = x̄ and x̄ ∈ K . ()

Step . Let us define a function λ∗ : [,μ∗] → [, +∞) satisfying (). For any given μ ∈
[,μ∗), set

ϒμ = {λ >  | ∃xλ ∈ K s.t., C(λ,μ)xλ = xλ} ()

and

λ∗(μ) = supϒμ. ()

By a similar argument as for () we can obtain that  < λ∗(μ) < +∞ .
Next, we show that λ∗(μ) ∈ ϒμ. By () there exists an increasing sequence {λn}+∞

 ⊂
ϒμ such that limn→+∞ λn = λ∗(μ). By () there exist xλn ∈ K such that C(λn ,μ)xλn = xλn .
Similarly, we can obtain that there exists a subsequence {xλni

} ⊂ {xλn} converging to x∗ ∈ K
and

x∗(t) =
(
C(λ∗(μ),μ)x∗)(t).

From () we have λ∗(μ) ∈ ϒμ. Lemma . implies

(
,λ∗(μ)

]
= ϒμ,  ≤ μ < μ∗. ()

When μ = μ∗, set

ϒμ∗ = {λ ≥  | ∃xλ ∈ K s.t., C(λ,μ∗)xλ = xλ}, ()



Wang and Guo Boundary Value Problems  (2016) 2016:42 Page 12 of 23

λ∗(μ∗) = supϒμ∗ . ()

Then, we can show that  ≤ λ∗(μ∗) < +∞ and λ∗(μ∗) ∈ ϒμ∗ , that is,

[
,λ∗(μ∗)] = ϒμ∗ . ()

By the preceding discussion we obtain that μ∗ >  and that the function λ∗ : [,μ∗] →
[, +∞) defined by () and () satisfies ().

Step . It is evident by (), (), (), (), and the discussion of Step , together with
Lemma .. that conclusions (ii) and (iii) hold.

Step . We prove conclusion (i), that is, that FEP () has at least two positive solutions
for  ≤ μ < μ∗ and  < λ < λ∗(μ).

Given μ ∈ [,μ∗) and λ ∈ (,λ∗(μ)), let x̄∗ ∈ K be a fixed point of C(λ∗(μ),μ). Then

(
C(λ,μ)x̄∗)(t) ≤ λ∗(μ)

∫ 


G(t, s)f

(
s, x̄∗(s)

)
ds +

(∫ 


k(s)g

(
x̄∗(s)

)
ds + μ

)

e(t) = x̄∗(t).

Similarly to the proof of Theorem ., we obtain that C(λ,μ) has at least one fixed point
x∗

 ∈ K and x∗
 (t) ≤ x̄∗(t) for t ∈ [, ]. Let

� =
{

x ∈ K | x(t) < x̄∗(t), t ∈ [, ]
}

.

Then � is a nonempty open bounded set in K . Let us prove that

x∗
 ∈ �. ()

Indeed, noting that x∗
 ∈ K and x∗

 (t) ≤ x̄∗(t) for t ∈ [, ], we only need to prove that x∗
 (t) <

x̄∗(t) for t ∈ [, ]. If x∗
 (t) = x̄∗(t) for t ∈ [, ], then

 =
(
λ∗(μ) – λ

)
∫ 


G(t, s)f

(
s, x∗

 (s)
)

ds ≥ (
λ∗(μ) – λ

)
∫ 


G(t, s)f (s, )) ds > ,

which is a contradiction. So x∗
 �= x̄∗. There are two cases to be considered.

Case . There exists t ∈ [, ) such that x∗
 (t) = x̄∗(t). This means that

∫ 


G(t, s)

(
λ∗(μ)f

(
s, x̄∗(s)

)
– λf

(
s, x∗

 (s)
))

ds

= e(t)
∫ 


k(s)

(
g
(
x∗

 (s)
)

– g
(
x̄∗(s)

))
ds. ()

It is easy to check that
the left side of () ≥ (λ∗(μ) – λ)

∫ 
 G(t, s)f (s, x̄∗(s)) ds > , and

the right side of () = e(t)
∫ 

 k(s)(g(x∗
 (s)) – g(x̄∗(s))) ds ≤ ,

which is a contradiction.
Case . If x∗

 (t) < x̄∗(t) for t ∈ [, ) and x∗
 () = x̄∗(), then

∫ 


k(s)

(
g
(
x∗

 (s)
)

– g
(
x̄∗(s)

))
ds = ,
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which implies that g(x∗
 (t)) = g(x̄∗(t)) for t ∈ [, ). This contradicts the fact that g(x) is

strictly increasing in x. So () holds.
Now, we find the second positive solution of FEP (). Set

F
(
t, x(t)

)
=

{
f (t, x̄∗(t)), x(t) > x∗(t),
f (t, x(t)),  ≤ x(t) ≤ x∗(t),

G
(
x(t)

)
=

{
g(x̄∗(t)), x(t) > x∗(t),
g(x(t)),  ≤ x(t) ≤ x∗(t).

Consider the following fractional boundary value problem:

⎧
⎪⎨

⎪⎩

CDα
+ x(t) + λF(t, x(t)) = ,  < t < ,

ax() – bx′() = ,
x() =

∫ 
 k(s)G(x(s)) ds + μ.

()

Lemmas . and . imply that x is a positive solution of FEP () if and only if x is a
positive fixed point of the operator C(λ,μ) defined by

(C(λ,μ)x)(t) = λ

∫ 


G(t, s)F

(
s, x(s)

)
ds +

(∫ 


k(s)G

(
x(s)

)
ds + μ

)

e(t), x ∈ K . ()

Since F and G are bounded, there exists R > ‖x̄∗‖ such that

‖C(λ,μ)x‖ < R, x ∈ K . ()

Set

KR =
{

x ∈ K | ‖x‖ < R
}

.

Then � ⊂ KR. Similarly to the proof of Lemma ., we can show that C(λ,μ) : KR → K is a
completely continuous operator. By () and Lemma . we have

i(C(λ,μ), KR, K) = .

We assert that C(λ,μ) has no fixed points in KR\�. Indeed, if y∗(t) ∈ K is a fixed point of
C(λ,μ), then by the definition of F and G we obtain

y∗(t) = λ

∫ 


G(t, s)F

(
s, y∗(s)

)
ds +

(∫ 


k(s)G

(
y∗(s)

)
ds + μ

)

e(t)

≤ λ∗(μ)
∫ 


G(t, s)f

(
s, x̄∗(s)

)
ds +

(∫ 


k(s)g

(
x̄∗(s)

)
ds + μ

)

e(t) = x̄∗(t),

which implies that y∗ ∈ �. Note that C(λ,μ)x = C(λ,μ)x for x ∈ �, and from the proof of
() we have y∗ ∈ �. Hence, by the excision property of the fixed point index we have

i(C(λ,μ),�, K) = i(C(λ,μ),�, K) = i(C(λ,μ), KR, K) = . ()
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Choose ε >  such that g∞ – ε > a+b
(aσ+b)γ

∫ σ
σ

k(s) ds . By (H) there exists R′ > R such that
g(x) ≥ (g∞ – ε)x for x ≥ R′. Let

� =
{

x ∈ K
∣
∣
∣ ‖x‖ <

a + b
γ(aσ + b)

R′
}

.

Noting that R < R′ < a+b
γ(aσ+b) R′, we have � ⊂ �.

For x ∈ ∂�, noting that mint∈[σ,σ] x(t) ≥ γe(σ)‖x‖ ≥ R′, we have

(C(λ,μ)x)(t) ≥ e(t)
∫ σ

σ

k(s)g
(
x(s)

)
ds ≥ (g∞ – ε)e(t)

∫ σ

σ

k(s)x(s) ds

≥ (aσ + b)γ(g∞ – ε)e(t)‖x‖
a + b

∫ σ

σ

k(s) ds,

which means that

‖C(λ,μ)x‖ ≥ (aσ + b)(g∞ – ε)γ‖x‖
a + b

∫ σ

σ

k(s) ds > ‖x‖.

By Lemma . we have

i(C(λ,μ),�, K) = .

According to the additivity of the fixed point index, we get

i(C(λ,μ),�\�, K) = i(C(λ,μ),�, K) – i(C(λ,μ),�, K) = –,

which implies that C(λ,μ) has at least one fixed point x∗
 in �\�. Therefore, FEP () has

another positive solution x∗
. The proof is complete. �

Remark . We can give an estimate for the critical value μ∗ in Theorem .. In fact,
letting w = re, from the proof of Theorem . we have C(λ,μ)w(t) ≤ w(t), provided that

λfm(r)
�(α + )

+ g(r)
∫ 


k(s) ds + μ ≤ r.

Hence, for  ≤ μ < r – g(r)
∫ 

 k(s) ds, there exist

λ =
(r – g(r)

∫ 
 k(s) ds – μ)�(α + )

fm(r)
≥ 

and xλ ∈ K such that C(λ,μ)xλ = xλ and λ+μ > . That is, [, r – g(r)
∫ 

 k(s) ds) ⊂ �, which
means that

μ∗ ≥ r – g(r)
∫ 


k(s) ds.

In particular, if  ≤ μ ≤ r – g(r)
∫ 

 k(s) ds, then

λ∗(μ) ≥ (r – g(r)
∫ 

 k(s) ds – μ)�(α + )
fm(r)

.
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Similarly to the proof of Theorem ., we obtain the following result.

Theorem . Suppose that (H), (H), (H) and (H) hold. Then, there exist λ∗ >  and
μ∗ : (,λ∗] → [, +∞) satisfying

μ∗(λ) >  for  ≤ λ < λ∗, μ∗(λ) ≥  for λ = λ∗,

such that:
(i) FEP () has at least two positive solutions for  < λ < λ∗ and  ≤ μ < μ∗(λ);

(ii) FEP () has at least one positive solution for  ≤ λ < λ∗, μ = μ∗(λ), or λ = λ∗,
 ≤ μ ≤ μ∗(λ), or  < λ ≤ λ∗, μ = ;

(iii) FEP () has no positive solutions for  ≤ λ ≤ λ∗, μ > μ∗(λ) or λ > λ∗, μ ≥ .

Remark . Feng and Zhang [] studied the existence of solutions for the operator equa-
tion

Tx = x, x ∈ Pu ,

where X+ is the positive cone of an ordered Banach space X, and

Pu =
{

x ∈ X+ | x ≥ ‖x‖u
}

, u ∈ X+,‖u‖ ≤ 

is a subcone of X+, and obtained some meaningful conclusions, which can be applied to an
abundance of concrete problems. Note that the cone K used in this paper is not a particular
case of the cone Pu ; our results in this paper differ from the applications of the abstract
results in [].

4 Uniqueness and dependence on parameter
In this section, we apply Lemmas . and . and the cone theory to further study the
maximum eigenvalue interval for the existence of the unique positive solution for FEP ()
and the dependence of such a positive solution on the parameter λ for given μ > . We
need the following hypotheses:

(H) for any r ∈ (, ) and x ∈ [, +∞), f (t, rx) ≥ rf (t, x) for t ∈ [, ];
(H) for any r ∈ (, ) and x ∈ [, +∞), g(rx) ≥ rg(x);
(H) limx→+∞ g(x) < +∞;
(H) there exists a constant κ ∈ (, ) such that

f (t, rx) ≥ rκ f (t, x), ∀t ∈ [, ], r ∈ (, ), x ∈ [,∞).

Let e(t) = at+b
a+b . Define Pe and P∗

e as in Section  and the operators A and Tμ as in Sec-
tion .

Lemma . Assume that (H) and (H) hold. Then
(i) A : P → P is an increasing operator, and A(P) ⊂ P∗

e ;
(ii) Tμ : P → P is an increasing operator, and Tμ(P) ⊂ Pe for μ > ;

moreover, C(λ,μ) : P → Pe is increasing for λ ≥  and μ > .
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Proof From Lemma . we have

 ≤ (Ax)(t) ≤ e(t)
∫ 



( – s)α–

�(α)
f
(
s, x(s)

)
ds, ∀x ∈ P,

μe(t) ≤ (Tμx)(t) ≤ e(t)
(∫ 


k(s)g

(
x(s)

)
ds + μ

)

, ∀x ∈ P,μ > .

This, together with (H) and (H), completes the proof. �

Lemma . Assume that (H) and (H) hold. Then for given μ > , there exists τ ∈ (, )
such that

Tμ(rx) ≥ rτ Tμx, x ∈ Pe, r ∈ (, ).

Proof It is easy to show from (H) that the function g is bounded, that is, there exists M > 
such that

g(x) ≤ M, x ∈ [, +∞). ()

Let τ = M
∫ 

 k(s) ds
μ+M

∫ 
 k(s) ds

; then  < τ < . Set

h(r) =
 – rτ

rτ – r
, r ∈ (, ),

By straightforward calculations we get that dh(r)
dr <  for r ∈ (, ). This means that

 – rτ

rτ – r
> lim

r→–

 – rτ

rτ – r
=

τ

 – τ
≥

∫ 
 k(s)g(x(s)) ds

μ
, r ∈ (, ), x ∈ Pe.

that is,

μ + r
∫ 


k(s)g

(
x(s)

)
ds ≥ rτ

(

μ +
∫ 


k(s)g

(
x(s)

)
ds

)

, r ∈ (, ), x ∈ Pe.

From (H) we have

Tμ(rx)(t) ≥ e(t)
(

μ + r
∫ 


k(s)g

(
x(s)

)
ds

)

≥ rτ (Tμx)(t), r ∈ (, ), x ∈ Pe.

This completes the proof. �

Lemma . Assume that (H), (H), (H), (H), and (H) hold. Then for any r ∈ (, ) and
x ∈ Pe, there exists η(r, x) >  such that

C(λ,μ)(rx) ≥ r
(
 + η(r, x)

)
C(λ,μ)x

for λ ≥  and μ > .
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Proof Take

η(r, x) =
(rτ– – )μ

λ
∫ 


(–s)α–

�(α) f (s,‖x‖) ds + M
∫ 

 k(s) ds + μ
, r ∈ (, ), x ∈ Pe, ()

where M is given by (); then η(r, x) > . Then, from (H), (H), (H), and Lemma . we
have

C(λ,μ)(rx)(t) ≥ rλAx(t) + rτ Tμx(t) ≥ rC(λ,μ)x(t) +
(
rτ – r

)
μe(t)

≥ r
(
 + η(r, x)

)
C(λ,μ)x(t), r ∈ (, ), x ∈ Pe.

This completes the proof. �

Remark . By Lemma . we have C(λ,μ)(P) ⊂ Pe. This means that if x is not a fixed
point of C(λ,μ) in Pe, then x is not a fixed point of C(λ,μ) in P. So, in this section, we study
the existence and nonexistence of the unique fixed point of C(λ,μ) in Pe.

Theorem . Assume that (H), (H), (H), (H), and (H) hold. Then for any given μ > ,
there exists λ∗(μ) >  such that FEP () has a unique positive solution xλ for λ ∈ [,λ∗(μ))
and has no positive solution for λ ≥ λ∗(μ). Furthermore, such a solution xλ satisfies the
following properties:

(i) for any u ∈ P, setting un(t) = λ
∫ 

 G(t, s)f (s, un–(s)) ds + e(t)(
∫ 

 k(s)g(un–(s)) ds +
μ), n = , , . . . , we have limn→∞ ‖un – xλ‖ = ;

(ii) xλ is increasing in λ for λ ∈ [,λ∗(μ));
(iii) xλ is continuous with respect to λ for λ ∈ [,λ∗(μ)).

Proof Given μ > , Lemma . and (H) imply that A satisfies condition (G). It is easy to
see by Lemmas . and . that Tμ satisfies condition (G). Consequently, Theorem .
follows from Lemma .. The proof is complete. �

Now, for given μ > , we estimate the critical value λ∗(μ) in Theorem .. If (H) and
(H) hold, then

f (t, x)
x

≤ f (t, ) ≤ max
t∈[,]

f (t, ), x > , t ∈ [, ].

Moreover, F∞ := lim supx→+∞ maxt∈[,]
f (t,x)

x ∈ [, +∞).

Theorem . Assume that (H), (H), (H), (H), and (H) hold. Then for any μ > ,

λ∗(μ)

{
≥ �(α+)

F∞ ,  < F∞ < +∞,
= +∞, F∞ = .

()

Proof Given μ > , Lemma ., together with (), implies that all the conditions in
Lemma . are satisfied. For λ ≥ , according to Lemma ., C(λ,μ) has a unique fixed point
in Pe if and only if there exist uλ, vλ ∈ Pe such that

uλ ≤ C(λ,μ)uλ ≤ C(λ,μ)vλ ≤ vλ.
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Take uλ = C(λ,μ)θ , where θ (t) ≡ ; then uλ ∈ Pe. If there exists vλ ∈ Pe such that C(λ,μ)vλ ≤
vλ, by the increasing property of C(λ,μ) and θ < vλ we have

C(λ,μ)θ = uλ ≤ C(λ,μ)uλ ≤ C(λ,μ)vλ ≤ vλ.

Therefore, C(λ,μ) has a unique fixed point in Pe if and only if there exists vλ ∈ Pe such that
C(λ,μ)vλ ≤ vλ. Set

� = {λ ≥  | there exists vλ ∈ Pe such that C(λ,μ)vλ ≤ vλ}.

Then C(λ,μ) has a unique fixed point in Pe if and only if λ ∈ �. Moreover, by Theorem .
it is easy to see that

λ∗(μ) = sup� and λ∗(μ) /∈ �.

On the other hand, for any ε > , by Lemma . and the definition of F∞ there exists
r ∈ (, ) such that

r–τ
 e ≤ Tμe ≤ 

r–τ


e and f
(

t,

r

)

≤ 
r

(F∞ + ε), r ≤ r, t ∈ [, ].

Set w(t) = 
r

e(t). Then

(Aw)(t) ≤ e(t)
�(α)

∫ 


( – s)α–f

(

s,

r

)

ds ≤ e(t)(F∞ + ε)
r�(α + )

≤ (F∞ + ε)
�(α + )

w(t),

(Tμw)(t) ≤ 
rτ


(Tμe)(t) ≤ 

rτ
r–τ


e(t) =




w(t).

Taking λε = �(α+)
(F∞+ε) , we have

(C(λε ,μ)w)(t) = λε(Aw)(t) + (Tμw)(t) ≤ (F∞ + ε)λε

�(α + )
w(t) +




w(t) ≤ w(t).

Therefore, from the definition of � we obtain that λε = �(α+)
(F∞+ε) ∈ �, that is, λ∗(μ) > �(α+)

(F∞+ε) ,
which implies that () holds. This completes the proof. �

Corollary . Assume that (H), (H), (H), (H), and (H) hold. Then for given μ > ,
FEP () has a unique positive solution xλ for λ ∈ [, +∞). Furthermore, such a solution xλ

satisfies the following properties:
(i) for any u ∈ P, setting un = λAun– + Tμun– (n = , , . . .), we have

limn→∞ ‖un – xλ‖ = ;
(ii) xλ is nondecreasing in λ for λ ∈ [, +∞);

(iii) xλ is continuous with respect to λ for λ ∈ [, +∞);
(iv) if f (t, ) �≡ , then limλ→+ ‖xλ – xμ‖ =  and limλ→+∞ ‖xλ‖ = +∞, where xμ is the

unique fixed point of Tμ in Pe.
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Proof It is clear that (H) implies (H) and

F∞ = lim sup
x→+∞

max
t∈[,]

f (t, x)
x

= .

Applying Theorem . and Theorem ., we complete the proofs of the all conclusions
except (iv).

Next, we prove (iv). It is obvious from conclusion (iii) that limλ→+ ‖xλ – xμ‖ = . Noting
that xλ(t) = (C(λ,μ)xλ)(t) ≥ μe(t), from (H) and (H) we have

xλ(t) ≥ λ

∫ 


G(t, s)f

(
s,μe(s)

)
ds ≥ λmin{μ, }

∫ 


G(t, s)e(s)f (s, ) ds.

Hence,

‖xλ‖ ≥ λmin{μ, } max
t∈[,]

∫ 


G(t, s)e(s)f (s, ) ds,

which means that limλ→+∞ ‖xλ‖ = +∞. This ends the proof. �

When g(x) is a constant function c (≥ ), it is evident that g satisfies (H), (H), and
(H). For given μ > , Tμx(t) = (c

∫ 
 k(s) ds + μ)e(t) := xμ(t). We can obtain the following

results.

Corollary . Assume that (H) and (H) hold. If F∞ > , then, for given μ > :
(i) there exists λ∗(μ) ≥ �(α+)

F∞ such that FEP () with g ≡ c has a unique positive
solution xλ for λ ∈ [,λ∗(μ)) and has no solution for λ ≥ λ∗(μ). Moreover, for any
u ∈ P, setting un = xμ + λAun– (n = , , . . .), we have limn→∞ ‖un – xλ‖ = ;

(ii) xλ is nondecreasing in λ for λ ∈ [,λ∗(μ));
(iii) xλ is continuous with respect to λ for λ ∈ [,λ∗(μ)); moreover, limλ→+ ‖xλ – xμ‖ = .

Corollary . Assume that (H) and (H) hold. If F∞ = , then, for given μ > :
(i) FEP () with g ≡ c has a unique positive solution xλ for any λ ∈ [, +∞); moreover,

for any u ∈ P, setting un = xμ + λAun– (n = , , . . .), we have limn→∞ ‖un – xλ‖ = ;
(ii) xλ is nondecreasing in λ for λ ∈ [, +∞);

(iii) xλ is continuous with respect to λ for λ ∈ [, +∞);
(iv) limλ→+ ‖xλ – xμ‖ =  and limλ→+∞ ‖xλ‖ = +∞.

Corollary . Assume that (H) and (H) hold. Then conclusions (i), (ii), (iii), and (iv) in
Corollary . hold.

Remark . In the particular case of α = , FEP () can be regarded as the following
second-order boundary value problem:

⎧
⎪⎨

⎪⎩

x′′(t) + λf (t, x(t)) = ,  < t < ,
ax() – bx′() = ,
x() =

∫ 
 k(s)g(x(s)) ds + μ,

and all the results in this paper still hold. However, our research does not contain the case
of FEP () with α = . Zhang and Cheng [] studied the existence and nonexistence of
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positive periodic solutions for the first-order coupled functional differential system de-
pending on two parameters

{
x′(t) = –a(t)x(t) + λk(s)f(x(t – τ(t)), y(t – σ(t))),
y′(t) = –a(t)y(t) + μk(s)f(x(t – τ(t)), y(t – σ(t))),

()

where ai, ki, τi, σi are continuous ω(> )-periodic functions, fi, ki are positive continuous
functions, and

∫ ω

 ai(t) dt > , i = , , and obtain some interesting results. In compari-
son with [], we are concerned with the eigenvalue problem of fractional α ( < α ≤ )
order differential equations () with a disturbance parameter in the boundary conditions,
which is different from the first-order differential system () in []. In addition, we study
not only the existence and nonexistence of positive solutions, but also the existence and
uniqueness of positive solutions for FEP ().

5 Examples
In the section, we give two concrete examples to illustrate our main results.

Example . Consider the FEP

⎧
⎪⎨

⎪⎩

CD.
+ x(t) + λf (t, x(t)) = ,  < t < ,

x() – x′() = ,
x() =

∫ 



 (sx(s)) ds + μ,

()

where

f (t, x) =

⎧
⎨

⎩

t(x+)

√


,  ≤ x ≤ ,

t
√

x
 , x > ,

that is, α = ., a = , b = , g(x) = x, and k(t) = 
 t. Evidently, a

a+b < α – , f ∈ C([, ] ×
R+, R+), f (t, ) �≡ , g ∈ C(R+, R+), k ∈ C([, ], R+), and k �≡ . It is easy check that (H)
holds and g(x) is strictly increasing in x ∈ [, +∞). Note that

lim sup
x→+∞

g(x)
x

= +∞, lim
r→

g(r)
r

= . ()

Therefore, (H) and (H) are satisfied. From Theorem . we obtain that there exist μ∗ > 
and λ∗ : (,μ∗] → [, +∞) satisfying

λ∗(μ) > ,  ≤ μ < μ∗, λ∗(μ) ≥ , λ = μ∗,

such that:
(i) FEP () has at least two positive solutions for  < μ < μ∗ and  ≤ λ < λ∗(μ);

(ii) FEP () has at least one positive solution for  ≤ μ < μ∗ and λ = λ∗(μ);
(iii) FEP () has no positive solutions for  ≤ μ ≤ μ∗, λ > λ∗(μ) or μ > μ∗, λ ≥ .
Next, we estimate the critical values μ∗ >  and λ∗(μ) for μ ∈ [,μ∗]. It is clear that

 < r – g(r)
∫ 


k(s) ds ≤  – g()

∫ 


k(s) ds = ,  < r < ,
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and

fm(r) = max
t∈[,]

f (t, r) =

⎧
⎪⎨

⎪⎩

(r+)

√


,  ≤ r ≤ ,

√
r
 , r > .

Take r = ; then r – g(r)
∫ 

 k(s) ds = . From Remark . we have μ∗ ≥  and, for
 ≤ μ ≤ ,

λ∗(μ) ≥ ( – μ)
√

�(.)√


=

√

π ( – μ)


.

Example . Consider the FEP

⎧
⎪⎨

⎪⎩

CDα
+ x(t) + λf (t, x) = ,  < t < ,


 x() – 

 x′() = ,
x() =

∫ 


sx(s)
+x(s) ds + μ,

()

where . < α ≤  and

f (t, x) =

{
t
 x,  ≤ x ≤ ,
t
 (x +

√
x), x > ,

that is, a = 
 , b = , g(x) = x

+x , and k(t) = t. Evidently, a
a+b < α – , f ∈ C([, ] × R+, R+),

g ∈ C(R+, R+), k ∈ C([, ], R+), and k �≡ . It is easy check that (H) and (H) hold. For any
r ∈ (, ),

for  ≤ x ≤ , we have f (t, rx) = tr
 x = rf (t, x);

if x >  and  < rx ≤ , then we have f (t, rx) = tr
 x ≥ rt

 ( 
 x + 


√

x) ≥ tr
 (x +

√
x) =

rf (t, x);
if x >  and rx > , then we have f (t, rx) = t

 (rx +
√

rx) ≥ tr
 (x + √

r
√

x) ≥ rf (t, x),
that is, f (t, rx) ≥ rf (t, x) for x ∈ [, +∞) and t ∈ [, ]. Hence, f satisfies (H). It is easy to
check that g satisfies (H) and (H). By Theorem . we obtain that for given μ > , there
exists λ∗(μ) >  such that FEP () has a unique positive solution xλ for λ ∈ [,λ∗(μ)) and
has no positive solution for λ ≥ λ∗(μ). Moreover, such a solution xλ satisfies the following
properties:

(i) for any u ∈ P, setting un(t) = λ
∫ 

 G(t, s)f (s, un–(s)) ds + e(t)(
∫ 

 k(s)g(un–(s)) ds +
μ), n = , , . . . , we have limn→∞ ‖un – xλ‖ = ;

(ii) xλ is increasing in λ for λ ∈ [,λ∗(μ));
(iii) xλ is continuous with respect to λ for λ ∈ [,λ∗(μ)).
Next, we apply Theorem . to estimate the critical values λ∗(μ) for μ > . Note that

F∞ = lim sup
x→+∞

max
t∈[,]

f (t, x)
x

=



.

Then λ∗(μ) ≥ �(α+)
F∞ = �(α + ) for all μ > .
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