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1 Introduction

In this paper, we consider the following initial-boundary value problem:

Uy — Au+ Ku + Aug = alulPu+f(x,t), xeQ,t>0, (1.1)
d
—%(x, £) = gx,t) + / h(x,y, Ouly, ) dy, x€d%,t>0, (1.2)
Q
u(x, 0) = uo(x), 1 (%,0) = 1y (x), (1.3)

where € is a bounded domain in RY with a smooth boundary 8, v is the unit outward
normal on dQ2; a = 1, K, A, p are given constants, and uy, uy, f, g, /1 are given functions
satisfying conditions specified later.

The wave equation

Uy — Au=f(xt,u,u), (1.4)

with different boundary conditions, has been extensively studied by many authors, for
example, we refer to [1-25] and the references given therein. In these works, many in-
teresting results about the existence, regularity and the asymptotic behavior of solutions
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were obtained. In [3], Beilin investigated the existence and uniqueness of a generalized
solution for the following wave equation with an integral nonlocal condition:

uy — Au+clx, hu =f(x1), (xt)eQ=2x(0,7),
Wt [y fok( &, DuE, 7)dEdT =0, (x,t) €3 x [0,T), (15)
u(x,0) = up(x), uy(x,0) =u1(x), x€€,

where Q is abounded domain in RY with a smooth boundary, v is the unit outward normal
on AR, f, ug, uy, k(x,&, ) are given functions. Nonlocal conditions come up when values of
the function on the boundary is connected to values inside the domain. There are various
type of nonlocal boundary conditions of integral form for hyperbolic, parabolic or elliptic
equations, introduced in [3]. In [4], the following problem was considered:

uy — Au+g(u) +f(u)=0, x€Q,t>0,
u=0, x€dLt>0, (1.6)
M(x: O) = I/l()(x), ut(x,()) = Ml(x), X € Q’

where f(u) = —b|ulP~2u, g(u;) = a(l + |us|" 2)us, a,b > 0, m,p > 2, and Q is a bounded do-
main of RN, with a smooth boundary 9. Benaissa and Messaoudi showed that for suitably
chosen initial data, (1.6) possesses a global weak solution, which decays exponentially even
if m > 2. The proof of the global existence is based on the use of the potential well theory.

As [4], Messaoudi [10] also showed the problem (1.6), with f(u) = b|u|’~2u, b > 0 has a
unique global solution with energy decaying exponentially for any initial data (uo,u;) €
HYQ) x L2(R). So if f(u) = b|lulP"2u, and g(us) = |u:|" us, Nakao [16] showed that (1.6)

2

has a unique global weak solution if 0 < p — 2 < =, N > 3, and a global unique strong
2

solution if p — 2 > =5, N > 3 (of course if N =1 or N = 2 then the only requirement is
p > 2). On the other hand, in both cases it has been shown that the energy of the solution
decays algebraically if m > 2 and decays exponentially if 2 = 2. Also as [4], Nakao and Ono

[17] extended this result to the Cauchy problem,

Uy — Au+ A2@)u+gu) +f(u) =0, xeRN,t>0, w7

u(x, 0) = uo(x), u(x,0) =1 (x), x€RN, '
where g(u;) behaves like |u;|"2u;, f(u) behaves like —|«|P~2u and the initial data (uq, u1)
is small enough in H*(Q2) x L?(2). Later on, Ono [19] studied the global existence and the
decay properties of smooth solutions to the Cauchy problem related to (1.6), for f(u#) =0
and gave sharp decay estimates of the solution without any restrictions on the data size
(uo, u1).

In [21], Munoz-Rivera and Andrade dealt with the global existence and exponential
decay of solutions of the nonlinear one-dimensional wave equation with a viscoelastic
boundary condition. In [22-24], Santos also studied the asymptotic behavior of solutions
to a coupled system of wave equations having integral convolutions as memory terms.
The main results show that the solutions of that system decay uniformly in time, with
rates depending on the rate of decay of the kernel of the convolutions.

In [25], the global existence and regularity of weak solutions for the linear wave equation

Uy — Uyy + Ku + Aty = f(x, 1), O0<x<1,£>0, (1.8)
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with the initial conditions as in (1.3) and two-point boundary conditions. The exponential
decay of solutions was also given there by using Lyapunov method.

The works introduced as above lead to the study of the existence and exponential decay
of solutions for the problem (1.1)-(1.3). This paper consists of three sections. The prelimi-
naries are presented and two existence results with a = 1 are done in Section 2. The decay
of the solution with respecttoa=1,g=0,K>0,A>0,and2<p < 2131__—22’ N > 3 is estab-
lished in Section 3. The proofs of the existences are based on the Faedo-Galerkin method
for strong solutions and standard arguments of density for weak solutions. Because this
problem is solved in an N-dimensional domain, it causes technical difficulties, so we need
the relations between the norms as in Lemmas 2.1-2.3 below. To obtain the exponential
decay, we use the multiplier technique combined with a suitable Lyapunov functional in

the form L(t) = E(¢) + §y (), where

1, , 1 K 1
E@) =2 [w @ + 2| vu@)]* + 2 @] - P lu@®]?, + /a (o ), 1) ) S,

2
)

v (t) = (u(t), u' (1) + %Hu(t)

8 > 0 is chosen sufficiently small, which allows us to show that if

IV iol® + Klluo |2 = oy + / ( / h(x,%o)uo(y)dy)uo(x)dsx>0
o Q

and if the initial energy E(0), f, & given are small enough, then the energy E(¢) of the solu-
tion decays to zero exponentially when ¢ goes to infinity.

We end the paper with a remark about a situation where a = —1, precisely we consider
(1.1) in the form

Uy — A+ Ku+ Ay + [ulP2u=f(xt), x€Q,t>0. (1.9)

With some suitable conditions for f, %, g, we obtain a unique global solution for (1.2)-
(1.3) and (1.9), with energy decaying exponentially as £ — +00, without any restrictions on
the data size (ug, #1) as in [19].

2 Preliminaries and existence results

In this paper, 2 C R is an open and bounded set with a smooth boundary 92 and the
usual function spaces C"(Q), W™ = W™"»(Q), L? = WO?(Q), H" = W™%(Q),1 < p < oo,
m=0,1,... are used. Let (-,-) be either the scalar product in L* or the dual pairing of a
continuous linear functional and an element of a function space. The notation || - || stands
for the norm in L? and we denote by || - ||x the norm in the Banach space X. We call X’
the dual space of X. We denote by L?(0,T;X), 1 < p < oo, the Banach space of the real
functions u : (0, T) — X measurable, such that

T 1/p
ll2tllze(0,5) = (/ Hu(t)||f(dt> <oo forl<p<oo
0

and

]l o070 = ess supllu() |, for p = oo
0<t<T
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Let u(z), u' (t) = u,(8), u” () = u(2), Vu(t), Au(t) denote u(x, t), 2 5 £), 2 3t2 “(x, 1), ( (x, t),
o BxN (1), YN, g Z x,t), respectively.

On H! we shall use the following norm: ||[v||n = (|[v]|? + | Vv||*)V2.

In cases N = 1 or N = 2, by the continuity and compactness of the injections H(£2) —
C°%(Q) with N =1 or HY(R) — L1(Q) with N = 2, it is not difficult to study problem (1.1)-
(1.3). On the other hand, it is obvious that the problem considered with a = 1 is more
difficult than the one with a = —1,s0 in what follows we only consider problem (1.1)-(1.3)
with N > 3, a = 1. A remark in the end of this paper will give a note in the case a = —1.

First, we recall the following results, see [26].

Lemma 2.1 Let Q C RN be an open and bounded set of class C'. Then the embedding

H' < L1, is continuous if1 < q < 2* and compact if 1 < q < 2*, where 2* = AZINZ, N >3.

Lemma 2.2 Let Q C RN be an open and bounded set with a smooth boundary 9. Then

1/2
(/ Vz(x)de> <yallvlyp forallveH, (2.1)
IQ

where yq is a positive constant depending only on the domain Q2.
The proofs below also require the following lemma.
Lemma 2.3 Let Q C RN be an open and bounded set with a smooth boundary 3. Let

25p52N—2

~— N > 3. Then there exists a constant Dy, > 0 depending on p, N and Q2 such
that

@ [ lul?u— 2y

1/N

< D1+ (Il + V)™ + (ltllyr + 1Vl )Mt = vl (2:2)

) [l 2] < Dy[1+ el + a2 v
forall u,ve H'.
Proof (i) We have

1
|20 — P 2y| = ‘f %[|v+9(u—V)‘piz(v+6‘(u—v))]d9
0

1
:(p—l)lu—vlf v+ 0u—-v)["?do < (p-Dlu—-v|IWP2, (2.3)
0

with W = |u| + |v|.
Hence, by Holder’s inequality we have

1/2
=22 = 2] < (p - 1)</Q v | W2 dx)

1/2a , 1/2a/
§(p—1)<f9|u—v|2°‘dx> (fQ|W|(2”4)"‘ dx)

forall o > 1. (2.4)
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Note that H! < L9, 1<q<2*_

,N>3,and ||Vl < Cyllvll, Vv € HY, 1 < g < 2%
N
Choose o = 2 N2

Tt
7:]\%,wehavea £ =F2Z =% and

1/2a
(/ |u — v dx) = lu— vl < Coxllu—v.
Q

By the condition 2 <p < N-2 _ 9

[\~

+ ﬁ, N > 3 is equivalent to
2N
0=Cp-d=2=g5 26)
so we consider two cases as follows.

Casel.1<(2p-4)d’ <2*—N 5

1/2a’
( f || 2P dx) =W e < (Copniar Wl )
Q

= O IV @7)
_ ' _ 2N,
Case2.0<B=(2p-4)a'<1<2" =3

(W20~ WP <14 (W),

, 1/2d/ 1/2a/
(/ |Wr|@p=t dx) < (/ 1+ |W|)dx>
Q Q

1/2a"
< (1 + 1M Iw)™

(2.8)

1/2a’
< (1 + QM IW(m)

1/N
= (121 + Q" Wlin)

< |Q|1/N + |Q|1/2N”W”1/N. (29)

Consequently, in both cases we get

1/2a!
—4)a’ 2
(/ |W|(217 4)a dx> < |Q|1/N + |Q|1/2N”W”};N Cp N”W”
Q

Hence

(2.10)

N2l =20 = P2y || < (p = 1) Corllut = vl
x [N + Q"N WA + Ch 2 W]
< Dpllu—vlm[L+ W + 1 W27]

< Dp[1+ (llullp + ||V||H1)N + (el + Wl )]

X |\t —= vyt (2.11)

Similarly (ii) is proved.
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The proof of Lemma 2.3 is complete. O

Next, we state two local existence theorems. We make the following assumptions:

Ag) 2<p<H 2, N=>3,

Byg) K,A€R,

Ay) f.f € LN0,T;L?),

Ay) heL*(0,T;L*(0Q2 x Q)), K, 0’ € L*(0, T; L*(3Q x ),
Az) gel?(0Q2 x Q), g,g" € L2(3Q x Q),

Ay f €L*@Qr),

AL) heL*(0,T;L*(0Q x Q)), W € L*(0, T; L*(382 x R)),
AL) g€ L*(0, T;L*(3R2)), g € L*(0, T; L*(3S2)).

o~ o~ o~ o~ o~ o~

Then we have the following theorem as regards the existence of a ‘strong solution’

Theorem 2.4 Suppose that (Ay), (Bo), (A1)-(Az) hold and the initial data (uo, uy) € H? x
H! satisfies the compatibility condition

alxlo

0 1) = g2, 0) + f (.3, 0)uto () dy. (2.12)
V

Q

Then problem (1.1)-(1.3) has a unique local solution
uel®(0,TsH?),  w,eL™(0,TsH'),  uyel™®(0,TL?) (2.13)
for T, > 0 small enough.

Remark 2.1 The regularity obtained by (2.13) shows that problem (1.1)-(1.3) has a unique
strong solution

ue L0, T;H*)NC0, T,s HY) N CHO, Ti; L),
us; € L%(0, Ty HY) N C(0, Ty; L2), (2.14)
Uy € LOO(O, T*;Lz).

With less regular initial data, we obtain the following theorem as regards the existence
of a weak solution.

Theorem 2.5 Let (Ao), (Bo), (A})-(A}) hold and (uo, u1) € H' x L*.
Then problem (1.1)-(1.3) has a unique local solution

u e C([0, T.];H') N C'([0, T.]; L?) (2.15)
for T, > 0 small enough.

Proof of Theorem 2.4 Let {w;} be a denumerable base of H*. Under the assumptions of
Theorem 2.4, using the Faedo-Galerkin approximation and Lemmas 2.1-2.3, we find the
approximate solution of problem (1.1)-(1.3) in the form

() = Y Co ()W), (2.16)

j-1
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where the coefficient functions c,,; satisfy the system of ordinary differential equations

(u, (), W) + (Vi (£), VWy) + (K (£) + A, (£), W))
+ faQ((h(xr t)rum(t)) +g(x: t))wj(‘x) de
= (|um(t)|p_2um(t)’ W/’) + (f(t)y Wj>, 1<j<m,
um(O) = Uop, M:,M(O) =U.

(2.17)

From the assumptions of Theorem 2.4, system (2.17) has a solution u,, on an interval
[0, T,»] C [0, T']. The following estimates allow one to take T}, = T for all m, consisting of
two key estimates.

In the first key estimate, we put S,,,(¢) = ||, (£)[|> + || Vit (£) |, it implies from (2.17) that

Sm0)=5m®)+2/‘«Mmoxud+g@ﬁDud@d&
FYe)
-2 ft(l(um(s) + A, (s), u),,(s)) ds
0
2 [l dztm’”‘zm,’ d
+ /(;(f(s) um(s)> s+ /0<|u (s)| Uy (S) um(s)> s
—2[ g(x,t)um(x,t)de—Zf (h(x,t),um(t))um(x,t)de
Ffo) Ffe)

+2 /tds/ ({7 (x,5), () + (1 (x, ), 14,,,(5)) + &' (%, 5) |4y (%, 5) AS
0 Bl

7
=S5u(0)+ Y I (2.18)
j=1

By Lemmas 2.1-2.3 and the following inequalities:

2ab < Ba® + %bz foralla,beR,B >0, 2.19)
(@a+b+c)1<37Ya?+b?+ ) forallg>1,a,b,c>0 '
and
1 * 2N
IVl < VIl 1, IVliee < Colvlign, VveH,1<q=<2"= m:N >3, (2.20)

with computing explicitly, all terms in the right-hand side of (2.18) are estimated, in which
the following estimates are worthy of note:

S$m(0) + 11 = S,,(0) + 2/ ({7(x,0), o) + g(x, 0) ) s () S,

Q2

=wm%wv%W+2/

o ((h(x, 0), uo> +g(x, 0))u0(x) das, = %60; (2.21)

12:—2/0 (Kum(s)+Au;n(s),u;n(s)>dsf/0 ||Mm(S)||2dS+([(2+2|)»|)‘/o ||u’m(s)||2ds

t s 2 t
5/0 [||u0||+/0 [, ()| dr] ds+(1<2+2|)\|)f0 Syu(s)ds
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t t
§2T||u0||2+T2/ ||u;n(r)||2dr+(1<2+2|x|)/ Sm(s)ds
0 0

t

t
<2T|luol* + (T* + K> + 2|A|)/ Siu(s)ds < Cr (1 + / S,n(s) ds); (2.22)
0 0
t T 9 t 9 t
I3 = 2/ (f(s),u/m(s))ds < / Hf(s)” ds + / ||u;n(s) || ds < Cr+ / Su(s)ds; (2.23)
0 0 0 0
t t
I = 2/ (‘um(s) |p72um(s), u'm(s)>ds < 2/ || ‘um(s)|pf1 ” Hu;ﬂ(s) H ds
0 0
t 12 t
< / w2 ds + / Su(s) ds
0 0
t 22 t t 22 t
= / |t ($)]) s s + / Sm(s)ds < C73 / |tm(s)]) 5" dis + / Su(s)ds, (2.24)
0 0 0 0
since 1 <2 <2p -2 <2*% and H(Q) < L¥7%(R2), we have
22 t L
lum@® |0~ < [2lluoll2 +Spu(2) +2t/ Sm(S)dS]
0
t
< 3072227 g |2 4 3772(S,, (1) + 3P 2213 / (Sm(s) " ds,
0
it leads to
t 2 t 1 t
I, :2/ (|um(s)|p_ Uy (8), u’m(s)>ds§ Cr+ CT/ (Sm(s))p_ ds+/ Su(s)ds;  (2.25)
0 0 0
Is=-2 /mg(x, Bt (%, 8) dS < 2vlIgll oo, 71200 | #m®) | 1
< = V311810 1z + Bl tm® |

=

t
Yallgh oo ey + B [2””0 12+ S2) +2¢ / Ss) ds}
0

RN = = =

t
< —=Cr+BS,.(t) + CT/ Swu(s)ds forallO0<pB<1; (2.26)
0
Is = —2/ (%, £), 14y (6) )ty (, £) AS,c < 2y |1l 00, 7522052 2 || 6 () | | 26 (D) 1
FIo)
2017112 2 2
Yo ||h||L°°(0,T;L2(anQ)) ” Um(t) ” +B ””m(t) ”Hl
t
J/g% ”h”im((),T;Lz(aQXQ)) [2””0”2 + Zt/; Sm(s) ds]
t
+ ,6[2||u0||2 +S,(t) + 2t/ Spm(s) ds}
0

=

t
Cr + BS,.(¢t) + %CT/ Syu(s)ds forall 8>0,8<1; (2.27)
0

= =

I = 2/t ds/ [(# (%, 5), () + (H(x, ), 14,,,(5)) + & (%, 5) |4y (%, 5) AS
0 Bl

t
=2vya ||h/||L°°(0,T;L2(anQ))_/O ””‘m(s)”f{l ds
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t
+2yallhll o0 T2 00 2)) /0 |4, | 4 ()] 2 ds

t
] P PRI

t t t
<Cr+ CT/ H”’"(S)Hfil ds + / ||u’m(s) ||2ds <Cr (1 + / Sa(s) ds). (2.28)

0 0 0
Combining estimations of all terms and choosing 8 = i, we obtain after some rearrange-

ments
t t 1
S,.(t) <Cr (1 +f S,u(s)ds +/ (Sm(s))” ds), 0<t<T, (2.29)
0 0

where Cy always indicates a constant depending on T

Then, by solving a nonlinear Volterra integral inequality (2.29) (based on the methods
in [27]), the following lemma is proved.

Lemma 2.6 There exists a constant T, > 0 depending on T (independent of m) such that
Su(t) <Cr, YmeN,Vte[0,T.], (2.30)
where Cry is a constant depending only on T.

By Lemma 2.6, we can take a constant T, = T, for all m.
In the second key estimate, we put X,,(¢) = ||u,()|I* + | Vu,,(£)]|*,and it follows from
(2.17) that

Xn(t) = X,n(0) +2 /asz (' (x,0), u0) + ((x,0), 1) + & (3, 0) ) s (x) S,
) / (K (5) + A (5) 1 (5)) s + 2 / ) ds
0 0
+2(p-1) /Ot<|um(s) |p_2u/m(s), u/,/n(s))ds

- 2/ (7 @, ), i (0)) + (M, £), 14, (2)) + & (3, 8) )14, (3, ) IS,
Bl

+ 2/0 ds /39 [(h (x, s),um(s)) + 2(h (x,8), um(s)>

+(h(x,5), u;,(s)) + g (%, 5) |4}, (%, 5) dS

= Xu(0) + Y _Ji. (2.31)

Letting t — 0, in equation (2.17);, multiplying the result by c;,(0), and using the com-
patibility (2.12), we get

|u4;,,(0) “2 = (Aug, 1), (0)) = (Kuo + Ay, 1, (0)) + (Juo [P 10, u,,,(0)) + (£(0), 4,,,(0)).
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This implies that
|, O] < 1 Auoll + IK[llstoll + A lzaa ]| + || 1o P || + [£(0)|| = X0 forallm, (232)

where X, is a constant depending only on p, K, X, ug, us, f.
Also note the following estimations:

Xﬁ®)+h:Xhm)+2AQ«H@ﬁLmﬁ+MWKMMQ+§M£DMKMd&

<Xo+ |Vu|? +2 /o ) ([ (x,0), o) + (I, 0), ) + & (x, 0)) 1 (x) IS,

Xos (2.33)

N =

Jo=-2 /t<Ku/m(s) + Au,(s), u/y;(s))ds
0
Y ) Pds+ (1 +20) [ 5Pl
< [0 as (k2«2 [ 01 as
<Cr+(K* +2|]) /tXm(s) ds; (2.34)
0

=2 ! / , /" d ! / d ! / 7 2d
h=2 o)< [lroldss [ 1ol

<Cr +/ |Lf’(s) ||Xm(s) ds. (2.35)

0

From

ety ()]| < Dp[1+ [t 10 + 6w |57 28 | ;0 < DpCr |t

by Lemma 2.3(ii), it gives
Jo=2(p-1) / et 11, (5), () s

0

<20 [ |l 2,0 9] s

=2p=00,Cr [ [0 ] ¢

< p-12D2C2 /0 14 (5) |2 ds + /o ()| ds

_ (p_l)m;c%[ /0 i, ()| ds + /0 ||Vu;ﬂ(s)H2ds:| N /0 l(5) | ds

< CT(I + ftXm(s) ds>; (2.36)
0

Js = —2f (7' G, 0), i (0)) + (B, 8), 10, (2)) + & (%, 8) ) s, (%, £) S
Bl

= 2V9[||”m(t)|| ||h/||L°°(O,T;L2(‘(}Q><Q)) + ””;n(t)” I17ll o< 0, 751202 2))
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+ “g,”LOC(O,T;LZ(aQ))] ””:ﬂ(t) HH1

<2Cr i, )], < %cT s Bl 0

< %CT + ,3|:2||ul||2 +X,,(8) + thtXm(s)ds]
0
1 t
< ECT + BX,.(t) + CT(I + / X, (s) ds) for all B8 € (0,1); (2.37)
0

Jo = 2f0tds /asz [(7" (x,5), () + 2(H (%, 5), 14, (s))

+(h(x,5), u),(s)) + g (x,5) |}, (%, 5) dS

< ZyQCTfOtHh”(S)HLz(aQXQ) |47, (5) | o s + 4V9CTf0t||”§n(S) [ s
r21ar [ PN, 5270 [ 1661905
S Py V0] N AT AP
vard G [ Ol ds 13 [0 ds [ a0l
VRIS Ly * 1870 g9 ds
<Cr+ CT/OtXm(s)ds+ /Ot O (s) 4 (5) | 3 s
<Cr+ CT/OZXm(s)dS+ /Ot d>(s)|:2||u1||2 +X,(s) + ZS/:Xm(r)dr] ds
<Cr+ CT/OtXm(s) ds + /Ot D(5)X,u(s) ds, (2.38)
where

() =2+ [ ppaney + 18O ppay @ €L T). (2.39)

1

Combining estimations and choosing 8 = 3, we obtain after some rearrangements

t
Xolt) = Cr+ [ WX, (0)ds, (240)
0
where Cr always indicates a constant depending on 7, and

W(s) = Cr1+|f)] + Hh”(s)Hﬂ(anQ) + ”g”(s)HLZ(aQ)]' v eL'(0,7). (2.41)

By Gronwall’s lemma, we deduce from (2.40) that

T
X.(t)<Cr exp[/ W(s) ds] <Cr forallte[0,T,]. (2.42)
0
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It verifies the existence of a subsequence of {u,,}, denoted by the same symbol, such that

Uy — 1 in L2(0, T,; H') weakly®,
u, —u  inL>(0,T,;H") weakly", (2.43)

u!, —u" inL>(0, T,;L?) weakly".

By the compactness lemma of Lions ([28], p.57), we can deduce from (2.43) the existence

of a subsequence still denoted by {u,,}, such that

U, — u strongly in L*(Qr,) and a.e. in Qr,, (2.44)
u,, — u strongly in L2(Qr,) and a.e. in Qr,. )

By means of the continuity of the function ¢ —> [¢[P~2¢, we have
|t |Pthyy — |ulP?u  and a.e. in Qr,. (2.45)

On the other hand

Tx
”|”m|p_2”m”i2<<2n) =f dS/’”m(x't)‘zpizdx
- [ ol a

Ty
< [ (Coalunt®],)" at
0

2p—2 2p-2
= CZ; 2T ” m”Ll;o 0,Ts;HY) = CT' (2.46)

Using the Lions lemma ([28], Lemma 1.3, p.12), it follows from (2.45) and (2.46) that
|t P20y — |ulPu  in L*(Qr,) weakly. (2.47)
Passing to the limitin (2.17) by (2.43), (2.44), and (2.47), we have u satisfying the problem

(" (), v) + (Vu(t), Vv) + (Ku(t) + A/ (), v)
+ [oq((hlx, £), u()) + g, £)v(x) dS

(2.48)
= (|u(®) P 2u(t),v) + (f(t),v) forallve H,
u(0) = uo, u'(0) =
On the other hand, we have from (2.43), (2.48);
Au=u"+Ku+ i = |ufu—feL®0,TyL%). (2.49)

Thus z € L*(0, T,; H?) and the proof of existence is complete. The uniqueness of a weak
solution is proved as follows.
Let u;, up be two weak solutions of problem (1.1)-(1.3), such that

w; € L°(0, TsH?),  u;eLl™(0,TH'),  ufeLl™(0,TsL%), i=12. (2.50)
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Then u = uy — u, satisfy the variational problem

@"(t),v) + (Vu(t), Vv) + (Ku(t) + 2 (t),v) + [, (h(x, 1), u(t))v(x) dS.

= (lu P72y — |ug|P2uy,v) forallve Hl,
u(0) = #/(0) = 0.

We take v = v’ = u} — uj in (2.51) and integrating with respect to ¢, we obtain

olt) = —Z/t(Ku(s) + A (s), u/(s))ds -2 /m(h(x, 1), u(t))u(x, t)dS,
0

+ 2/t ds/ [(h’(x,s),u(s)) + (h(x,s),u/(s))]u(x,s) ds,
0 aQ

4

t
+ 2/ (|u1|’”2u1 - |u2|p’2u2,u/(s))ds = Za,»,
0

j=1

where
o) = @] + | Vu@].
By (2.53) and the following inequalities:

1
2ab < Ba’ + EbZ foralla,beR,8>0,

o = ([ eonas) = [lwofas=e [“owas

[ = [Vu@]? + [u@)]|> <o) + ¢ /0 o () ds,

/ot”u(s)”z1 ds < ‘/Ot[o(s) +s/(ja(r)dri| ds < (1 + t2) /O[G(s)ds,

we estimate the following integrals in the right-hand side of (2.52):

o1=-2 /t<1(u(s) +Au'(s), u'(s))ds
0

t ) , E
5/0 ||u(s)|| ds+ (K +2|)»|)/0 ||u(s)|| ds

< /Ot(sfosa(r)dr> ds + (K2 +2|)\|) /Oto(s)ds

t

5Tz/ta(r)dr+(I(2+2|)L|)/tcr(s) S<CTf o (s)ds;
0 0

0y = —2/ <h(x, t), u(t))u(x, t)dS,
90
< 2yallhll 1o 2 paxay | #®)| | @)

||h||L°° 0,T;L2(32x Q) “”(t)” +ﬂ||”(t)HH1

tol»—t
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(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)
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1 t t
N | G(S)dS+ﬁ[0(t)+t IRC ds}
0 0
1 t
< Bol(t) + —CT/ o(s)ds;
B 0
t
o3 =2/ ds/ [(h’(x,s),u(s))+<h(x,s),u/(s)>]u(x,s) ds,
0 Q2
t
=2y0 ||h,||L°C(O,T;L2(aQ><Q))/O ””(3)”311 ds
t
+2yalilmoraancey | 14O 1400
t 9 t 9 t
<cr f u(s)]2 ds + Cr / l/(s)[*ds < Cr f o (s) ds.
0 0 0

By Lemma 2.3(i), we have

x>0 = Nua P s |

< Dy[1+ (leaallyr + Nuallzn)™ + (Nt ll g + Motz )] t6s) |10
< Dy[1+MN + M |uts) |, < Crf|s(s)] 00
where M; = ||u1||LOO(0,T*;H1) + ||u2||LOO(O'T*;H1). Hence
t
0y = 2/ (I P2y — o P2, 1 (5)) s
0
t
<20 [ Juts)] 0 s
0
t 9 t 9
<Cr / u(s)|%, ds + Cr / /(5)[? ds
0 0
t
< CT/ o(s)ds.
0

Combining (2.52), (2.56)-(2.58), (2.60) and choosing § = %, we obtain

o(t) < CT/to(s)ds.
0

Page 14 of 27

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

By Gronwall’s lemma, it follows from (2.61) that o = 0, i.e., u; = uy. Theorem 2.4 is

proved completely.

d

Proof of Theorem 2.5 In order to prove this theorem, we use standard arguments of den-

sity.

First, we note that W(0, T; L2(3R2)) = {g € L*(0, T; L?(0RQ)) : g’ € L*(0, T; L*(3Q))} is a

Hilbert space with respect to the scalar product (see [27]):

T
(& wio,r1209) :_/0 [(f(t)'g(t»ﬂ(an) (0.8 ®) 20 ] at

(2.62)
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Furthermore, we also have the embedding W'(0, T; L*(9R2)) — C°([0, T]; L*(3RQ)) is

continuous and

< : le'l;
”g”CO([O,T];LZ(BQ))—yT (||g||L2(O,T;L2(BQ))+ g L2(0,T;L2(BQ)))

= yrliglwro,ri209) (2.63)

forall g € W(0, T; L?(0R2)), where yr = | 5 + /4 + 4T2 (see the Appendix).
Similarly, W(0, T; L2(0Q2 x Q)) = {h € L%(0, T; L>(32 x Q)): ' € L*(0, T; L2(3Q x Q))}
is a Hilbert space with respect to the scalar product

T
(h’ k) W1(0,T;L2 (02 x 2)) :/(; [(h(t)' k(t)>L2(QQ Q) (h/(t) k( )>L2 3Q><Q)] dt (2’64)

and the embedding W (0, T; L2(0Q2 x )) < C°([0, T]; L*(32 x RQ)) is continuous and

2
1721l coqro, T2 (902x ) = VT\/(”h”LZ 0,T;L2(3Qx Q) Hh/ HLZ(O,T;LZ(anQ)))

= yrilhllwro,r.200x9) (2.65)

forall 1 € W'(0, T; L*(92 x R)), where yr = /5= + /4 + 7
Consider (ug, u1,f,g, 1) € H' x L? x L*(Qr) x W0, T; L2(3R2)) x W(0, T; L>(3Q x Q)).
Let the sequence {(#o,, Uiy fyns G M)} € H? x H' x C5°(Q7) x CP(92 x Q) x C (IR x

Q x [0, T1), such that

(see the Appendix).

Uom —> o strongly in HY,

Uy — uy  strongly in L2, (2.66)
fmu—f strongly in L2(Q7),
2 _ 2 ’ /112
lgm =&l o, rir200x) = 18 = &ll120 7120009 + lg. —& ||L2(0,T;L2(3S2)) -0, (2.67)
2 _ 2
2 — h”\vl(o,T;LZ(ansz)) = |/ h”L2 0,T;L2(32x Q) ”h;ﬂ -H ”L2(o,T;L2(anQ))
— 0. (2.68)

So {(#tom, u1m)} satisty, for all m € N, the compatibility condition

8u0m

(x) = gm(x,0)+/hm(x,y,O)uo,,,(y)dy (2.69)

Then, for each m € N, there exists a unique function u,, under the conditions of Theo-

rem 2.4. Thus, we can verify

() (), V) + (Vi (£), V) + (Kuy (£) + Aidl, (£), V)
+ fy o (o (3£), s (B)) + g, ) V() S,
= (|tml? 2ty v) + {fin(t),v) forallv e HY,

U (0) = Uom, l/l/m(O) = Uim

(2.70)
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and

U € L%(0, T,s H*) N C°(0, T,s H') N CH(0, Ty; L),
u, € L%(0, T, HY) N CO(0, Ty; L?), (2.71)
ul, € L0, Ty; L?).

By the same arguments used to obtain the above estimates, we get
’ 2 2
|, @] + |wm@® |1 < Cr, (2.72)

Vt € [0, T], where Cr always indicates a constant depending on T as above.
On the other hand, we put wy,; = u,, — us, fins =fn — i i = B — M1y Gni = & — Q>
Hyi(x,9,0) = E(rg?l(x, Y), i, 0) = gﬁﬁ}(x), from (2.70), it follows that

(w;;,’l(t),v) + (VW (£), VV) + (Kwy,, (£) + )“W;n,l(t)’v)
+ faQ((hm(x: t): Wm,l(t)) + <hm,l(x1 t): ul(t» + gm,l(x’ t))V(x) de

= (|t P21t — |g1P 201, V) + {f00(2),v)  forall v e HY,
(1)

m,l*

(2.73)

_(0
Wi (0) = thoy — gy = W)

oy W, 1(0) = tyyy — gy =w

We take v = wy,; = uy, — uy, in (2.73) and integrating with respect to ¢, we get

S (t) = Sma(0) +2 /d ({00 W)+ (B (x,0), 1101 + @i (%, 0)) ') (x) S,

= ont ) (9] ds -2 / R s) + Ay ), 5)) s

-2 /a . (P (s ) Wiy ®)) + (P (6, 8), 141(8)) + Gt (6, 8)) Wi 1, £) S
) /0 ds fa 510 91,9 )5
2 /0 s /a 05+ 1095,

t
2 / ds / (5, W, (3, 5) S,
0 aQ

8

t
+2 / (16”2t = |41 P21, W, () dls = S, (0) + > Z;, (2.74)
0 ~
j=1

where

Spa(®) = W, 0| + [ Ywua @), (2.75)

Smi(0) = |t — unll* + | Vikow — Vuor|l. (2.76)

After all terms of S,,;(¢) are estimated, in which we note the two main estimations Z;,
Zg as follows:

Z =2 / (P, 0), W) + 1, 0), ) + 1, 0)) 0 () S,
a0
= 2V9[||ﬁ’§2,)l” ||h”"(0)||L2(39><Q) + Nzl ||l:l£2,)l||L2(aQ><Q) + HQB}!”LZ(aQ)] ||w(r2,)l||H1
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< 2yayr- COnSt'[”‘X’ig,)z”m + M millwro T2axq) + 1gmillwiorzeo) ] ||W$)1 ([

— 0, asm,[— +00; (2.77)
this result combined with (2.66)-(2.68) shows that

Smi(0) + Zy = gy — unl|* + || Vidom — Vuoll|* + Z4

=R(m,l) — 0, asm,]l— +oo. (2.78)
On the other hand

” [ |p_2um = |uy |p_2ul ”

< D1+ (gt + Netllzn)™ + (Nt + Motallpr Y™ Wi 5) |10

< Cr|wmi®) |0, (2.79)

by Lemma 2.3(i), we get

t t
Zg = Zf (ltm P2 = 2w, W, (5)) s < 2CT/ Wi )| [ W), (5) | ds
0 0

t

t
< cT[thij?lHZ +(1+23) / sm,,(s)ds] +Cr / Sy i(s) ds
0 0

t
= CT[”W?:HZ + f Smi(s) ds}. (2.80)
0
We obtain
t
St() < RO (m, 1) + Cr / Spls) ds, (2.81)
0

with
R 0m, 1) = 2R(m, 1) + 20fon 172,
=(0) 1|2 2 2
+ CT(me,l” + Wil o,71200x0) + ”g”"’l”WI(O,T;LZ(i)Q))) -0, (2.82)
as m, | — +00. By Gronwall’s lemma, it follows from (2.81) that
Smi(t) < RY(m, ) exp(TCr) < CrRY (m, 1), Ve € [0, T,]. (2.83)

Thus, convergence of the sequence {(4o, U1, fin>8m> Hm)} implies the convergence to
zero as m, | — +00 of the term on the right-hand side of (2.83). Therefore, we get

um — u  strongly in C°([0, T,1; H') N C'([0, T, J; L?). (2.84)

On the other hand, from (2.72), we get the existence of a subsequence of {u,,}, still also
so denoted, such that

Uy — u  in L®(0, T,; H') weakly®,

, , . (2.85)
u,, —u in L*°(0, T,;L*) weakly".
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By the compactness lemma of Lions ([28], p.57), we can deduce from (2.85) the existence
of a subsequence, still denoted by {u,,}, such that

U, — u  strongly in L2(Qr,) and a.e. in Qr,. (2.86)
Similarly, by (2.72), it follows from (2.86) that
|t P21ty — |ulP~>u  in L*(Qr,) weakly. (2.87)
Passing to the limit in (2.70) by (2.84)-(2.87), we have u satisfying the problem
2/ (£),v) + (Vu(t), Vv) + (Ku(t) + ad' (£),v)
+ [0 ((h(x, 1), u(8)) + g(x,1))v(x) dS,

= (|ulPu,v) + (f(¢),v) forallve H',
u(0) = uo, u'(0) = uy.

(2.88)

Next, the uniqueness of a weak solution is obtained by using the well-known regulariza-
tion procedure due to Lions. Theorem 2.5 is proved completely. O

Remark 2.2 Inthecasel <p <2,f € L*(Qr),g € W0, T;L*(3R)), h € W (0, T; L*(32 x
Q)), and (uo, u;) € H x L2, the integral inequality (2.29) leads to the following global es-

timation:
Su(t) <Cr, VYmeN,Vte[0,T],VT >0. (2.89)

Then, by applying a similar argument to the proof of Theorem 2.4, we can obtain a global
weak solution u of problem (1.1)-(1.3) satisfying

uel™®(0,T;H'),  u,€L®(0,T;L%). (2.90)

However, in the case 1 < p < 2, we do not imply that a weak solution obtained here be-
longs to C([0, T1; H') N CY([0, T]; L?). Furthermore, the uniqueness of a weak solution is
also not asserted.

3 Exponential decay
In this section, we study the exponentially decay of solutions of problem (1.1)-(1.3) cor-
2N-2

respondingtoa=1,g=0,K >0, A >0, and 2 < p < 57=°. For this purpose, we make the

following assumptions:

(A]) f €L*0,00;L?) = L*(Quo), Qoo = 2 x Ry, such that ||f(£)|| < Ce 0%, for all £ > 0, with
C >0, yo > 0 are given constants,

(A5) h € L®(0,00;L%(0Q2 x ) N L2 (R, x 9Q x Q), K" € L>(0,00;L2(3 x 2)) N
L}0,00;L*(3Q x Q)),

(A3) g=0.

Let K > 0, on H' we shall use the following norm:

1/2
vl = (KIvI* + 1Vv]*) .
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Then we have the following lemma.

Lemma 3.1 On H, two norms |v|1, || are equivalent and

vl = Collvlly forallveH,

1 1
———IVh =Vt £ —————==
vmax{l, K} /min{l, K}

_ 1
where Cy = NIk

The proof of this lemma is simple, we omit the details.

We construct the following Lyapunov functional:
L(2) = E(t) + 8y (2), 3.1)

where § > 0 is chosen later and

1, 1 1
E) = w'®) I”+ 5 |u@)]} - 5 |u®]?, + /d Q(h(x, £), u(®))u(x, £) dS,, (3.2)
V(O = (w0, @) + 5 o] (33)
Put
1) = 1(u(0) = |u@®|; - @), +p /a Q(h(x, £), u(®))u(x, 1) dS,, (3.4)
1 2 1 »
J(t) :](u(t)) =5 ||u(t)||1 - 1—9 ||u(t)||u, + /m(h(x, t),u(t))u(x, t)dS,
1 1 1
~(3-3 ) lsol; + 10, 65)
we rewrite
1, 1, , 1 1 1
EO = @] +70 = [« 0] + (5 _ ;> o]} + 10 (3.6)

Then we have the following theorem.

Theorem 3.2 Assume that (A])-(A}) hold. Let 1(0) > 0 and the initial energy E(0) satisfy

p-2

2p z -
Nw = (CPCO)IJ(ITZE*) +pCovallhlliopon2axa) <1 (3.7)
where

iE* = () + } J;7 @I dt)exp(2; [5° h(e) o), 68)

h(®) = 7a(CollH (Dl 2axe) + £ 7 lHO 2050

Ya = vaCo and C, is a constant satisfying the inequality ||v||» < C, ||V, for all v € H*.
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Then, for E(0), IIfllzo0(0,00:22)» 11l 20,0022 (022x )7 1 | L% (0,002 (92x 2)) Sulficiently small,
there exist positive constants C, y such that

E(t) < Cexp(-yt) forallt>O0. (3.9)
Proof of Theorem 3.2 At first, we state and prove Lemmas 3.3-3.6 as follows.

Lemma 3.3 The energy functional E(t) satisfies
, PN EE 2
F@ =S + o]
- , 1._
70 oW O ey 570 IO ) O 610

Proof Multiplying (1.1) by #'(x, t) and integrating over [0, 1], we get

E(t) = —)»||u’(L‘)H2 + (f(t), u/(t)> + /asz [(h/(x, t), u(t)) + (h(x, t),b/(t))]u(x, t)dS,. (3.11)
We have

/ a2, L 2
(f@),u'@®) < E”” ®)" + X”f(t) I°. (3.12)
By Lemmas 2.1, 2.2, 3.1, we obtain

/ (H G ), (), ) S, < | u(0) / 4 (e, )] |, )| S,
(19 I

1/2 1/2
< Collu(r) H1< /d ] |# (x,2) ||2de) < /o ] U (x, ) de>

< Cotal[H )] 2 |45 (313)

/8 (s 1,0 s 1. = 1) /a 10wt 0] s,

= ””/(t)” Ya ”h(t)”LZ(anQ) ””(t) ”1

Ay 1.
= 2 ”” (t)”2 + Xyszz ”h(t)”;(agxg) ”"‘(t)”f' (3.14)
Combining (3.11)-(3.14), (3.10) follows. Lemma 3.3 is proved completely. (I
Lemma 3.4 Suppose that (A])-(A%3) hold. Then, if we have I1(0) > 0 and
p-2
2p z -

Nw = (CPCO)IJ(ITZE*) +pCovallhlliopon2axa) <1 (3.15)

then I(t) >0, Vt > 0.
Proof By the continuity of I(¢) and 1(0) > 0, there exists 77 > 0 such that

I(t) =I(u(t)) =0, Vtel0,T1], (3.16)
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this implies

10 = (5= )@l + 10
V4 V4

(-
(;--)n ol;

o}

v

Yt e [0, Ty]. (3.17)

1’

It follows from (3.6), (3.17) that

|u)])? < %](t) < I%E(t), vt e[0Ty, (3.18)
Equation (3.10) leads to
E(t) < —Hu @[+ —Ilf ol

_ , 1._
7 CollH O ey * 3 WOy ) O

1 2p 1_
< VO s 270 (WO ey 572l ECO

- hror -

212(t)15(t). (3.19)

Integrating with respect to ¢, we obtain

l [e'e} 9 2p t_
E(t) < E(0) + ; /0 |Lf(t) H dt + b2 /0 h(s)E(s) ds, (3.20)

where A(t) is as in (3.8).
Combining (3.18), (3.20), and using the Gronwall lemma, we have

1 [ele} 9 2p 0o _ ~
Et) < (E(O) ‘o /0 lF@| dt) exp(m /0 h(s) ds) -E. (3.21)

and

Ju@)|; < 2—Js(t)< 172—1”2}5*, vt € [0, Ty). (3.22)

Hence, it follows from (3.7), (3.22) that

” u(t) HIZP —p/ (h(x, t), u(t))u(x, t)dS,
Ffe)
< (G oY [} + pCorall 1] g0 |4

2

p-2
2p z -
< |:(Cpc())p <1?2E*> +pCovyallh ||L°°(o,oo;L2(anQ))] |u@];

Yt e [0, Ty]. (3.23)

=n.u@)]; < |u®];,
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Therefore, I(t) > 0, Vt € [0, T1].

Now, we put T, = sup{7 > 0:I(u()) > 0,Vt € [0, T]}. If T, < +00 then, by the continuity
of I(t), we have I(T) > 0. By the same arguments as in the above part, we can deduce
that there exists T, > T, such that I(¢) > 0, Vt € [0, T»]. Hence, we conclude that I(¢) > 0,
Vi > 0.

Lemma 3.4 is proved completely. g

Lemma 3.5 Let 1(0) > 0 and (3.7) hold. Then there exist the positive constants 1, By such
that

BIE(t) < L(t) < BE(t), VYt=0 (3.24)

for § is sufficiently small.

Proof A simple computation gives

E(t)——”u(t)“ (———)||u(t)||l+ L1e) + s{ute) u(t))+—||
(3.25)

E(t):%”u’(t)|‘2+](t)=%Hu/(t)” (———)H o+ 1t

From the following inequalities:

8(u(t),b/(t)> <68Cy Hu(t)”1 ||u/(t)” <$ ||u/(t) HZ + i(SCg ||u(

(3.26)
— IIM(f)H < —C2 I

we deduce from (3.25) that

1, 1
£ = 3ol s (5= ) wol+ 10 - oo

1
e 1) iearer 120

(1 11 150 1 2 1
_< 5>|| o2 +[2 F 28C0<A+2):|||u(t)||1+p1(t)

1 1
- (1—25)%||u'(t)||2 + [1— wK

3=

; ol + 1
p
> BLE(2), (3.27)

where we choose

18CE (L +3) } (3.28)

1 1

B :min{1,1—28,1—
2 p

with § being small enough, 0 < § < min{%, ey
2
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Similarly, we can prove that

(t)<<§+8>Hu(t)|| +B_}a+ 5C2<k+—>:||{u(t)||l+ L

186G+ 1
=(1+28)%H1/(t)”2+[1+%]( )” ”1+ 1

2 p
< B:E(t), (3.29)
where

1o2 1

s6C5 (A + 5
ﬂ2=max{1+25,1+ #} (3.30)

27 p

Lemma 3.5 is proved completely. d

Lemma 3.6 Let 1(0) > 0 and (3.7) hold. Then the functional v (¢) defined by (3.3) satisfies
V@ =< [ + Clro|’ - 10
4e 2
- [%(1 -n.)—e1—- (p-1)Cova ||h||Loo<o,oo;Lz<am»} |u®)]; (3.31)
forall g, > 0.
Proof By multiplying (1.1) by u(x, £) and integrating over [0,1], we obtain
V@) = @ - [u@)|? + |u@)]?, + @), u@) - /8 (i ), 10 e ) S,
=||u’(t)”2—%1 ——1 £+ (p-1) / (h(x, ), () )u(x, 1) dS,. + (f(8), u(0)). (3.32)
Note that

1) = (1-n.) | u@)

/ (o, 8), u(t))ulx, £) dS, < Covallhll oo ,002axa) | 40|, (3.33)
aQ
(FO.u0) < &1 [u)]} + -3
- 1 4-81
hence, Lemma 3.6 is proved by using some estimates. O

Now, we prove Theorem 3.2.
It follows from (3.1), (3.10), and (3.31) that

) A ) 8
L)< —<5 -5) |lu @] - L0

1 _
- {5 |:5(1 — ) — 81:| —38(p - DCovyallhll Lo (0,00;12 (602 2))
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1
— Ve (CO | ||L°° ©Oo0r2@axe) T )LVQ”h”LOO 0,005L2 (02 x Q) ) } “”(t)”1
1 2
+| = + —C Hf(t)“
A 1) 1
- —(5 -5 )Wl - 310~ {3] 30 -1 | - ) Juco
1
; ( . _c2> o]
for all 8,1 > 0, where
[(7]]| = 8(p = 1) Coallhll o002 002x )
_ , 1_
trve (CO ”h ||L°°(0,oo;L2(BQ><Q)) + X)/Q”h”%OO(O,OO;LZ(BQxQ))>'
Let §, ; satisfy
0<$6 ~ 0 L 1
< <§, <51<5( — 1)

Then, for § small enough such that 0 < § < % and if / satisfy

i) <o 5a-n-21]

Page 24 of 27

(3.34)

(3.35)

(3.36)

(3.37)

we deduce from (3.34), (3.36), and (3.37) that there exists a constant y > 0 such that

L) <-0- 25)% lw@] - %5,011(1,*)

= RILCIRY

B0 -n) —el - II[h]||}<
1
p

< -nE@)+p(t) < —Eﬁ(t) +p(t) < -y L(2) + p(),

where

1 1

l - — —_
y1=min{)»—28,%8p,{8[2(1 n.) - e1] ||[h]||}}>0,

2 p
p(t) = (1 + iC2> IF ) ”2 < Ce 0t

0 <y <min{y,2y0}.

Combining (3.38) and (3.39), we get (3.9). Theorem 3.2 is proved completely.

Remark We consider the following problem:

Uy — Au+ Ku + s + [ulP2u=f(x,t), x€Q,t>0,
—3(x,1) =g, 1) + [o h(x, 3, Ou(y, ) dy, x€3Q,t>0,
u(x,0) = uo(x), ur(x,0) = uy (x).

(3.38)

(3.39)

(3.40)
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With the suitable conditions for K, A, p, ug, 1, f, g, h, we prove that problem (3.40)
has a unique global solution u(¢) with energy decaying exponentially as t — +oo, without
the initial data (uo,41) being small enough. The results obtained are as follows and their
proofs are not difficult with a procedure analogous to the ones in Theorems 2.4, 3.2.
Theorem 3.7 Suppose that 2 <p < 252, K >0, 1 >0, g =0, (uo,u1) € H' x L? and
(A]), (A}) hold. Then problem (3.40) has a unique global solution u € L°(0,00; H') N
C([0, 00); HY) N CY([0, 00); L?) such that u, € L*(0, 00;L?).

Furthermore, if | Al oo (0,00;12(02x ) 17 |10 (0,00;12(02x ) @7e sufficiently small then there

exist positive constants C, y such that

| @ + |u@)|} + |u@®]?, < Cexp(~yt) foralit=o.

Appendix

Lemma A.1 Let H be Hilbert space with respect to the scalar product (-,-). Then the em-
bedding W0, T;H) = {F € L*(0, T;H) : F' € L*(0, T; H)} — C°([0, T]; H) is continuous
and

2
IE N coggo, i < yT\/ (N2 0.7a * 1E |22 0,7500) = v I Ellwico,zimy

forall F e W'(0, T; H), where yr = m'

Proof Let F € W(0, T; H), for all t,s € [0, T], we have

||F(t)—F(S)|| = H/ F'(r)dr

< ‘/ ||F’(r)|| dr

=Vt -5l ”F/”LZ(O,T;H)' (A1)

Hence F € C°([0, T]; H).
On the other hand

t d t
|E@| = | Es)|* + f O dr=F@)|" +2 / (F(r), F'(r))dr. (A2)
Integrating with respect to s, we obtain
T|F@)| = / T||F(s) |? ds +2 / " s / t(F(r) F'()dr
0 0 s ’
T t T s
= ||F||i2(0,T;H) +2/0 ds/o <F(r),F'(r))dr—2/0 ds/o (F(r),F(r))dr
t T s
= ”F”iz(O,T;H) +2T/0 (F(r),F’(r))dr—Z/(; ds/o <F(r),F’(r))dr. (A.3)

Inverting the variables s and r in the last integral of (A.3), we rewrite it as follows:

T s T
—2/0 ds/o <F(r),F (r))dr: —2/(; (T—r)(F(r),F (r))dr. (A.4)
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By the inequality 2ab < aa® + %bz, forall a,b € R, o > 0, we deduce from (A.3), (A.4)
that

t T
TIFOI = 1F g +27 [ [FONFOLdre2 [ @=nlro]lFo]d

T
< ||F||i2(O,T;H) +4T/ lEG)||E @) ar
0

< IE 200,25y * 4TI 20,0 | F | 20,70

<|F|? 2T | «||F|? 1 |F'|?
= 12(0,T:H) T QLN 200,y T o 12(0,T;H)

< U+ 2Tz 71y + — 1| 20,700 (A.5)
Choose a > 0 such that 1+ 2Ta = 2L, or@ = —2—— . Hence
21T+ /4+4;2
1 1 2 2
||F"CO (0,132) = <2T 4+ 4T2>(”F”L2(0,T;H) + ||F,”L2(O,T;H))
E ”F” Wl 0,T;H)" (A'6)
O
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