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Abstract
This paper is concerned with nonnegative solutions of the reaction-diffusion system:

ut –�u = vp +μ1u
r , vt –�v = uq +μ2v

s .

In a suitable range of parameters, we prove (initial and final) blow-up rates, as well as
universal bounds for global solutions. This is done in connection with new
Liouville-type theorems in a half-space, that we establish.
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1 Introduction
In this paper, we study (initial and final) blow-up rates, as well as universal bounds for
global solutions, for a class of semilinear reaction-diffusion systems, in connection with
Liouville-type theorems. Our study is motivated by [], where Poláčik et al. developed a
general method for obtaining universal initial and final blow-up rates for the scalar equa-
tion ut –�u = up (p > ), based on rescaling arguments and Liouville-type theorems, com-
bined with a key doubling property. In this context, the Liouville-type theorem means the
nonexistence of nontrivial, nonnegative and bounded solutions defined for all negative
and positive times on the whole space R

n, or on a half-space R
n
+ = {x ∈R

n; x > }.
We here consider the system:

{
ut – �u = vp + μur ,
vt – �v = uq + μvs,

()

where p, q, r, s >  and μ,μ ≥ . We use the following notation for the scaling exponents:

α =
p + 

pq – 
, β =

q + 
pq – 

. ()

Let us recall that, even in the scalar case, the optimal exponent for the Liouville-type prop-
erty is not presently known (see the monograph [] and the recent work []). In the case
of systems, as far as we know, the only nonexistence result in R

n
+ = {x ∈ R

n; x > } is a
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consequence of the Fujita-type theorem in [], Theorem , p.. The latter asserts the
stronger property of nonexistence in R+ × R

n (instead of R × R
n) for the Cauchy prob-

lem

⎧⎪⎨
⎪⎩

ut – �u = vp, t > , x ∈R
n,

vt – �v = uq, t > , x ∈ R
n,

u(, x) = u, v(, x) = v, x ∈ R
n,

()

where u, v are nonnegative, continuous, and bounded functions, under the assumption
max(α,β) ≥ n/ with α, β are given by (). As a consequence, Cui [] proved a Fujita-type
theorem for the Cauchy problem associated with the system () for μ = μ = , assuming
that at least one of the following five conditions (i)-(v) is satisfied:

(i) r ≤  + /n, (ii) s ≤  + /n, (iii) max(α,β) ≥ n/, ()

(iv) max(α,β) < n/, p ≤  + /n and r < np/(np – ), ()

(v) max(α,β) < n/, q ≤  + /n and s < nq/(nq – ). ()

(Note that max(α,β) < n/ implies p, q > /n.) See [], Theorem ., p.. The condi-
tions (i)-(v) are optimal; see []. It will turn out that problem () with μ = μ =  reveals a
number of interesting, qualitatively new phenomena, in comparison with the unperturbed
model system (), such as the existence of non-simultaneous blowing-up solutions. See
[, ].

There are also Fujita-type results for half-spaces (see []). However, their optimal ex-
ponents are always smaller than the corresponding exponents in the whole space, leading
to more stringent conditions in the applications (to blow-up estimates). On the contrary,
for Liouville-type results with scalar equations, it was shown in [] that nonexistence in a
half-space can be derived as a consequence of nonexistence in the whole space, without
requiring stronger restrictions on the exponents (and actually the restriction becomes even
weaker). This was done by adapting a monotonicity argument, based on moving planes,
introduced by Dancer [] for elliptic equations. One of our main concerns here is to ex-
tend the result from [] to system (). Namely, we establish the following theorem.

Theorem . Let p, q, r, s > , p ≤ q, and μ,μ ≥  be such that at least one of the following
five conditions (a)-(e) is satisfied:

(a) β ≥ n – 


,

(b) μ >  and r ≤  +


n – 
,

(c) μ >  and s ≤  +


n – 
,

(d) β <
n – 


, μ > , p ≤  +


n – 

and r <
(n – )p

(n – )p – 
,

(e) β <
n – 


, μ > , q ≤  +


n – 

and s <
(n – )q

(n – )q – 
,
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where β is given by (). (Note that β < (n – )/ implies p, q > /(n – ).) Then the system

⎧⎪⎨
⎪⎩

ut – �u = vp + μur , t ∈R, x ∈R
n
+,

vt – �v = uq + μvs, t ∈R, x ∈R
n
+,

u = v = , t ∈R, x ∈ ∂Rn
+,

()

has no nontrivial, nonnegative, bounded, and classical solution.

By applying the method of [], as an application of Theorem . and of the result of [],
we then obtain the following universal initial and final blow-up rates for system (), as well
as universal bound for global solutions.

Theorem . Let � be a (uniformly C) smooth domain of Rn. Let p, q, r, s > , p ≤ q, be
such that

r ≤ p(q + )
p + 

if μ > , s ≤ q(p + )
q + 

if μ > ,

and one of the following five conditions is satisfied:

β ≥ n


,

μ > , r =
p(q + )

p + 
and r ≤  +


n

,

μ > , s =
q(p + )

q + 
and s ≤  +


n

,

μ > , r =
p(q + )

p + 
, β <

n


, p ≤  +

n

and r <
np

np – 
,

μ > , s =
q(p + )

q + 
, β <

n


, q ≤  +

n

and s <
nq

nq – 
,

where β is given by ().
Then there exists a constant C = C(p, q, r, s,μ,μ,�) >  such that, for any T ∈ (,∞]

and any nonnegative, classical solution (u, v) of

⎧⎪⎨
⎪⎩

ut – �u = vp + μur ,  < t < T , x ∈ �,
vt – �v = uq + μvs,  < t < T , x ∈ �,
u = v = ,  < t < T , x ∈ ∂�,

()

we have

u(t, x) ≤ C
(
 + t–α + (T – t)–α

)
,  < t < T , x ∈ � ()

and

v(t, x) ≤ C
(
 + t–β + (T – t)–β

)
,  < t < T , x ∈ �. ()

(Here T – t := ∞ in the case T = ∞.)
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Remark . Theorem . improves on previously known results (see [–]) in three
directions:

(i) the constant C is independent of (u, v);
(ii) � can be an any (smooth) domain;

(iii) no monotonicity conditions are assumed either in space or in time.

The rest of the paper is organized as follows. In Section , we prove Theorem .. Next,
we prove Theorem ., in Section .

2 Liouville-type theorem: proof of Theorem 1.1
In this section, we are concerned with the proof of Theorem .. It is a consequence of [],
Theorem , p., [], Theorem ., p. and the following theorem.

Theorem . Let p, q, r, s > , μ,μ ≥ . Then we have the following statements:
(a) The components of each positive, bounded, and classical solution (u, v) of () are

increasing in x:

∂x u(t, x) >  and ∂x v(t, x) > , t ∈R, x ∈R
n
+.

(b) If there exists a positive, bounded, and classical solution of (), then there exists a
positive, bounded, and classical solution of

{
ut – �u = vp + μur , t ∈ R, x ∈R

n–,
vt – �v = uq + μvs, t ∈ R, x ∈R

n–.
()

Proof Part (a). We put f (u, v) = vp + μur and g(u, v) = uq + μvs. For λ > , let

Tλ =
{

x ∈R
n;  < x < λ

}
.

As in [], for a function h defined on R
n
+, let hλ and Vλh be the functions defined on Tλ by

hλ(x) = h
(
λ – x, x′),  < x < λ, x′ = (x, . . . , xn) ∈ R

n–,

Vλh(x) = hλ(x) – h(x), x =
(
x, x′) ∈ Tλ.

Let (u, v) be a positive, bounded, and classical solution of (). For each λ, (Vλu, Vλv)
satisfies the following system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Vλut – �Vλu = Cλ
 (t, x)Vλv + Cλ

 (t, x)Vλu, t ∈R, x ∈ Tλ,
Vλvt – �Vλv = Cλ

 (t, x)Vλu + Cλ
(t, x)Vλv, t ∈R, x ∈ Tλ,

Vλu = Vλv = , t ∈R, x = λ, x′ ∈R
n–,

Vλu, Vλv > , t ∈R, x = , x′ ∈R
n–,

()

where

Cλ
 (t, x) =

∫ 


fv
(
, v(t, x) + s

(
vλ(t, x) – v(t, x)

))
ds,
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Cλ
 (t, x) =

∫ 


fu

(
u(t, x) + s

(
uλ(t, x) – u(t, x)

)
, 

)
ds,

Cλ
 (t, x) =

∫ 


gu

(
u(t, x) + s

(
uλ(t, x) – u(t, x)

)
, 

)
ds,

Cλ
(t, x) =

∫ 


gv

(
, v(t, x) + s

(
vλ(t, x) – v(t, x)

))
ds,

fu = μrur–, fv = pvp–, gu = quq–, gv = μsvs–.

We claim that

Vλu ≥  and Vλv ≥  in R×Tλ for each λ > . ()

With () at hand, by the maximum principle [], Proposition ., p. and (), we
obtain

Vλu >  and Vλv >  in R×Tλ for each λ > .

Moreover, since Vλu(t,λ, x′) = Vλv(t,λ, x′) = , from the Hopf maximum principle, it fol-
lows that

∂Vλu(t,λ, x′)
∂x

<  and
∂Vλv(t,λ, x′)

∂x
< .

Therefore, since

∂

∂x
Vλu

(
t,λ, x′) = –

∂u(t, λ – λ, x′)
∂x

–
∂u(t,λ, x′)

∂x
= –

∂u(t,λ, x′)
∂x

,

we obtain

∂u(t,λ, x′)
∂x

>  for each λ > .

Similarly, we prove that ∂v(t,λ,x′)
∂x

> , for each λ > . To complete the proof of Part (a), it is
therefore sufficient to prove the claim (). We recall first the following lemma of Dancer
[].

Lemma . Given any positive constants l, λ satisfying λl < π, there exists a smooth
function h on Tλ such that

⎧⎪⎨
⎪⎩

�h + lh = , x ∈ Tλ,
h(x) > , x ∈ Tλ,
h(x) → ∞, |x| → ∞, x ∈ Tλ.

()

We split the rest of the proof in two steps.
Step . Proof of () for small λ.
Let h be given by Lemma .. Since h is a positive and smooth function on Tλ such that

h(x) → ∞, as |x| → ∞, there exists ε >  such that h ≥ ε. Fix a positive constant γ and set

l := sup
t∈R,x∈Rn

+

(
fu

(
u(t, x), 

)
+ fv

(
, v(t, x)

)
+ gu

(
u(t, x), 

)
+ gv

(
, v(t, x)

))
+ γ , ()
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which is finite, by the boundedness of (u, v). Define the function

(V λu, V λv) :=
(
eγ tVλu/h, eγ tVλv/h

)
,

where h is given by Lemma . for λ >  sufficiently small (so that λl < π). With () at
hand, a simple computation shows that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

V λut – �V λu – ∇h
h · ∇V λu – (γ + Cλ

 (t, x) – l)V λu – Cλ
 (t, x)V λv

= , t ∈R, x ∈ Tλ,
V λvt – �V λv – ∇h

h · ∇V λv – (γ + Cλ
(t, x) – l)V λv – Cλ

 (t, x)V λu
= , t ∈R, x ∈ Tλ,

V λu, V λv ≥ , t ∈R, x ∈ ∂Tλ,
V λu(t, x), V λv(t, x) → , t ∈R, x ∈ Tλ, |x| → ∞.

()

Moreover, () implies that

γ + Cλ
 (t, x) + Cλ

 (t, x) – l ≤ , γ + Cλ
 (t, x) + Cλ

(t, x) – l ≤ . ()

For M >  to be fixed later, we put

W := –V λu – M, Z := –V λv – M.

Using (), we have

Wt – �W ≤ C|∇W | +
(
γ + Cλ

 (t, x) – l
)
(W + M) + Cλ

 (t, x)(Z + M)

≤ C|∇W | +
(
γ + Cλ

 (t, x) – l
)
W + Cλ

 (t, x)Z ()

and

Zt – �Z ≤ C|∇Z| +
(
γ + Cλ

(t, x) – l
)
Z + Cλ

 (t, x)W . ()

By the last two properties in (), we have W+(t, ·) := max(, W )(t, ·), Z+(t, ·) := max(, Z)(t,
·) ∈ H

(Tλ) for all t ∈ R. Multiplying () with W+, integrating by parts and using Cλ
 ≥ ,

it follows that




d
dt

∫
Tλ

W 
+ ≤ –

∫
Tλ

|∇W+| + C
∫
Tλ

|∇W+|W+

+
∫
Tλ

(
γ + Cλ

 (t, x) – l
)
W 

+ +
∫
Tλ

Cλ
 (t, x)Z+W+ ≤ K

∫
Tλ

(
W 

+ + Z
+
)

for some constants C, K > . Arguing similarly on Z+ and adding up, we obtain

d
dt

∫
Tλ

(
W 

+ + Z
+
) ≤ K

∫
Tλ

(
W 

+ + Z
+
)
. ()

We now set A := ε– max(‖u‖∞,‖v‖∞), where ε = infTλ
h > , and, for any given t ∈R, we

choose

M = Aeγ t ≥ max
(

sup
x∈Tλ

|V λu|(t, x), sup
x∈Tλ

|V λv|(t, x)
)

.
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Then W+(t, ·) ≡ Z+(t, ·) ≡  and it follows from () that W , Z ≤  in (t,∞) ×Tλ. Con-
sequently, for all t, t ∈ R with t < t, we have

sup
x∈Tλ

–Vλu(t, x)
h(x)

≤ Me–γ t = Ae–γ (t–t).

Letting t → –∞, we obtain Vλu ≥  everywhere, and similarly Vλv ≥ . We conclude
that () holds for λ small.

Step . Proof of () for large λ (hence for all λ).
Let

λ = sup
{
μ >  | () holds for all λ ∈ (,μ)

}
. ()

By Step , it follows that λ > . We assume by contradiction that λ < ∞. Then there exists
a sequence λk ≥ λ such that λk → λ and the set

Fk :=
{

(t, x) ∈R×Tλk | min
(
Vλk u(t, x), Vλk v(t, x)

)
< 

}
is nonempty. Set

mk := sup
{
max

(
u
(
t, y, x′), v

(
t, y, x′)) | t ∈R, y ∈ (, λk), x′ ∈R

n–,

∃x ∈ (,λk)/
(
t, x, x′) ∈ Fk

}
.

We may assume that either:
(i) mk ≥ ε for some ε >  (by passing to a subsequence if necessary);

(ii) mk → .
If case (i) holds, there exist some sequences tk ∈R, xk

 ∈ (,λk), yk
 ∈ (, λk), and ξ k ∈R

n–

such that

min
(
Vλk u

(
tk , xk

 , ξ k), Vλk v
(
tk , xk

 , ξ k)) <  and max
(
u
(
tk , yk

 , ξ k), v
(
tk , yk

 , ξ k)) ≥ ε.

By passing to a subsequence, we may assume that xk
 → a and yk

 → b for some a, b ∈
[,λ]. Next, we consider the functions

uk(t, x) := u
(
t + tk , x, x′ + ξ k), vk(t, x) := v

(
t + tk , x, x′ + ξ k), t ∈R,

(
x, x′) ∈R

n.

For all k, (uk , vk) is a positive, bounded, and classical solution of () satisfying

min
(
Vλk uk

(
, xk

 , 
)
, Vλk vk

(
, xk

 , 
))

= min
(
Vλk u

(
tk , xk

 , ξ k), Vλk v
(
tk , xk

 , ξ k)) < 

and

max
(
uk

(
, yk

 , 
)
, vk

(
, yk

 , 
)) ≥ ε.

Moreover, by definition of λ it follows that Vλ uk , Vλ vk ≥  in R× Tλ . Since uk and vk

are uniformly bounded and by using parabolic estimates, it follows that some subsequence
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(still denoted (uk , vk)) converges in C,
loc(R × Rn

+) to a nonnegative and bounded solution
(u, v) of (). The above properties of (uk , vk) imply that

min
(
Vλ u(, a, ), Vλ v(, a, )

) ≤ , max
(
u(, b, ), v(, b, )

) ≥ ε

and Vλ u, Vλ v ≥  in R×Tλ .
Next we claim that u and v are positive everywhere in R × Tλ . Indeed, assume for

contradiction that u(t, x) or v(t, x) vanishes for some t ∈ R and x ∈ Tλ . Due to the
coupled structure of the system, by the strong maximum principle, it follows that u ≡
v ≡  in (–∞, t] × Tλ , hence t < . But then, using the boundedness of u and v and the
maximum principle again, we deduce u ≡ v ≡  on [t,∞) ×Tλ : a contradiction.

Now, since (Vλ u, Vλ v) solves the corresponding problem () and Vλ u, Vλ v ≥ , it
follows that Vλ u, Vλ v >  in R×Tλ . In particular we necessarily have a = λ. Moreover,
by the Hopf maximum principle, it follows that

∂x u(,λ, ) = –∂x Vλ u(,λ, ) > .

Similarly, we obtain ∂x v(,λ, ) > . Consequently, ∂x u(, x, ) and ∂x u(, x, ) are
bounded below by a positive constant on an interval around λ and this remains valid
if u and v are replaced, respectively, by uk and vk for k sufficiently large. That is, there
exists δ >  such that

∂x u
(
tk , x, ξ k) = –∂x uk(, x, ) > , x ∈ [λ – δ,λ + δ]. ()

Similarly, we obtain ∂x v(tk , x, ξ k) > , for x ∈ [λ – δ,λ + δ]. However, since λk –
xk

 > xk
 both belong to [λ – δ,λ + δ] for large k, this contradicts the assumption that

min(Vλk u(tk , xk
 , ξ k), Vλk v(tk , xk

 , ξ k)) < . Therefore the assumption (i) leads to a contradic-
tion.

Now consider case (ii). We go back to the problem () with λ = λk and k sufficiently
large. By assumption, gu(, v), fu(, v), fv(u, ), gv(u, ) =  and the definitions of Cλk

i , i =
, . . . , , and mk imply that, for

lk := max
(

sup
(t,x)∈Fk

(
Cλk

 (t, x) + Cλk
 (t, x)

)
, sup

(t,x)∈Fk

(
Cλk

 (t, x) + Cλk
 (t, x)

))
,

we have

lim sup
k→∞

lk ≤ .

Fix k so large that l := lk + γ < λ–
k π, where γ is any small positive constant. Set λ = λk ,

apply Lemma . and let h be the resulting function. As above, the function (V λu, V λv) :=
(eγ tVλu/h, eγ tVλv/h) satisfies the problem (). Since

γ + Cλ
 (t, x) + Cλ

 (t, x) – l ≤ , γ + Cλ
 (t, x) + Cλ

(t, x) – l ≤  on Fk ,

it follows that inequality () (resp., ()) is satisfied on the set {(t, x) ∈R×Tλ, W (t, x) > }
(resp., {(t, x) ∈R×Tλ, Z(t, x) > }). Then the argument at the end of Step , after equation
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(), still applies and yields Vλk u, Vλk v ≥ , contradicting the nonemptiness of Fk . There-
fore the two possibilities (i) and (ii) lead to a contradiction. Thus, λ = ∞. This completes
the proof of the claim, hence the proof of Part (a).

Part (b). Let (u, v) be a positive, bounded, and classical solution of (). For k = , , . . . ,
we consider the functions

uk
(
t, x, x′) := u

(
t, x + k, x′), vk

(
t, x, x′) := v

(
t, x + k, x′),

(
t, x, x′) ∈ �k ,

where �k = R× (–k,∞) ×R
n–. Since (u, v) is a positive, bounded, and classical solution

of (), then for all k, (uk , vk) is a positive, bounded, and classical solution (on its domains)
of the following system:

{
∂tuk – �uk = vp

k + μur
k ,

∂tvk – �vk = uq
k + μvs

k .

Moreover, uk = vk =  on ∂�k . From Lm parabolic estimates, there exists a subsequence
((uk , vk))k≥ converges in C,

loc(R×R
n) to a nonnegative, bounded pair of functions (u, v).

Moreover, (u, v) is a classical solution of

{
ut – �u = vp + μur ,
vt – �v = uq + μvs.

Since uk , vk are increasing in x (by Part (a)), then

uk
(
t, x, x′) = u

(
t, x + k, x′) ≥ u

(
t, x + k, x′) >  for all k ≥ k,

with x + k > . Therefore, by passing to limits, we obtain u(t, x, x′) ≥ u(t, x + k, x′) > ,
for all (t, x) ∈R×R

n. Similarly, we obtain v > . Therefore also by Part (a), u, v are increas-
ing in x. Moreover, let x < x ∈ R, we have uk(t, x, x′) < uk(t, x, x′), x + k > , passing to
limits, we obtain u(t, x, x′) ≤ u(t, x, x′). Moreover, uk+E(x)(t, x, x′) > uk(t, x, x′), passing to
limits, we obtain u(t, x, x′) ≥ u(t, x, x′). Therefore, u(t, x, x′) = u(t, x, x′) for all x, x ∈R,
which means that u is independent of x. Similarly, we prove that v is independent of x.
This completes the proof of Theorem .. �

We are now in position to prove Theorem ..

Proof of Theorem . We assume by contradiction that the system () has a positive,
bounded, and classical solution (u, v). By Theorem .(b), there exists a positive, bounded,
and classical solution of () on R × R

n–; a contradiction with [], Theorem , p. or
[], Theorem ., p.. �

3 Blow-up rates via Fujita and Liouville-type theorems: proof of Theorem 1.2
In this section, we are concerned with the proof of Theorem .. We will use the following
key doubling lemma from [].

Lemma . Let (X, d) be a complete metric space and let ∅ �= D ⊂ � ⊂ X, with � closed.
Set  = � \ D. Finally let M : D → (,∞) be bounded on compact subsets of D and fix a
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real k > . If there exists y ∈ D such that

M(y) dist(y,) > k,

then there exists x ∈ D such that

M(x) dist(x,) > k, M(x) ≥ M(y),

and

M(z) ≤ M(x) for all z ∈ D ∩ BX
(
x, kM–(x)

)
.

We now turn to the proof of Theorem ..

Proof of Theorem . We assume by contradiction that the theorem fails. Then there exist
sequences Tk ∈ (,∞), (uk , vk) being a solution of () in (, Tk)×�, yk ∈ �, and σk ∈ (, Tk)
such that the functions

Mk := u/α
k + v/β

k , k = , , . . . , ()

satisfy

Mk(σk , yk) > k
(
 + d–

k (σk)
)
, ()

where dk(t) = (min(t, Tk – t))/. Then

Mk(σk , yk) > kd–
k (σk) ()

and

Mk(σk , yk) > k. ()

We will use Lemma . with X = R
n+ equipped with the parabolic distance dP , defined by

dP
(
(t, x), (σ , y)

)
= |t – σ |/ + |x – y| for all (t, x), (σ , y) ∈R

n+,

� = �k = [, Tk] × �, D = Dk = (, Tk) × �, and  = k = {, Tk} × �. Let us mention that

dk(t) = dP
(
(t, x),k

)
, (t, x) ∈ �k .

Indeed, let (t, x) ∈ �k , we have

dP
(
(t, x),k

)
= inf

(σ ,y)∈k

(|t – σ |/ + |x – y|)
= |x – x| + inf

(
(t – )/, (Tk – t)/)

=
(
min(t, Tk – t)

)/ = dk(t).
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As mentioned above by Lemma . with X = R
n+ equipped with the parabolic distance

dP and (), it follows that there exist xk ∈ �, tk ∈ (, Tk) such that

Mk(tk , xk) > kd–
k (tk), ()

Mk(tk , xk) ≥ Mk(σk , yk) > k, ()

and

Mk(t, x) ≤ Mk(tk , xk) for all (t, x) ∈ Dk ∩ Bk
(
(tk , xk), kM–(tk , xk)

)
, ()

where

Bk
(
(tk , xk), kM–(tk , xk)

)
=

{
(t, x) ∈R

n+; |x – xk| + |t – tk|/ ≤ kM–(tk , xk)
}

.

In the rest of the proof, we use the notation

λk := M–
k (tk , xk).

By (), we obtain

λk <


k
→

k→∞
. ()

Moreover, we observe that

(
tk –

kλ
k


, tk +

kλ
k



)
×

(
� ∩

{
|x – xk| <

kλk



})
⊂ Dk ∩ Bk . ()

Indeed, we have (� ∩ {|x – xk| < kλk
 }) ⊂ �. Also by (), we obtain

|t – tk| <
kλ

k


< kλ
k < d

k (tk) = min
(
tk , (Tk – tk)

)
,

hence t ∈ (, Tk). Finally,

|x – xk| + |t – tk|/ ≤ kλk


+

kλk


= kλk .

Therefore, (t, x) ⊂ Bk . Now, we rescale the functions uk , vk by setting

wk(σ , y) := λα
k uk

(
tk + λ

kσ , xk + λky
)
, zk(σ , y) := λ

β

k vk
(
tk + λ

kσ , xk + λky
)
,

where (tk + λ
kσ , xk + λky) ∈ (tk – kλ

k
 , tk + kλ

k
 ) × (� ∩ {|x – xk| < kλk

 }), which imply that
(σ , y) ∈ D̃k := (– k

 , k

 ) × (λ–
k (� – xk) ∩ {|y| < k

 }).
The pair of functions (wk , zk) solves the system

⎧⎪⎨
⎪⎩

∂σ wk – �wk = zp
k + λ

α(–r)+
k wr

k , (σ , y) ∈ D̃k ,
∂σ zk – �zk = wq

k + λ
β(–s)+
k zs

k , (σ , y) ∈ D̃k ,
wk = zk = , y ∈ λ–

k (∂� – xk), |y| < k
 , |s| < k

 .
()
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Moreover,

w/α
k (, ) + z/β

k (, ) = λku/α
k (tk , xk) + λkv/β

k (tk , xk) = λkλ
–
k = . ()

By (), we obtain

[
w/α

k + z/β

k
]
(σ , y) = λku/α

k
(
tk + λ

kσ , xk + λky
)

+ λkv/β

k
(
tk + λ

kσ , xk + λky
)

= λkMk
(
tk + λ

kσ , xk + λky
)

≤ λkMk(tk , xk) =  for all (σ , y) ∈ D̃k .

Therefore, since wk , zk ≥ , we obtain

 ≤ wq
k(σ , y) ≤ αq,  ≤ zp

k (σ , y) ≤ βp for all (σ , y) ∈ D̃k . ()

Also, since r ≤ p(q + )/(p + ), s ≤ q(p + )/(q + ), and λk → , we obtain

 ≤ λ
α(–r)+
k wr

k(σ , y) ≤ αr ,  ≤ λ
β(–s)+
k zs

k(σ , y) ≤ βs ()

for all, (σ , y) ∈ D̃k . Let ρk := dist(xk , ∂�). Then either the sequence (ρk/λk)k is bounded or
unbounded. By passing to a subsequence, we may assume that either:

(a)
ρk

λk
→ ∞ or (b)

ρk

λk
→ c ≥ .

If case (a) holds, since uk , vk ∈ C,((, Tk) × �) ∩ C((, Tk) × �), we obtain

wk , zk ∈ C,(D̃k) ∩ C
((

–
k


,

k



)
×

(
λ–

k (� – xk) ∩
{
|y| <

k


}))
.

Moreover,

wk , zk =  on
(

–
k


,

k



)
×

(
λ–

k (∂� – xk) ∩
{
|y| <

k


})
.

Set δ :=  if r = p(q + )/(p + ), δ :=  if r < p(q + )/(p + ), and δ :=  if s = q(p + )/(q + ),
δ :=  if s < q(p + )/(q + ). By using interior Lm parabolic estimates, it follows that there
exists a subsequence (wk , zk) that converges in Cα

loc(R×R
n),  < α < , to a pair of functions

(w, z) a nonnegative, bounded, and classical solution of the problem

{
wσ – �w = zp + μδwr , (σ , y) ∈R×R

n,
zσ – �z = wq + μδzs, (σ , y) ∈R×R

n.

Moreover, w/α(, ) + z/β (, ) = ; a contradiction with [], Theorem , p. or [],
Theorem ., p.. (Note that these results remain valid with any positive coefficients in
front of the terms wr and zs, instead .)

If case (b) holds. Let xk ∈ ∂� be such that ρk = |xk – xk|. As in, e.g., [], for any k we
can choose a local coordinate θ = θ (k) = (θ, θ, . . . , θn) in an ε-neighborhood Uk of xk such
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that the image of the boundary ∂� will be contained in the hyperplane θ = , xk becomes
, xk becomes θk := (ρk , , , . . . , ) and the image of Uk will contain the set {θ : |θ | < ε′}
for some ε′ > . We may assume that ε, ε′ are independent of k and the local charts are
uniformly bounded in C. In these new coordinates, the system for ϕ = ϕk(t, θ ) = uk(t, x)
and φ := φk(t, θ ) := vk(t, x) becomes

⎧⎪⎪⎨
⎪⎪⎩

ϕt –
∑

i,j ai,j
∂ϕ

∂θi ∂θj
–

∑
i bi

∂ϕ

∂θi
= φp + μϕ

r , t > , |θ | < ε, θ > ,

φt –
∑

i,j ai,j
∂φ

∂θi ∂θj
–

∑
i bi

∂φ

∂θi
= φq + μϕ

s, t > , |θ | < ε, θ > ,
ϕ = φ = , t > , |θ | < ε, θ = ,

()

where ai,j(t, θ ) =
∑

l
∂θi
∂xl

∂θj
∂xl

= D · tD, with D = Dk = (∂θi/∂xj)i,j, and bi(t, θ ) = �θi, hence A =
Ak := (aij)i,j are uniformly elliptic. Also, since ∂� is uniformly C, it follows that the ak

ij are
uniformly bounded and the bk

i in L∞. Moreover, since D() is a Euclidean transformation,
it follows that Aj() = D() · tD() = Id. Then the rescaled functions wk , zk defined by

wk(σ , y) := λα
k ϕk

(
tk + λ

kσ , θk + λky
)
, zk(σ , y) := λ

β

k φk
(
tk + λ

kσ , θk + λky
)
,

where (σ , y) ∈ {(σ , y) : |σ | < k/; |y – θk
λk

| < ε
λk

, y > – ρk
λk

}. Then (wk , zk) solves the system

⎧⎨
⎩

∂σ wk –
∑

i,j ai,j ∂wk
∂yi ∂yj – λk

∑
i bi ∂wk

∂yi = zp
k + μλ

α(–r)+
k wr

k ,

∂σ zk –
∑

i,j ai,j ∂zk
∂yi ∂yj – λk

∑
i bi ∂zk

∂yi = wq
k + μλ

α(–r)+
k zs

k ,

where (σ , y) ∈ {(σ , y) : |σ | < k/; |y – θk
λk

| < ε
λk

, y > – ρk
λk

}. Also

wk = zk =  for |σ | < k/,
∣∣∣∣y –

θk

λk

∣∣∣∣ <
ε

λk
, y = –

ρk

λk
.

As in the first case, by using interior-bounded Lm parabolic estimates, we conclude that
there exists a subsequence (wk , zk) that converges in Cα

loc,  < α < , to a nonnegative
bounded and classical solution of the problem

⎧⎪⎨
⎪⎩

wσ – �w = zp + μδwr , (σ , y) ∈R× Hc,
zσ – �z = wq + μδzs, (σ , y) ∈ R× Hc,
w = z = , y = c,

where Hc := {y ∈ R
n; y > –c}. Moreover, w/α(, ) + z/β (, ) = ; a contradiction with

Theorem .. This finishes the proof of Theorem .. �
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