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Abstract
In this paper, we consider the existence of at least three positive solutions for the 2nth
order differential equations with integral boundary conditions

{
x(2n)(t) = f (t, x(t), x′′(t), . . . , x(2(n–1))(t)), 0≤ t ≤ 1,
x(2i)(0) =

∫ 1
0 ki(s)x(2i)(s)ds, x(2i)(1) = 0, 0≤ i ≤ n – 1,

where (–1)nf > 0 is continuous, and ki(t) ∈ L1[0, 1] (i = 0, 1, . . . ,n – 1) are nonnegative.
The associated Green’s function for the higher order differential equations with
integral boundary conditions is first given, and growth conditions are imposed on f
which yield the existence of multiple positive solutions by using the Leggett-Williams
fixed point theorem.

Keywords: boundary value problem; integral boundary conditions; positive
solution; fixed point theorem

1 Introduction
The multi-point boundary value problems (BVPs) for ordinary differential equations arise
in a variety of different areas of applied mathematics and physics. The study of nonlo-
cal BVPs for second order ordinary differential equations has been widely investigated in
[–]. Since then, nonlinear high order nonlocal BVPs have been studied by many authors.
We refer the reader to [–] and references therein. Recently, Guo et al. [] used Leggett-
Williams fixed point theorem to obtain the existence of at least three positive solutions for
the nth order m-point BVP

{
y(n)(t) = f (t, y(t), y′′(t), . . . , y((n–))(t)),  ≤ t ≤ ,
y(i)() = , y(i)() =

∑m–
j= kijy(i)(ξj),  ≤ i ≤ n – ,

where kij >  (i = , , . . . , n – ; j = , , . . . , m – ),  < ξ < ξ < · · · < ξm– < , and (–)nf :
[, ] ×R

n → [, +∞) is continuous.
BVPs with integral boundary conditions for ordinary differential equations represent a

very interesting and important class of problems and arise in the study of various phys-
ical, biological and chemical processes, such as heat conduction, chemical engineering,
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thermo-elasticity, underground water flow, population dynamics, and plasma physics.
Such problems include two-, three-, multi-point and nonlocal BVPs as special cases. The
existence and multiplicity of positive solutions for such problems have received a great
deal of attention; see [–] and references therein. In particular, we would mention the
result of [], Zhang and Ge investigated the existence and nonexistence of positive solu-
tions of the following fourth-order BVP with integral boundary conditions

⎧⎪⎨
⎪⎩

x()(t) = ω(t)f (t, x(t), x′′(t)),  < t < ,
x() =

∫ 
 g(s)x(s) ds, x() = ,

x′′() =
∫ 

 h(s)x′′(s) ds, x′′() = ,

where ω may be singular at t =  and (or) t = , f ∈ C([, ] × [, +∞) × (–∞, ], [, +∞)),
and g, h ∈ L[, ] are nonnegative.

Motivated by [, ], in this paper, we consider the existence of at least three positive
solutions for the nth order differential equations with integral boundary conditions

{
x(n)(t) = f (t, x(t), x′′(t), . . . , x((n–))(t)),  ≤ t ≤ ,
x(i)() =

∫ 
 ki(s)x(i)(s) ds, x(i)() = ,  ≤ i ≤ n – ,

(.)

where (–)nf >  is continuous, and ki(t) ∈ L[, ] (i = , , . . . , n – ) are nonnegative.
For more precise conditions on f , let (–)j[a, b] = [a, b] if j is even and (–)j[a, b] =

[–b, –a] if j is odd. Let

n–∏
j=

[aj, bj] = [a, b] × · · · × [an–, bn–].

We shall require that

(–)nf : [, ] ×
n–∏
j=

(–)j[, +∞) → [, +∞).

We shall suppose the following conditions are satisfied:

(H) ki(t) ∈ L[, ] are nonnegative, and Ki ∈ [, ), where

Ki =
∫ 


( – s)ki(s) ds,  ≤ i ≤ n – ;

(H) (–)nf : [, ] × ∏n–
j= (–)j[, +∞) → [, +∞) is continuous.

2 Preliminary results
Definition . Let E be a Banach space over R. A nonempty convex closed set K ⊂ E is
said to be a cone provided that

(i) au ∈ K for all u ∈ K and all a ≥ ;
(ii) u, –u ∈ K implies u = .

Definition . The map α is said to be a nonnegative continuous concave functional on
K provided that α : K → [,∞) is continuous and

α
(
tx + ( – t)y

) ≥ tα(x) + ( – t)α(y)
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for all x, y ∈ K and  ≤ t ≤ . Similarly, we say the map γ is a nonnegative continuous
convex functional on K provided that γ : K → [,∞) is continuous and

γ
(
tx + ( – t)y

) ≤ tγ (x) + ( – t)γ (y)

for all x, y ∈ K and  ≤ t ≤ .

Definition . Let  < a < b be given and let α be a nonnegative continuous concave
functional on K . Define the convex sets Pr and P(α, a, b) by

Pr =
{

x ∈ K |‖x‖ < r
}

and P(α, a, b) =
{

x ∈ K |a ≤ α(x),‖x‖ ≤ b
}

.

Theorem . (Leggett-Williams fixed point theorem []) Let A : Pc → Pc be a completely
continuous operator and let α be a nonnegative continuous concave functional on K such
that α(x) ≤ ‖x‖ for all x ∈ Pc. Suppose there exist  < a < b < d ≤ c such that

(C) {x ∈ P(α, b, d)|α(x) > b} 
= ∅, and α(Ax) > b for x ∈ P(α, b, d),
(C) ‖Ax‖ < a for ‖x‖ ≤ a, and
(C) α(Ax) > b for x ∈ P(α, b, c), with ‖Ax‖ > d.

Then A has at least three fixed points x, x, and x such that

‖x‖ < a, b < α(x) and ‖x‖ > a with α(x) < b.

Remark . If we have d = c, then condition (C) of Theorem . implies condition (C)
of Theorem ..

3 Preliminary lemmas
Lemma . Suppose (H) holds. Then gi(t, s) ≤  ( ≤ i ≤ n – ), where gi(t, s) is the Green’s
function for the problem

{
x′′(t) = ,  ≤ t ≤ ,
x() =

∫ 
 ki(s)x(s) ds, x() = .

Proof It is easy to see that gi(t, s) ≤  ( ≤ i ≤ n – ) by using Lemma . of []. �

Let G(t, s) = gn–(t, s), then for  ≤ j ≤ n – , we recursively define

Gj(t, s) =
∫ 


gn–j–(t, τ )Gj–(τ , s) dτ .

Lemma . Suppose (H) holds. If y ∈ C[, ], then the BVP

{
x(l)(t) = y(t),  ≤ t ≤ ,
x(i)() =

∫ 
 kn–l+i–(s)x(i)(s) ds, x(i)() = ,  ≤ i ≤ l – ,

(.)

has a unique solution for each  ≤ l ≤ n – , where Gl(t, s) is the associated Green’s function
for the BVP (.).
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Proof We will prove the result by using mathematical induction.
When l = , which implies that i = , then the BVP (.) reduces to

{
x′′(t) = y(t),  ≤ t ≤ ,
x() =

∫ 
 kn–(s)x(s) ds, x() = .

(.)

By using Lemma ., it is easy to see that the BVP (.) has a unique solution

x(t) =
∫ 


G(t, s)y(s) ds.

Therefore, the result holds for l = .
We assume that the result holds for l –. Now, we deal with the case for l. Let x′′(t) = u(t),

then the BVP (.) is equivalent to the following BVPs:

{
x′′(t) = u(t),  ≤ t ≤ ,
x() =

∫ 
 kn–l–(s)x(s) ds, x() = 

(.)

and
{

u((l–))(t) = y(t),  ≤ t ≤ ,
u(i)() =

∫ 
 kn–l+i(s)u(i)(s) ds, u(i)() = ,  ≤ i ≤ l – .

(.)

By applying Lemma ., the BVP (.) has a unique solution

x(t) =
∫ 


gn–l–(t, r)u(r) dr. (.)

Replacing l by l –  and x by u in (.), by applying the inductive hypothesis, the BVP (.)
has also a unique solution

u(t) =
∫ 


Gl–(t, s)y(s) ds. (.)

Substituting (.) into (.), we see that the BVP (.) has a unique solution

x(t) =
∫ 


gn–l–(t, r)

∫ 


Gl–(r, s)y(s) ds dr

=
∫ 



(∫ 


gn–l–(t, r)Gl–(r, s) dr

)
y(s) ds

=
∫ 


Gl(t, s)y(s) ds.

Therefore, the result holds for l. Lemma . is now completed. �

For each  ≤ l ≤ n – , we define Al : C[, ] → C[, ] by

Alu(t) =
∫ 


Gl(t, τ )u(τ ) dτ .
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With the use of Lemma ., for each  ≤ l ≤ n – , we have

{
(Alu)(l)(t) = u(t),  ≤ t ≤ ,
(Alu)(i)() =

∫ 
 kn–l+i–(s)(Alu)(i)(s) ds, (Alu)(i)() = ,  ≤ i ≤ l – .

Therefore (.) has a solution if and only if the BVP

{
u′′(t) = f (t, An–u(t), An–u(t), . . . , Au(t), u(t)),  ≤ t ≤ ,
u() =

∫ 
 kn–(s)u(s) ds, u() = 

(.)

has a solution. If x is a solution of (.), then u = x((n–)) is a solution of (.). Conversely,
if u is a solution of (.), then x = An–u is a solution of (.). In addition if (–)n–u(t) ≥ 
( 
= ) on [, ], then x = An–u is a positive solution of (.).

For  ≤ i ≤ n – , let

mi = min
t∈[τ ,–τ ]

∫ –τ

τ

∣∣gi(t, s)
∣∣ds and Mi = max

t∈[,]

∫ 



∣∣gi(t, s)
∣∣ds. (.)

Obviously,  < mi < Mi. Let E denote the Banach space C[, ] with the maximum norm

‖u‖ = max
≤t≤

∣∣u(t)
∣∣,

and define the cone K ⊂ E by

K =
{

u ∈ E
∣∣(–)n–u(t) ≥ , (–)n–u(t) is concave on [, ], and

min
t∈[τ ,–τ ]

(–)n–u(t) ≥ τ ‖u‖
}

.

Finally, we define the nonnegative continuous concave functional α on K by

α(u) = min
t∈[τ ,–τ ]

∣∣u(t)
∣∣

for each u ∈ K and it is easy to see that α(u) ≤ ‖u‖.

4 Main results
Theorem . Suppose conditions (H), (H) hold. In addition assume there exist nonneg-
ative numbers a, b, and c such that  < a < b ≤ min{τ , mn–

Mn–
}c and f (t, un–, un–, . . . , u, u)

satisfies the following growth conditions:

(H) (–)nf (t, un–, un–, . . . , u, u) ≤ c
Mn–

, for (t, un–, un–, . . . , u, u) ∈ [, ] ×∏
j=n–(–)n––j[,

∏j+
i= Mn–ic] × (–)n–[, c];

(H) (–)nf (t, un–, un–, . . . , u, u) < a
Mn–

, for (t, un–, un–, . . . , u, u) ∈ [, ] ×∏
j=n–(–)n––j[,

∏j+
i= Mn–ia] × (–)n–[, a];

(H) (–)nf (t, un–, un–, . . . , u, u) ≥ b
mn–

, for (t, un–, un–, . . . , u, u) ∈ [τ ,  – τ ] ×∏
j=n–(–)n––j[

∏j+
i= mn–ib,

∏j+
i= Mn–i

b
τ ] × (–)n–[b, b

τ ].
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Then the BVP (.) has at least three positive solutions x, x, and x, which satisfy

∥∥x((n–))
 (t)

∥∥ < a, b < α
(
x((n–))

 (t)
)

and∥∥x((n–))
 (t)

∥∥ > a with α
(
x((n–))

 (t)
)

< b.

Proof Define the completely continuous operator A by

Au(t) =
∫ 


gn–(t, s)f

(
s, An–u(s), . . . , Au(s), u(s)

)
ds.

We will first verify that A : K → K . Let u ∈ K , then (–)n–Au(t) ≥ , ((–)n–Au)′′(t) =
(–)n–f (t, An–u(t), . . . , Au(t), u(t)) ≤ ,  ≤ t ≤ , and by Proposition . of [], we have

‖Au‖ = max
t∈[,]

∣∣Au(t)
∣∣

= max
t∈[,]

∣∣∣∣
∫ 


gn–(t, s)f

(
s, An–u(s), . . . , Au(s), u(s)

)
ds

∣∣∣∣
= max

t∈[,]

∣∣∣∣
∫ 



[
h(t, s) +

 – t
 – Kn–

∫ 


h(s, τ )kn–(τ ) dτ

]

× f
(
s, An–u(s), . . . , Au(s), u(s)

)
ds

∣∣∣∣
≤

∫ 



[
h(s, s) +


 – Kn–

∫ 


h(τ , τ )kn–(τ ) dτ

]

× ∣∣f (s, An–u(s), . . . , Au(s), u(s)
)∣∣ds.

On the other hand, by Proposition . of [], we obtain

min
t∈[τ ,–τ ]

(–)n–Au(t)

= min
t∈[τ ,–τ ]

(–)n–
∫ 


gn–(t, s)f

(
s, An–u(s), . . . , Au(s), u(s)

)
ds

= min
t∈[τ ,–τ ]

(–)n
∫ 



[
h(t, s) +

 – t
 – Kn–

∫ 


h(s, τ )kn–(τ ) dτ

]

× f
(
s, An–u(s), . . . , Au(s), u(s)

)
ds

≥ τ 
∫ 



[
h(s, s) +


 – Kn–

∫ 


h(τ , τ )kn–(τ ) dτ

]

× ∣∣f (s, An–u(s), . . . , Au(s), u(s)
)∣∣ds

≥ τ ‖Au‖.

Consequently, A : K → K .
It is a standard argument to show that the operator A is completely continuous. Equicon-

tinuity and uniform boundedness follow readily from the properties of Gl ,  ≤ l ≤ n – .
If u ∈ Pc, then ‖u‖ ≤ c. For each  ≤ j ≤ n – , note that inductively (using (.)) we have

‖Aju‖ = max
t∈[,]

∣∣∣∣
∫ 


Gj(t, s)u(s) ds

∣∣∣∣ ≤
j+∏
i=

Mn–ic.
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From the condition (H) and (.), we obtain

‖Au‖ = max
t∈[,]

∣∣Au(t)
∣∣

= max
t∈[,]

∣∣∣∣
∫ 


gn–(t, s)f

(
s, An–u(s), An–u(s), . . . , Au(s), u(s)

)
ds

∣∣∣∣
≤ c

Mn–
max
t∈[,]

∫ 



∣∣gn–(t, s)
∣∣ds = c.

So, A : Pc → Pc.
In a completely analogous argument, the condition (H) implies the condition (C) of

Theorem . is satisfied.
We now show that condition (C) is satisfied. Note that, for  ≤ t ≤ ,

u(t) = (–)n– b
τ  ∈ P

(
α, b,

b
τ 

)
and α(u) =

b
τ  > b.

Thus,

{
u ∈ P

(
α, b,

b
τ 

)∣∣∣α(u) > b
}


= ∅.

Also, if u ∈ P(α, b, b
τ ), then b ≤ (–)n–u(t) ≤ b

τ for t ∈ [τ ,  – τ ], implies for each  ≤ j ≤
n – , t ∈ [τ ,  – τ ], inductively,

(–)n––jAju(t) ≤
j+∏
i=

Mn–i
b
τ  ,

(–)n––jAju(t) =
∣∣∣∣
∫ 


Gj(t, s)u(s) ds

∣∣∣∣ ≥ b
∫ –τ

τ

∣∣Gj(t, s)
∣∣ds ≥

j+∏
i=

mn–ib.

With the use of condition (H) and (.), we get

α(Au) = min
t∈[τ ,–τ ]

∣∣∣∣
∫ 


gn–(t, s)f

(
s, An–u(s), . . . , Au(s), u(s)

)
ds

∣∣∣∣
> min

t∈[τ ,–τ ]

∣∣∣∣
∫ –τ

τ

gn–(t, s)f
(
s, An–u(s), . . . , Au(s), u(s)

)
ds

∣∣∣∣
≥ b

mn–
min

t∈[τ ,–τ ]

∫ 



∣∣gn–(t, s)
∣∣ds = b.

Therefore, condition (C) is satisfied.
Finally, we show that condition (C) is also satisfied. That is, we show that if u ∈ P(α, b, c)

and ‖Au‖ > d = b
τ , then α(Au) > b. This follows since A : K → K . In particular, since

(–)n–(Au) is concave and mint∈[τ ,–τ ](–)n–(Au)(t) ≥ τ ‖Au‖.
That is,

α(Au) = min
t∈[τ ,–τ ]

∣∣Au(t)
∣∣ ≥ τ ‖Au‖ > b.
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Therefore, condition (C) is also satisfied. By Theorem ., there exist three solutions
u, u, u ∈ K for the BVP (.). Moreover, let

xi(t) = An–ui(t) =
∫ 


Gn–(t, s)ui(s) ds, i = , , ,

then x, x, x are three positive solutions for the BVP (.) and satisfy

∥∥x((n–))
 (t)

∥∥ < a, b < α
(
x((n–))

 (t)
)

and
∥∥x((n–))

 (t)
∥∥ > a with α

(
x((n–))

 (t)
)

< b. �

Consider the following nth order differential equations with integral boundary condi-
tions:

{
x(n)(t) = f (t, x(t), x′′(t), . . . , x((n–))(t)),  ≤ t ≤ ,
x(i)() = , x(i)() =

∫ 
 k∗

i (s)x(i)(s) ds,  ≤ i ≤ n – ,
(.)

where (–)nf ∈ C([, ]×∏n–
j= (–)j[, +∞) → [, +∞)) and k∗

i (t) ∈ L[, ] (i = , , . . . , n –
) are nonnegative.

Now we deal with problem (.). The method is just similar to what we have done for
the problem (.), so we omit the proof of main results in this section.

For convenience, we list the following assumptions:

(H∗
 ) k∗

i (t) ∈ L[, ] are nonnegative, and K∗
i ∈ [, ), where

K∗
i =

∫ 


sk∗

i (s) ds,  ≤ i ≤ n – .

By analogous methods, we have the following results.

Lemma . Suppose (H∗
 ) holds. Then g∗

i (t, s) ≤  ( ≤ i ≤ n – ), where g∗
i (t, s) is the

Green’s function for the problem

{
x′′(t) = ,  ≤ t ≤ ,
x() = , x() =

∫ 
 k∗

i (s)x(s) ds.

For  ≤ i ≤ n – , let

m∗
i = min

t∈[τ ,–τ ]

∫ –τ

τ

∣∣g∗
i (t, s)

∣∣ds and M∗
i = max

t∈[,]

∫ 



∣∣g∗
i (t, s)

∣∣ds.

Theorem . Suppose condition (H∗
 ) holds. In addition assume there exist nonnegative

numbers a, b, and c such that  < a < b ≤ min{τ , m∗
n–

M∗
n–

}c and f (t, un–, un–, . . . , u, u) sat-
isfies the following growth conditions:

(H∗
) (–)nf (t, un–, un–, . . . , u, u) ≤ c

M∗
n–

, for (t, un–, un–, . . . , u, u) ∈ [, ] ×∏
j=n–(–)n––j[,

∏j+
i= M∗

n–ic] × (–)n–[, c];
(H∗

) (–)nf (t, un–, un–, . . . , u, u) < a
M∗

n–
, for (t, un–, un–, . . . , u, u) ∈ [, ] ×∏

j=n–(–)n––j[,
∏j+

i= M∗
n–ia] × (–)n–[, a];



Ji et al. Boundary Value Problems  (2015) 2015:214 Page 9 of 11

(H∗
) (–)nf (t, un–, un–, . . . , u, u) ≥ b

m∗
n–

, for (t, un–, un–, . . . , u, u) ∈ [τ ,  – τ ] ×∏
j=n–(–)n––j[

∏j+
i= m∗

n–ib,
∏j+

i= M∗
n–i

b
τ ] × (–)n–[b, b

τ ].

Then the BVP (.) has at least three positive solutions x, x, and x, which satisfy

∥∥x((n–))
 (t)

∥∥ < a, b < α
(
x((n–))

 (t)
)

and
∥∥x((n–))

 (t)
∥∥ > a with α

(
x((n–))

 (t)
)

< b.

5 Example
Example . As an example of problem (.), consider the following sixth order BVP:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x()(t) = f (t, x(t), x′′(t), x()(t)),  ≤ t ≤ ,
x() =

∫ 
 x(s) ds, x() = ,

x′′() =
∫ 

 sx′′(s) ds, x′′() = ,
x()() =

∫ 
 sx()(s) ds, x()() = ,

(.)

where

f (t, u, u, u)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

– ,
 u · +sin(t+u+u)

 ,  ≤ u ≤ ,
–[( × ,

, – ,
 )(u – ) + ,

 ] · +sin(t+u+u)
 ,  ≤ u ≤ ,

– × ,
, u · +sin(t+u+u)

 ,  ≤ u ≤ ,
–[ × ,

, + ( 
 × ,

 – 
 × ,

, )(u – )]
· +sin(t+u+u)

 ,  ≤ u ≤ ,
– × ,

 · +sin(t+u+u)
 , u ≥ .

We notice that n = , ki(s) = si (i = , , ) and K = 
 , K = 

 , K = 
 .

If we take τ = 
 , by calculation we obtain

m = min
t∈[ 

 , 
 ]

∫ 





∣∣g(t, s)
∣∣ds =




, M = max
t∈[,]

∫ 



∣∣g(t, s)
∣∣ds =




,

m = min
t∈[ 

 , 
 ]

∫ 





∣∣g(t, s)
∣∣ds =


,

, M = max
t∈[,]

∫ 



∣∣g(t, s)
∣∣ds =




,

m = min
t∈[ 

 , 
 ]

∫ 





∣∣g(t, s)
∣∣ds =

,
,

, M = max
t∈[,]

∫ 



∣∣g(t, s)
∣∣ds =


,

.

In addition, if we take a = , b = , c = , then

 < a =  < b =  ≤ min

{
τ ,

m

M

}
c

= min

{(



)

,
, × ,
, × 

}
×  = ,

and f (t, u, u, u) satisfies the growth conditions (H)-(H).
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Therefore all the conditions of Theorem . are satisfied. Hence, the problem (.) has
at least three positive solutions x, x, and x, which satisfy

max
≤t≤

∣∣x()
 (t)

∣∣ < ,  < min
t∈[ 

 , 
 ]

∣∣x()
 (t)

∣∣ and

max
≤t≤

∣∣x()
 (t)

∣∣ >  with min
t∈[ 

 , 
 ]

∣∣x()
 (t)

∣∣ < .

Example . As another example of problem (.), consider the following sixth order
BVP:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x()(t) = f (t, x(t), x′′(t), x()(t)),  ≤ t ≤ ,
x() = , x() =

∫ 
 x(s) ds,

x′′() = , x′′() =
∫ 

 sx′′(s) ds,
x()() = , x()() =

∫ 
 sx()(s) ds,

(.)

where

f (t, u, u, u)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

– 
 u · +sin(t+u+u)

 ,  ≤ u ≤ ,
–[( × ,

, – 
 )(u – ) + 

 ] · +sin(t+u+u)
 ,  ≤ u ≤ ,

– × ,
, u · +sin(t+u+u)

 ,  ≤ u ≤ ,
–[ × ,

, + ( 
 × 

 – 
 × ,

, )(u – )] · +sin(t+u+u)
 ,  ≤ u ≤ ,

– × 
 · +sin(t+u+u)

 , u ≥ .

We notice that n = , k∗
i (s) = si (i = , , ) and K∗

 = 
 , K∗

 = 
 , K∗

 = 
 .

If we take τ = 
 , by calculation we obtain

m∗
 = min

t∈[ 
 , 

 ]

∫ 





∣∣g∗
(t, s)

∣∣ds =



, M∗

 = max
t∈[,]

∫ 



∣∣g∗
(t, s)

∣∣ds =



,

m∗
 = min

t∈[ 
 , 

 ]

∫ 





∣∣g∗
 (t, s)

∣∣ds =


,
, M∗

 = max
t∈[,]

∫ 



∣∣g∗
 (t, s)

∣∣ds =



,

m∗
 = min

t∈[ 
 , 

 ]

∫ 





∣∣g∗
 (t, s)

∣∣ds =
,

,
, M∗

 = max
t∈[,]

∫ 



∣∣g∗
 (t, s)

∣∣ds =



.

In addition, if we take a = , b = , c = , then

 < a =  < b =  ≤ min

{
τ ,

m∗


M∗


}
c = min

{(



)

,
, × 
, × 

}
×  = ,

and f (t, u, u, u) satisfies the growth conditions (H∗
)-(H∗

).
Therefore all the conditions of Theorem . are satisfied. Hence, the problem (.) has

at least three positive solutions x, x, and x, which satisfy

max
≤t≤

∣∣x()
 (t)

∣∣ < ,  < min
t∈[ 

 , 
 ]

∣∣x()
 (t)

∣∣ and

max
≤t≤

∣∣x()
 (t)

∣∣ >  with min
t∈[ 

 , 
 ]

∣∣x()
 (t)

∣∣ < .
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