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Abstract
In this paper, we investigate the existence of solutions for fractional differential
equations of arbitrary order with nonlocal integral boundary conditions. The
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1 Introduction
The study of boundary value problems of fractional differential equations has gained con-
siderable attention and several interesting results involving a variety of boundary condi-
tions have appeared in the recent literature on the topic. The tools of fractional calculus
have been effectively employed to improve the mathematical modeling of several phenom-
ena occurring in scientific and engineering disciplines such as viscoelasticity [], electro-
chemistry [], electromagnetism [], biology [, ], optimal control [, ], diffusion process
[–], economics [], chaotic theory [], variational problems [], etc. For a theoretical
development of the subject, concerning the existence and uniqueness of solutions for non-
linear fractional order initial and nonlocal boundary value problems, we refer the reader to
[–] and the references cited therein. There has also been a great emphasis on studying
fractional differential equations supplemented with integral boundary conditions; for in-
stance, see [–]. Motivated by recent studies of nonlocal nonlinear integral boundary
value problems of fractional order, we go a step further and consider a more general prob-
lem of nonlinear fractional differential equations of arbitrary order with nonlocal integral
boundary conditions. Precisely, we investigate the following problem:

{
CDα

t x(t) = f (t, x(t)), t ∈ J ,
x(k)(θ ) = bk +

∫ θ

t
gk(s, x(s)) ds, k = , , , . . . , n – , θ ∈ J ,

(.)
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where J = [t, T], CDα
t is the Caputo fractional derivative of order α, n = [α] + , bk ∈ R,

and f , gk : J ×R →R are given continuous functions.
The paper is organized as follows. In Section , we outline some basic concepts of frac-

tional calculus, and establish a lemma which plays a key role in the sequel. The main results
dealing with the existence and uniqueness of solutions for the problem (.) are discussed
in Sections  and . We make use of the standard tools of the fixed point theory to obtain
the desired results. The paper concludes with some interesting observations.

2 Preliminaries
First of all, we fix our terminology and recall some basic ideas of fractional calculus [].

Let C(J ,R) be a Banach space of all continuous real valued functions defined on J en-
dowed with the norm defined by ‖x‖ = sup{|x(t)|, t ∈ J}.

Definition . The Riemann-Liouville fractional integral of order r for a function h ∈
C(J ,R) is defined as

Irh(t) =


�(r)

∫ t

t

h(s)
(t – s)–r ds, r > ,

provided the integral exists.

Definition . Let h : [t,∞) →R be such that h ∈ ACn(J ,R). Then the Caputo derivative
of fractional order r for h is defined as

cDr
t h(t) =


�(n – r)

∫ t

t

(t – s)n–r–h(n)(s) ds, n –  < r < n, n = [r] + ,

where [r] denotes the integer part of the real number r.

Lemma . Let x ∈ ACn(J ,R), f ∈ AC(J ,R), and ck ∈R, then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CDα
t (Iαf (t)) = f (t),

Iα(CDα
t x(t)) = x(t) + c + c(t – t) + c(t – t) + · · · + cn–(t – t)n–.

The general solution of the equation CDα
t x(t) =  is

x(t) = c + c(t – t) + c(t – t) + · · · + cn–(t – t)n–.

We need the following result in the sequel.

Lemma . Let {un} be a sequence of real numbers, and n, k ∈N, such that  ≤ k ≤ n – .
If v is a positive real number, then

n–k–∑
m=

n–k–m–∑
r=

(–)r vr+m

r!m!
um+k+r = uk . (.)

Proof The left-hand side of equation (.) can be rearranged as

n–k–∑
m=

( m∑
r=

(–)m–r

r!(m – r)!

)
vmuk+m.
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By a binomial expansion, the inner sum takes the form


m!

m∑
r=

(–)m–r

(
m
r

)
= ,

for all m ≥ . This completes the proof. �

3 Associated linear problem
In this section, we consider the linear variant of the problem (.) given by

CDα
t x(t) = f̃ (t), t ∈ J ,

x(k)(θ ) = bk +
∫ θ

t

gk(s) ds, k = , , , . . . , n – , θ ∈ J ,
(.)

where x ∈ ACn(J ,R), f̃ ∈ AC(J ,R) and gk ∈ C(J ,R).

Lemma . The fractional boundary value problem (.) is equivalent to the integral equa-
tion

x(t) =
n–∑
k=

(t – θ )k

k!

(
bk +

∫ θ

t

gk(s) ds – Iα–k f̃ (θ )
)

+ Iα f̃ (t), t ∈ J . (.)

Proof For α = n, problem (.) reduces to the nth order classical problem:

dn

dtn x(t) = f̃ (t), t ∈ J ,

x(k)(θ ) = bk +
∫ θ

t

gk(s) ds, k = , , , . . . , n – , θ ∈ J ,

which can be integrated n times to have

x(t) =
n–∑
k=

(t – θ )k

k!

(
bk +

∫ θ

t

gk(s) ds
)

+


(n – )!

∫ t

θ

(t – s)n– f̃ (s) ds. (.)

Using binomial expansion, we find that


(n – )!

∫ t

θ

(t – s)n– f̃ (s) ds

=


(n – )!

∫ t

t

(t – s)n– f̃ (s) ds –


(n – )!

∫ θ

t

(t – s)n– f̃ (s) ds

= Inf̃ (t) –


(n – )!

∫ θ

t

(t – θ + θ – s)n– f̃ (s) ds

= Inf̃ (t) –
n–∑
k=

(t – θ )k

k!

(


(n – k – )!

∫ θ

t

(θ – s)n–k– f̃ (s) ds
)

= Inf̃ (t) –
n–∑
k=

(t – θ )k

k!
In–k f̃ (θ ),
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which together with (.) yields (.). Next, for n –  < α < n, by Lemma ., we have

Iα f̃ (t) = Iα
(CDα

t

)
x(t) = x(t) +

n–∑
k=

ck(t – t)k . (.)

Differentiating (.) k times, we get

n–k–∑
m=

(k + m)!
m!

cm+k(t – t)m = Iα–k f̃ (t) – x(k)(t), (.)

for  ≤ k ≤ n – . In view of the integral boundary conditions in (.), we can express
equation (.) in the form of the following array:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

 !
! (θ – t) !

! (θ – t) · · · (n–)!
(n–)! (θ – t)n– (n–)!

(n–)! (θ – t)n–

 !
! (θ – t) !

! (θ – t) · · · (n–)!
(n–)! (θ – t)n– (n–)!

(n–)! (θ – t)n–

  !
! (θ – t) · · · (n–)!

(n–)! (θ – t)n– (n–)!
(n–)! (θ – t)n–

...
...

... · · · ...
...

    (n–)!
! (θ – t) (n–)!

! (θ – t)

     (n–)!
! (θ – t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c

c

c
...

cn–

cn–

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iα f̃ (θ ) – b –
∫ θ

t
g(s) ds

Iα– f̃ (θ ) – b –
∫ θ

t
g(s) ds

Iα– f̃ (θ ) – b –
∫ θ

t
g(s) ds

...
Iα–n+ f̃ (θ ) – bn– –

∫ θ

t
gn–(s) ds

Iα–n+ f̃ (θ ) – bn– –
∫ θ

t
gn–(s) ds

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Solving this system for cr , r = , , . . . , n, we obtain

cn–r =


(n – r)!

r–∑
k=

(–)k(θ – t)k

k!

(
Iα–n+r–k f̃ (θ ) – bn–r+k –

∫ θ

t

gn–r+k(s) ds
)

,

which, for m = , , , . . . , n – , can be written as

cm =


m!

n–m–∑
k=

(–)k(θ – t)k

k!

(
Iα–m–k f̃ (θ ) – bm+k –

∫ θ

t

gm+k(s) ds
)

. (.)

Indeed, by Lemma . with v = θ – t, and uk = Iα–k f̃ (θ ) – bk –
∫ θ

t
gk(s) ds, (.) is a solution

of (.) with t = θ . By means of (.) and (.), we obtain

x(t) = Iα f̃ (t) +
n–∑
k=

n–k–∑
m=

(–)m(θ – t)m(t – t)k

m!k!

(
bm+k +

∫ θ

t

gm+k(s) ds – Iα–k–mf̃ (θ )
)

,

which can alternatively be written as

x(t) = Iα f̃ (t) +
n–∑
k=

ψk(t)
(

bk +
∫ θ

t

gk(s) ds – Iα–kf (θ )
)

, (.)
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where

ψk(t) =
k∑

m=

(–)k–m (θ – t)k–m

(k – m)!
(t – t)m

m!
, k = , , . . . , n – .

Next, for t < θ ≤ T , it follows by a binomial expansion that

ψk(t) =
(θ – t)k

k!

k∑
m=

(
k
m

)(
t – t

θ – t

)m

(–)k–m =
(θ – t)k

k!

(
t – θ

θ – t

)k

=
(t – θ )k

k!
,

which, on substituting in (.), yields (.).
On the other hand, applying the operator CDα

t , n –  < α ≤ n to (.), and using
Lemma ., we obtain (.). This completes the proof. �

Remark . We can solve different kinds of boundary value problems involving integral
(classical) and multi-point boundary conditions by applying the method of proof used for
Lemma .. Here, we enlist the following two cases.

(a) The two-point boundary value problem of the form

{
CDα

t x(t) = f̃ (t), t ∈ J ,
x(t) = b, x(k)(T) = bk +

∫ T
t

gk(s) ds, k = , , . . . , n – ,
(.)

has an integral solution given by

x(t) = b +
∫ t

t

(t – s)α–

�(α)
f̃ (s) ds –

n–∑
k=

(–)k

k!
(
(T – t)k – (T – t)k)

×
(

bk +
∫ T

t

gk(s) ds –
∫ T

t

(T – s)α–k–

�(α – k)
f̃ (s) ds

)
, t ∈ J .

(b) The integral solution of the three-point boundary value problem

⎧⎪⎨
⎪⎩

CDα
t x(t) = f̃ (t), t ∈ J ,

x(t) = b, x(t) = b, t < t < T ,
x(k)(T) = bk +

∫ T
t

gk(s) ds, k = , . . . , n – ,
(.)

is

x(t) =
∫ t

t

(t – s)α–

�(α)
f̃ (s) ds + b –

(
b – b +

∫ t

t

(t – s)α–

�(α)
f (s) ds

)
t – t

t – t

+
n–∑
k=

(–)k

k!
[
(t – t)(T – t)k – (t – t)(T – t)k – (t – t)(T – t)k]

× 
t – t

(
bk +

∫ T

t

gk(s) ds –
∫ T

t

(T – s)α–k–

�(α – k)
f̃ (s) ds

)
, t ∈ J .

4 Main results
In this section, we show the existence of solutions for the problem (.) by applying some
fixed point theorems.
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In relation to the problem (.), we define the fixed point problem

�x = x, (.)

where the operator � : C(J ,R) → C(J ,R) is defined by

�x(t) =
n–∑
k=

(t – θ )k

k!

(
bk +

∫ θ

t

gk
(
s, x(s)

)
–

∫ θ

t

(θ – s)α–k–

�(α – k)
f
(
s, x(s)

)
ds

)

+
∫ t

t

(t – s)α–

�(α)
f
(
s, x(s)

)
ds. (.)

Observe that the problem (.) has solutions if the operator equation (.) has fixed
points.

Lemma . The operator � : C(J ,R) → C(J ,R) given by (.) is completely continuous.

Proof Obviously continuity of the operator � follows from the continuity of the functions
f and gk , k = , , . . . , n – . Let � be a bounded subset of C(J ,R), then for any t ∈ J , and
x ∈ �, there exist positive constants Lf , and Lk , k = , , . . . , n – , such that |f (t, x(t))| ≤ Lf ,
and |gk(t, x(t))| ≤ Lk . Then we have

∣∣(�x)(t)
∣∣

≤
n–∑
k=

|t – θ |k
k!

(
|bk| +

∫ θ

t

∣∣gk
(
s, x(s)

)∣∣ds +
∫ θ

t

(θ – s)α–k–

�(α – k)
∣∣f (s, x(s)

)∣∣ds
)

+
∫ t

t

(t – s)α–

�(α)
∣∣f (s, x(s)

)∣∣ds

≤
n–∑
k=

|t – θ |k
k!

(
|bk| + (θ – t)Lk +

(θ – t)α–k

�(α – k + )
Lf

)
+

(t – t)α

�(α + )
Lf

=: L,

which implies that ‖(�x)‖ ≤ L. Furthermore,

∣∣(�x)(t) – (�x)(t)
∣∣

≤
n–∑
k=

|(t – θ )k – (t – θ )k|
k!

×
(

|bk| +
∫ θ

t

∣∣gk
(
s, x(s)

)∣∣ds +
∫ θ

t

(θ – s)α–k–

�(α – k)
∣∣f (s, x(s)

)∣∣ds
)

+
∫ t

t

|(t – s)α– – (t – s)α–|
�(α)

∣∣f (s, x(s)
)∣∣ds +

∫ t

t

(t – s)α–

�(α)
∣∣f (s, x(s)

)∣∣ds

≤
n–∑
k=

|(t – θ )k – (t – θ )k|
k!

(
|bk| + (θ – t)Lk +

(θ – t)α–k

�(α – k + )
Lf

)

+
Lf

�(α + )
(
|t – t|α +

∣∣(t – t)α – (t – t)α
∣∣),
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which tends to zero independent of x as t → t. This implies that � is equicontinuous on J .
In consequence, it follows by the Arzela-Ascoli theorem that the operator � is completely
continuous. �

Our first existence result is based on Krasnoselskii’s fixed point theorem (.).

Theorem . ([]) Let M be a closed convex and nonempty subset of a Banach space X.
Let A, B be the operators such that

(i) Ax + By ∈ M whenever x, y ∈ M;
(ii) A is compact and continuous;

(iii) B is a contraction.
Then there exists z ∈ M such that z = Az + Bz.

Theorem . Assume that

(A) For any t ∈ J and k = , , . . . , n – , there exist positive constants Cf and Ck such that

∣∣f (t, x) – f (t, y)
∣∣ ≤ Cf |x – y|, ∣∣gk(t, x) – gk(t, y)

∣∣ ≤ Ck|x – y|,

for all x, y ∈R, and we can find μf ,μk ∈ C(J ,R+) such that

∣∣f (t, x)
∣∣ ≤ μf (t),

∣∣gk(t, x)
∣∣ ≤ μk(t), for all x ∈R;

(A) η < , where

η =
n–∑
k=

(T – θ )k

k!

[
Ck(θ – t) +

Cf (θ – t)α–k

�(α – k + )

]
.

Then the problem (.) has at least one solution on J .

Proof Let us define a set Br = {x ∈ C(J ,R) : ‖x‖ ≤ r}, where r is a positive constant satisfy-
ing the inequality

r ≥ |T–t|α
�(α + )

‖μf ‖ +
n–∑
k=

|T–θ |k
k!

(
|bk| + ‖μk‖ + ‖μf ‖ (θ – t)α–k

�(α – k + )

)
.

Introduce the operators 	 and 
 on Br as

(	x)(t) =
∫ t

t

(t – s)α–

�(α)
f
(
s, x(s)

)
ds,

(
x)(t) =
n–∑
k=

(t – θ )k

k!

(
bk +

∫ θ

t

gk
(
s, x(s)

)
ds –

∫ θ

t

(θ – s)α–k–

�(α – k)
f
(
s, x(s)

)
ds

)
.

For x, y ∈ Br , t ∈ J , using assumption (A), we find that

∣∣	x(t) + 
y(t)
∣∣ ≤ (T–t)α

�(α + )
‖μf ‖

+
n–∑
k=

|T – θ |k
k!

(
|bk| + ‖μk‖ + ‖μf ‖ (θ – t)α–k

�(α – k + )

)
≤ r.
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Thus, 	x + 
y ∈ Br . By assumption (A), for x, y ∈ Br , t ∈ J , we have

∣∣(
x)(t) – (
y)(t)
∣∣ ≤

n–∑
k=

(T – θ )k

k!

[
Ck(θ – t) +

Cf (θ – t)α–k

�(α – k + )

]
‖x – y‖

≤ η‖x – y‖,

that is, ‖(
x) – (
y)‖ ≤ η‖x – y‖. Since η <  by (A), 
 is a contraction.
Continuity of f implies that the operator 	 is continuous. Also, 	 is uniformly bounded

on Br as

‖	x‖ ≤ (T–t)α

�(α + )
‖μf ‖.

Now we show the compactness of the operator 	. In view of assumption (A), we define

sup
(t,x)∈J×Br

∣∣f (t, x)
∣∣ = fmax < ∞.

Then, for t, t ∈ J , we have

∣∣(	x)(t) – (	x)(t)
∣∣ =

∣∣∣∣
∫ t

t

[(t – s)α– – (t – s)α–]
�(α)

f
(
s, x(s)

)
ds

+
∫ t

t

(t – s)q–

�(α)
f
(
s, x(s)

)
ds

∣∣∣∣
≤ fmax

�(α + )
(
|t – t|α +

∣∣(t – t)α – (t – t)α
∣∣),

which is independent of x and tends to zero as t → t. So 	 is relatively compact on Br .
Hence, by the Arzela-Ascoli theorem, 	 is compact on Br . Thus all the assumptions of
Theorem . are satisfied. Therefore, the problem (.) has at least one solution on J . This
completes the proof. �

Our next result deals with the uniqueness of solutions for the problem (.) and is based
on the contraction mapping principle due to Banach.

Theorem . Assume that (A) holds and that β < , where

β =
n–∑
k=

(T – θ )k

k!

(
Ck(θ – t) +

(θ – t)α–k

�(α – k + )
Cf

)
+

(T – t)α

�(α + )
Cf . (.)

Then there exists a unique solution for the problem (.) on J .

Proof Setting supt∈J |f (t, )| = Af , supt∈J |gk(t, )| = Ak , and

r ≥ ( – β)–

[ n–∑
k=

(T – θ )k

k!

(
|bk| + Ak(θ – t) +

(θ – t)α–k

�(α – k + )
Af

)
+

(T – t)α

�(α + )
Af

]
,
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we show that �Br ⊂ Br , where Br = {x ∈ C(J ,R) : ‖x‖ ≤ r}. For x ∈ Br , we have

∣∣�x(t)
∣∣ ≤

n–∑
k=

|t – θ |k
k!

(
|bk| +

∫ θ

t

∣∣gk
(
s, x(s)

)∣∣ds +
∫ θ

t

(θ – s)α–k–

�(α – k)
∣∣f (s, x(s)

)∣∣ds
)

+
∫ t

t

(t – s)α–

�(α)
∣∣f (s, x(s)

)∣∣ds

≤
n–∑
k=

|t – θ |k
k!

(
|bk| +

∫ θ

t

(∣∣gk
(
s, x(s)

)
– gk(s, )

∣∣ +
∣∣gk(s, )

∣∣)ds

+
∫ θ

t

(θ – s)α–k–

�(α – k)
(∣∣f (s, x(s)

)
– f (s, )

∣∣ +
∣∣f (s, )

∣∣)ds
)

+
∫ t

t

(t – s)α–

�(α)
(∣∣f (s, x(s)

)
– f (s, )

∣∣ +
∣∣f (s, )

∣∣)ds

≤
n–∑
k=

|t – θ |k
k!

(
|bk| + (θ – t)

(
Ck‖x‖ + Ak

)

+
(θ – t)α–k

�(α – k + )
(
Cf ‖x‖ + Af

))
+

(t – t)α

�(α + )
(
Cf ‖x‖ + Af

)

≤
n–∑
k=

|T – θ |k
k!

(
|bk| + Ak(θ – t) +

(θ – t)α–k

�(α – k + )
Af

)
+

(T – t)α

�(α + )
Af

+

( n–∑
k=

|T – θ |k
k!

(
Ck(θ – t) +

(θ – t)α–k

�(α – k + )
Cf

)
+

(T – t)α

�(α + )
Cf

)
‖x‖

≤ ( – β)r + βr = r.

Now, for x, y ∈ C(J ,R) and for each t ∈ J , we obtain

∣∣(�x)(t) – (�y)(t)
∣∣

≤
n–∑
k=

|t – θ |k
k!

(
Ck(θ – t)‖x – y‖ +

(θ – t)α–k

�(α – k + )
Cf ‖x – y‖

)

+
(t – t)α

�(α + )
Cf ‖x – y‖

≤
( n–∑

k=

|T – θ |k
k!

(
Ck(θ – t) +

(θ – t)α–k

�(α – k + )
Cf

)
+

(T – t)α

�(α + )
Cf

)
‖x – y‖

≤ β‖x – y‖,

where β is given by (.). As β < , � is a contraction. Thus, the conclusion of the theorem
follows by the contraction mapping principle. This completes the proof. �

Theorem . Let f , gk : J ×R →R (k = , , . . . , n – ) be continuous functions and let there
exist positive constants Df , Ef , Dk , Ek , M, and N such that

∣∣f (t, x)
∣∣ ≤ Df |x| + Ef ,

∣∣gk(t, x)
∣∣ ≤ Dk|x| + Ek , ∀t ∈ J , x ∈R,
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M =
Ef (T – t)α

�(α + )
+

n–∑
k=

|T – θ |k
k!

(
|bk| + (θ – t)Ek +

Ef (θ – t)α–k

�(α – k + )

)
> ,

N =
Df (T – t)α

�(α + )
+

n–∑
k=

|T – θ |k
k!

(
(θ – t)Dk +

Df (θ – t)α–k

�(α – k + )

)
< .

Then the problem (.) has at least one solution on J .

Proof Define a suitable ball BR ⊂ C(J ,R) with radius R >  as BR = {x ∈ C(J ,R) : ‖x‖ < R},
where R will be fixed later. Then it is sufficient to show that � : BR → C(J ,R) satisfies

 /∈ (I – λ�)(∂BR), (.)

for any x ∈ ∂BR, and λ ∈ [, ]. Define the homotopy

hλ(x) = H(λ, x) = x – λ�x, x ∈ C(J ,R),λ ∈ [, ].

Then, by the Arzela-Ascoli theorem, hλ is completely continuous. If (.) is true, then
the Leray-Schauder degrees are well defined. Let I denote the identity operator. Then the
homotopy invariance and normalization properties of topological degrees imply that

deg(hλ, BR, ) = deg
(
(I – λ�), BR, 

)
= deg(h, BR, )

= deg(h, BR, ) = deg(I, BR, ) = ,

since  ∈ BR. By the nonzero property of the Leray-Schauder degree, h(x) = x – �x = 
for at least one x ∈ BR. In order to find R, we assume that x(t) = λ�x(t) for some λ ∈ [, ]
and for all t ∈ J . Then

∣∣x(t)
∣∣

=
∣∣λ�x(t)

∣∣ ≤
∫ t

t

(t – s)α–

�(α)
∣∣f (s, x(s)

)∣∣ds

+
n–∑
k=

(t – θ )k

k!

(
|bk| +

∫ θ

t

∣∣gk
(
s, x(s)

)∣∣ds +
∫ θ

t

(θ – s)α–k–

�(α – k)
∣∣f (s, x(s)

)∣∣ds
)

≤
n–∑
k=

|t – θ |k
k!

(
|bk| + (θ – t)

(
Dk‖x‖ + Ek

)
+

(θ – t)α–k

�(α – k + )
(
Df ‖x‖ + Ef

))

+
(t – t)α

�(α + )
(
Df ‖x‖ + Ef

)

≤ Ef (t – t)α

�(α + )
+

n–∑
k=

|t – θ |k
k!

(
|bk| + (θ – t)Ek +

Ef (θ – t)α–k

�(α – k + )

)

+

(
Df (t – t)α

�(α + )
+

n–∑
k=

|t – θ |k
k!

(
(θ – t)Dk +

Df (θ – t)α–k

�(α – k + )

))
‖x‖

≤ M + N‖x‖,
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which, after taking the supremum norm and solving for ‖x‖, yields

‖x‖ ≤ M
 – N

.

Letting R = M–N+
–N , (.) holds. This completes the proof. �

Remark . Following the method of proof employed in this section, we can obtain the
existence results for nonlinear variants of problems (.) and (.).

Remark . (Special cases) We obtain the existence results for an initial value problem
with initial conditions: x(k)(θ ) = bk , k = , , , . . . , n –  by taking θ = t in the results of this
paper. In this case, the operator given by (.) takes the form

�x(t) =
n–∑
k=

(t – t)k

k!
bk +


�(α)

∫ t

t

(t – s)α–f
(
s, x(s)

)
ds.

Further, our results correspond to the ones for a problem with classical nonlinear integral
conditions:

x(k)(T) = bk +
∫ T

t

gk
(
s, x(s)

)
ds, k = , , , . . . , n – ,

if we fix θ = T in the obtained results.

Example . Consider the following nonlinear fractional boundary value problem:

{
CD

√


 x(t) = t|x(t)|
(+|x(t)|) + 

 , t ∈ [, ],
x(k)(.) =  +

∫ .


sk

(k+) sin( x(s)
 ) ds, k = , , , .

(.)

Here α =
√

, θ = ., bk = , f (t, x(t)) = t|x(t)|
(+|x(t)|) + 

 , and gk(t, x(t)) = tk

(k+) sin( x(t)
 ). With

the given values, it is found that μf (t) = t
 + 

 , μk(t) = tk

(k+) with ‖μf ‖ = 
 , ‖μk‖ = 

(k+) ,
k = , , , , and

η =
∑

k=


k!k

[


(k + )
+

( 
 )

√
–k

�(
√

 – k + )

]
� . < ,

that is, the assumption (A) of Theorem . is satisfied. Thus, all the conditions of Theo-
rem . are satisfied. Hence the problem (.) has a solution on [, ]. Also β given by (.)
is such that β � . < . This suggests that the problem (.) has a unique solution
by the conclusion of Theorem ..
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