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Abstract
In this paper, we present the abstract results for the existence and uniqueness of the
solution of nonlinear elliptic systems, parabolic systems and integro-differential
systems involving the generalized (p,q)-Laplacian operator. Our method makes use of
the characteristics of the ranges of linear and nonlinear maximal monotone operators
and the subdifferential of a proper, convex, and lower-semi-continuous functional,
and we employ some new techniques in the construction of the operators and in
proving the properties of the newly defined operators. The systems discussed in this
paper and the method used extend and complement some of the previous work.
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1 Introduction and preliminaries
1.1 Introduction
Nonlinear boundary value problems involving the generalized p-Laplacian operator arise
from many physical phenomena, such as reaction-diffusion problems, petroleum extrac-
tion, flow through porous media and non-Newtonian fluids, just to name a few. Hence, the
study of such problems and their generalizations have attracted numerous attention in re-
cent years. For example, based on Calvert and Gupta’s [] result on perturbations of the
ranges of m-accretive mappings (stated as Theorem . in Section .), Wei and Agarwal
[] have studied the following nonlinear elliptic boundary value problem involving the
generalized p-Laplacian:

{
– div[(C(x) + |∇u|)

p–
 ∇u] + ε|u|q–u + g(x, u(x)) = f (x), a.e. in �,

–〈ϑ , (C(x) + |∇u|)
p–

 ∇u〉 ∈ βx(u(x)), a.e. on �,
(.)

where  ≤ C(x) ∈ Lp(�), βx is the subdifferential of a proper, convex, and lower-semi-
continuous function, ε is a non-negative constant and ϑ denotes the exterior normal
derivative of �. It is shown that (.) has solutions in Ls(�) under some conditions, where
N

N+ < p ≤ s < +∞,  ≤ q < +∞ if p ≥ N , and  ≤ q ≤ Np
N–p if p < N , for N ≥ .
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Recently, the work on the generalized p-Laplacian operator problem (.) is extended to
the so-called p-Laplacian-like problem

{
– div[(C(x) + |∇u|) s

 |∇u|m–∇u] + ε|u|q–u + g(x, u(x)) = f (x), in �,
–〈ϑ , (C(x) + |∇u|) s

 |∇u|m–∇u〉 ∈ βx(u), on �.
(.)

Using Theorem . again, it is shown in [] that (.) has solutions in Lp(�) under some
conditions, where N

N+ < p < +∞,  ≤ q < +∞ if p ≥ N , and  ≤ q ≤ Np
N–p if p < N , for N ≥ .

Since one system, expressed by one equation, interacts with another system in reality,
the study of nonlinear systems with (p, q)-Laplacian is also an important topic. In the non-
Newtonian theory, the quantity (p, q) is a characteristic of the medium. Media with (p, q) >
(, ) are called dilatant fluids, those with (p, q) < (, ) are called pseudodoplastics, and if
(p, q) = (, ), they are called Newtonian fluids. The studies on the p-Laplacian boundary
value problems have been extended to cases of nonlinear Neumann elliptic systems with
(p, q)-Laplacian. For example, in [] the following system with Neumann boundaries has
been discussed:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

–�pu + ε|u|p–u + g(x, u(x), v(x)) = f(x), a.e. in �,
–�qv + ε|v|q–v + g(x, v(x), u(x)) = f(x), a.e. in �,
–〈ϑ , |∇u|p–∇u〉 ∈ βx(u(x)), a.e. on �,
–〈ϑ , |∇v|q–∇v〉 ∈ βx(v(x)), a.e. on �.

(.)

Inspired by Theorem . again, a sufficient condition on the existence of a solution in
Lp(�) × Lq(�) is presented in [].

On the other hand, based on Brezis’ result [] (stated as Theorem . in Section .),
Wei et al. [] have studied the following nonlinear Dirichlet elliptic system in W ,p(�) ×
W ,q(�):

{
–�pu + ε|u|p–u – �qv + ε|v|q–v = f(x) + f(x), a.e. in �,
γu = g(x), γv = g(x), a.e. on �,

(.)

and then extend (.) to the following two cases with generalized (p, q)-Laplacian:

⎧⎪⎨
⎪⎩

– div(α(grad u)) + ε|u|p–u – div(α(grad v)) + ε|v|q–v
= f(x) + f(x), a.e. in �,

γu = g(x), γv = g(x), a.e. on �

(.)

and

⎧⎪⎨
⎪⎩

– div[(C(x) + |∇u|)
p–

 ∇u] + ε|u|p–u – div[(C(x) + |∇v|)
q–

 ∇v] + ε|v|q–v
= f(x) + f(x), a.e. in �,

γu = g(x), γv = g(x), a.e. on �.
(.)

Integro-differential equation is also a much-studied topic in applied mathematics. Most
of the existing techniques used to discuss the existence and uniqueness of the solu-
tion to integro-differential equation involves the finite element method. In [], a new
method based on a result of Zeidler [] (stated as Theorem . in Section .) is employed
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to tackle the following nonlinear integro-differential equation involving the generalized
p-Laplacian operator with mixed boundary conditions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u
∂t – div[(C(x, t) + |∇u|)

p–
 ∇u] + ε|u|q–u + a ∂

∂t
∫
�

u dx
= f (x, t), (x, t) ∈ � × (, T),

–〈ϑ , (C(x, t) + |∇u|)
p–

 ∇u〉 ∈ βx(u), (x, t) ∈ � × (, T),
u(x, ) = u(x, T), x ∈ �.

(.)

It is proved that (.) has a unique solution in Lp(, T ; W ,p(�)), where  < q ≤ p < +∞.
Inspired by the work on (.), the following nonlinear integro-differential system involv-

ing the generalized (p, q)-Laplacian is investigated in []:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t – div[(C(x, t) + |∇u|)

p–
 ∇u] + ε|u|r–u + g(x, u,∇u) + a

∂
∂t

∫
�

u dx
= f(x, t), (x, t) ∈ � × (, T),

∂v(x,t)
∂t – div[(C(x, t) + |∇v|)

q–
 ∇v] + ε|v|s–v + g(x, v,∇v) + a

∂
∂t

∫
�

v dx
= f(x, t), (x, t) ∈ � × (, T),

–〈ϑ , (C(x, t) + |∇u|)
p–

 ∇u〉 ∈ βx(u), (x, t) ∈ � × (, T),
–〈ϑ , (C(x, t) + |∇v|)

q–
 ∇v〉 ∈ βx(v), (x, t) ∈ � × (, T),

u(x, ) = u(x, T), v(x, ) = v(x, T), x ∈ �,

(.)

where ∇u = ( ∂u
∂x

, ∂u
∂x

, . . . , ∂u
∂xN

) and x = (x, x, . . . , xN ) ∈ �. Based on a result of [] (stated
as Theorem . in Section .), the existence of the unique non-trivial solution of (.) in
Lp(, T ; W ,p(�))×Lq(, T ; W ,q(�)) is presented, where N ≥ , N

N+ < r ≤ min{p, p′} < +∞,
and N

N+ < s ≤ min{q, q′} < +∞. (Here, 
p + 

p′ = , 
q + 

q′ = .)
Parabolic equations are equally important as elliptic equations and integro-differential

equations. The generalized (p, q)-Laplacian parabolic equation with mixed boundaries has
been extensively studied in [],

⎧⎪⎨
⎪⎩

∂u
∂t – div[(C(x, t) + |∇u|)

p–
 ∇u] + ε|u|p–u = f (x, t), (x, t) ∈ � × (, T),

–〈ϑ , (C(x, t) + |∇u|)
p–

 ∇u〉 ∈ β(u) – h(x, t), (x, t) ∈ � × (, T),
u(x, ) = u(x, T), x ∈ �.

(.)

It is shown that (.) has a unique solution in Lp(, T ; W ,p(�)) where p ≥ . The discus-
sion of (.) in [] is mainly based on Theorem . and a result of Reich [] (stated as
Theorem . in Section .).

From the above research, we notice that it is not easy to check the assumptions pre-
sented in Theorems .-.. As such we are motivated to extend the previous work to new
problems and also to simplify the proof of the result. Indeed, motivated by the systems
(.)-(.), (.), and (.), in this paper we shall employ a result of Zeidler [] (stated
as Theorem . in Section .) as the main tool to obtain sufficient conditions for the
existence and uniqueness of solutions for three nonlinear systems - the first is a nonlin-
ear elliptic system involving the generalized (p, q)-Laplacian with Neumann boundaries,
the second is a nonlinear parabolic system involving the generalized (p, q)-Laplacian with
mixed boundaries, and the third is a nonlinear integro-differential system involving the
generalized (p, q)-Laplacian with mixed boundaries. The three systems considered are as
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follows:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

– div[(C(x) + |∇u|)
p–

 ∇u] + ε|u|r–u – div[(C(x) + |∇v|)
q–

 ∇v]
+ ε|v|s–v + g(x, u,∇u) + g(x, v,∇v)

= f(x) + f(x), x ∈ �,
–〈ϑ , (C(x) + |∇u|)

p–
 ∇u〉 – 〈ϑ , (C(x) + |∇v|)

q–
 ∇v〉

∈ βx(u) + βx(v), x ∈ �;

(.)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t – div[(C(x, t) + |∇u|)

p–
 ∇u] + ε|u|r–u + g(x, u,∇u) + ∂v(x,t)

∂t

– div[(C(x, t) + |∇v|)
q–

 ∇v] + ε|v|s–v + g(x, v,∇v)
= f(x, t) + f(x, t), (x, t) ∈ � × (, T),

–〈ϑ , (C(x, t) + |∇u|)
p–

 ∇u〉 – 〈ϑ , (C(x, t) + |∇v|)
q–

 ∇v〉
∈ βx(u) + βx(v), (x, t) ∈ � × (, T),

u(x, ) = u(x, T), v(x, ) = v(x, T), x ∈ �;

(.)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t – div[(C(x, t) + |∇u|)

p–
 ∇u] + ε|u|r–u + g(x, u,∇u)

+ a
∂
∂t

∫
�

u dx + ∂v(x,t)
∂t – div[(C(x, t) + |∇v|)

q–
 ∇v]

+ ε|v|s–v + g(x, v,∇v) + a
∂
∂t

∫
�

v dx
= f(x, t) + f(x, t), (x, t) ∈ � × (, T),

–〈ϑ , (C(x, t) + |∇u|)
p–

 ∇u〉 – 〈ϑ , (C(x, t) + |∇v|)
q–

 ∇v〉
∈ βx(u) + βx(v), (x, t) ∈ � × (, T),

u(x, ) = u(x, T), v(x, ) = v(x, T), x ∈ �.

(.)

The investigation of systems (.)-(.) will be presented in Sections -, respectively,
and more details of these systems will be introduced in these sections. Finally, in Section 
we shall present some examples of (.)-(.).

1.2 Preliminaries
Let X be a real Banach space with its dual X∗ being strictly convex. We shall use (·, ·)
to denote the generalized duality pairing between X and X∗. For any subset G of X, we
denote by int G its interior and G its closure, respectively. For two subsets G and G in
X, if G = G and int G = int G, then we say that G is almost equal to G, denoted by
G � G. We use ‘w-lim’ to denote the weak convergence. A mapping T : D(T) = X → X∗ is
said to be hemi-continuous on X [] if w-limt→ T(x+ ty) = Tx, for any x, y ∈ X. A mapping
T : D(T) = X → X∗ is said to be demi-continuous on X [] if w-limn→∞ Txn = Tx, for any
sequence {xn} strongly converges to x in X.

Let Jr denote the duality mapping from X into X∗ , which is defined by

Jr(x) =
{

f ∈ X∗ : (x, f ) = ‖x‖r ,‖f ‖ = ‖x‖r–}, x ∈ X,

where r >  is a constant. If r ≡ , then we use J to denote J, which is called the normalized
duality mapping. It is well known that, in general, Jr(x) = ‖x‖r–J(x), for all x �= . Since X∗

is strictly convex, J is a single-valued mapping [, ].
A multi-valued mapping B : X → X∗ is said to be monotone [] if (u – u, w – w) ≥ ,

for any ui ∈ D(B) and wi ∈ Bui, i = , . The monotone operator B is said to be maximal
monotone if R(J + rB) = X∗, for any r > . The mapping B : X → X∗ is said to be strictly
monotone [] if (u – u, w – w) = , for wi ∈ Bui, i = , , implies u = u. The mapping B
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is said to be coercive [, ] if limn→+∞ (xn, x∗
n)/‖xn‖ = +∞ for all xn ∈ D(B), x∗

n ∈ Bxn such
that limn→+∞ ‖xn‖ = +∞.

Let B : X → X∗ be a maximal monotone operator such that  ∈ B, then the equation
J(ut – u) + tBut �  has a unique solution ut ∈ D(B) for every u ∈ X and t > . The resolvent
JB
t and the Yosida approximation Bt of B are defined by JB

t u = ut and Btu = – 
t J(ut – u) for

all u ∈ X and t >  [].
For k ∈ (–∞, +∞), a multi-valued mapping Ã : D(Ã) ⊂ X → X is said to be k-accretive

[] if

(
v – v, J(u – u)

) ≥ k‖u – u‖, (.)

for any ui ∈ D(Ã) and vi ∈ Ãui, i = , . For k >  in inequality (.), we say that Ã is strongly
accretive while for k = , Ã is simply called accretive. An accretive mapping Ã is said to
be m-accretive if R(I + λÃ) = X for some λ > . We say that a mapping Ã : X → X is
boundedly-inversely-compact [] if, for any pair of bounded subsets G and G′ of X, the
subset G ∩ Ã–(G′) is relatively compact in X.

Let C be a closed convex subset of X and let A : C → X∗ be a multi-valued mapping.
Then A is said to be a pseudo-monotone operator [] provided that

(i) for each x ∈ C, the image Ax is a non-empty closed and convex subset of X∗;
(ii) if {xn} is a sequence in C converging weakly to x ∈ C and if fn ∈ Axn is such that

lim supn→∞(xn – x, fn) ≤ , then to each element y ∈ C, there corresponds an
f (y) ∈ Ax with the property that (x – y, f (y)) ≤ lim infn→∞(xn – x, fn);

(iii) for each finite-dimensional subspace F of X , the operator A is continuous from
C ∩ F to X∗ in the weak topology.

A function � is called a proper convex function on X [] if � is defined from X to
(–∞, +∞], not identically +∞, such that �(( – λ)x + λy) ≤ ( – λ)�(x) + λ�(y), whenever
x, y ∈ X and  ≤ λ ≤ .

A function � : X → (–∞, +∞] is said to be lower-semi-continuous on X [] if
lim infy→x �(y) ≥ �(x), for any x ∈ X.

Given a proper convex function � on X and a point x ∈ X, we denote by ∂�(x) the set
of all x∗ ∈ X∗ such that �(x) ≤ �(y) + (x – y, x∗), for any y ∈ X. Such element x∗ is called
the subgradient of � at x, and ∂�(x) is called the subdifferential of � at x [].

For easy reference of the reader, Theorems .-. mentioned in Section . are stated as
follows.

Theorem . [] Let X be a real Banach space with a strictly convex dual space X∗. Let
Jr : X → X∗ be a duality mapping on X and there exists a function η : X → [, +∞) such
that for all u, v ∈ X,

‖Jru – Jrv‖ ≤ η(u – v). (.)

Let A, C : X → X be accretive mappings such that
(i) either both A and C satisfy the following condition (.), or D(A) ⊂ D(C) and C

satisfies the condition (.):

{
for u ∈ D(A) and v ∈ Au, there exists a constant C(a, f ) such that
(v – f , Jr(u – a)) ≥ C(a, f );

(.)
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(ii) A + C is m-accretive and boundedly-inversely-compact.
Let C : X → X be a bounded continuous mapping such that, for any y ∈ X, there is a

constant C(y) satisfying (C(u + y), Jru) ≥ –C(y) for any u ∈ X. Then the following results
hold:

(a) [R(A) + R(C)] ⊂ R(A + C + C);
(b) int[R(A) + R(C)] ⊂ int R(A + C + C).

Theorem . [] Let T : X → X∗ be a bounded and pseudo-monotone operator, and K be
a closed and convex subset of X. Suppose that � is a lower-semi-continuous and convex
function defined on K , which is not always +∞, such that �(v) ∈ (–∞, +∞], for any v ∈ K .
Suppose there exists v ∈ K such that �(v) < +∞, and

(v – v, Tv) + �(v)
‖v‖ → ∞,

as ‖v‖ → ∞, v ∈ K . Then there exists u ∈ K such that (u – v, Tu) ≤ �(v) – �(u), for all
v ∈ K .

Theorem . [] Let X be a real reflexive Banach space with X∗ being its dual space. Let
C be a non-empty closed convex subset of X. Assume that

(i) the mapping A : C → X∗ is a maximal monotone operator;
(ii) the mapping B : C → X∗ is pseudo-monotone, bounded, and demi-continuous;

(iii) if the subset C is unbounded, then the operator B is A-coercive with respect to the
fixed element b ∈ X∗, i.e., there exist an element u ∈ C ∩ D(A) and a number r > 
such that

(u – u, Bu) > (u – u, b), (.)

for all u ∈ C with ‖u‖ > r.
Then the equation b ∈ Au + Bu has a solution.

Theorem . [] Let X be a smooth Banach space, A : D(A) ⊂ X → X be an m-accretive
mapping, and S : D(S) ⊂ X → X be continuous and strongly accretive with D(A) ⊂ D(S).
Then, for any z ∈ X, the equation z ∈ Sx + λAx has a unique solution xλ, for any λ > .

Theorem . [] Let X be a real reflexive Banach space with both X and X∗ being strictly
convex. Let J : X → X∗ be the normalized duality mapping on X. Let A and B be two max-
imal monotone operators in X. If there exist  ≤ k <  and C, C >  such that

(
a, J–(Btv)

) ≥ –k‖Btv‖ – C‖Btv‖ – C, (.)

for any v ∈ D(A), a ∈ Av and t >  (Bt is the Yosida approximation of B), then R(A) + R(B) �
R(A + B).

The following results will be needed in subsequent discussion.

Lemma . [] If A and B are maximal monotone operators in X such that (int D(A)) ∩
D(B) �= ∅, then A + B is maximal monotone.
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Lemma . [] If � : X → R is proper, convex, and lower-semi-continuous, then ∂� is
maximal monotone.

Lemma . [] If B : X → X∗ is everywhere defined, monotone, and hemi-continuous,
then B is maximal monotone.

Theorem . [] Assume that X is a real reflexive Banach space and the following condi-
tions hold:

(H) The linear operator L : D(L) ⊆ X → X∗ is maximal monotone in X .
(H) The operator A : X → X∗ is monotone.
(H) The functional ϕ : X → (–∞, +∞] is convex, lower-semi-continuous, and ϕ �= +∞.
(H) One of the following conditions is satisfied:

(H.) A : X → X∗ is single-valued and hemi-continuous;
(H.) A is maximal monotone and int D(A) ∩ D(∂ϕ) �= ∅;
(H.) A is maximal monotone and D(A) ∩ int D(∂ϕ) �= ∅.

(H) The sum L + A + ∂ϕ : X → X∗ is coercive with respect to , i.e., there exist r > 
and u ∈ D(L) ∩ D(A) ∩ D(∂ϕ) such that

(
u – u, u∗) > ,

for all (u, u∗) ∈ L + A + ∂ϕ with ‖u‖ > r.
(H) D(L) ∩ D(A + ∂ϕ) �= ∅.

Then the equation

 ∈ Lu + Au + ∂ϕ(u), u ∈ X,

has a solution.

Definition . For  < p < +∞ and  < q < +∞, we use Y to denote the product of
two spaces W ,p(�) and W ,q(�), i.e., Y = W ,p(�) × W ,q(�) = {(u, v) : u ∈ W ,p(�), v ∈
W ,q(�)}. The dual space of Y will be denoted by Y ∗. Also, Y will be endowed with the
norm

∥∥(u, v)
∥∥

Y =
√

‖u‖
,p,� + ‖v‖

,q,�, (u, v) ∈ Y ,

where ‖ · ‖,p,� and ‖ · ‖,q,� denote the norm in W ,p(�) and W ,q(�), respectively.

Definition . [] For  < p < +∞, let Lp(, T ; X) denote the space of all X-valued
strongly measurable functions x(t) defined a.e. on (, T) such that ‖x(t)‖p

X is Lebesgue
integrable over (, T). It is well known that Lp(, T ; X) is a Banach space with the norm
defined by ‖x‖Lp(,T ;X) = (

∫ T
 ‖x(t)‖p

X dt)

p . If X is reflexive, then Lp(, T ; X) is reflexive, and

its dual space coincides with Lp′ (, T ; X∗), where 
p + 

p′ = . Moreover, Lp(, T ; X) is reflex-
ive in the case when X is reflexive, and Lp(, T ; X) is strictly (uniformly) convex in the case
when X is strictly (uniformly) convex.

Definition . For  < p < +∞ and  < q < +∞, we use Z to denote the product of
two spaces Lp(, T ; W ,p(�)) and Lq(, T ; W ,q(�)), i.e., Z = Lp(, T ; W ,p(�)) × Lq(, T ;
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W ,q(�)) = {(u, v) : u ∈ Lp(, T ; W ,p(�)), v ∈ Lq(, T ; W ,q(�))}. The dual space of Z is de-
noted by Z∗. Also, Z will be endowed with the norm

∥∥(u, v)
∥∥

Z =
√

‖u‖
Lp(,T ;W ,p(�)) + ‖v‖

Lq(,T ;W ,q(�)), (u, v) ∈ Z.

2 Discussion of (p, q)-Laplacian elliptic system (1.10)
Throughout the paper, we shall assume that


p

+

p′ = ,


q

+

q′ = , N ≥ ,

N
N + 

< p < +∞,
N

N + 
< q < +∞,

N
N + 

< r ≤ min
{

p, p′} < +∞,
N

N + 
< s ≤ min

{
q, q′} < +∞.

In (.)-(.), � is a bounded conical domain of the Euclidean spaceRN with its bound-
ary � ∈ C, ϑ denotes the exterior normal derivative to �, and ε and ε are non-negative
constants. Let ϕ : � × R → R be a given function such that, for each x ∈ �, ϕx = ϕ(x, ·) :
R →R is a proper, convex, and lower-semi-continuous function with ϕx() = . Let βx be
the subdifferential of ϕx, i.e., βx ≡ ∂ϕx. Suppose  ∈ βx() and for each t ∈ R, the function
x ∈ � → (I + λβx)–(t) ∈ R is measurable for λ > .

In (.)-(.), suppose that gi : � × R
N+ → R are given functions (i = , ) satisfying

the following conditions, which can be found in [, ]:
(a) Carathéodory’s conditions.

For i = , , x → gi(x, r) is measurable on �, for all r ∈ R
N+; r → gi(x, r) is

continuous on R
N+, for almost all x ∈ �.

(b) Growth condition.

g(x, s, . . . , sN+) ≤ h(x) + k

N+∑
i=

|si|p–,

g(x, s, . . . , sN+) ≤ h(x) + k

N+∑
i=

|si|q–,

where (s, s, . . . , sN+) ∈ R
N+, h(x) ∈ Lp(�), h(x) ∈ Lq(�) and ki are positive

constants, i = , .
(c) Monotone condition.

For i = , , gi(x, r, . . . , rN+) is monotone with respect to r, i.e.,

[
gi(x, s, . . . , sN+) – gi(x, t, . . . , tN+)

]
(s – t) ≥ ,

for all x ∈ � and (s, . . . , sN+), (t, . . . , tN+) ∈ R
N+.

(d) For i = , , gi(x, , . . . , ) ≡ , for x ∈ � and (, . . . , ) ∈R
N+.

Specific to system (.) In (.), f, f, C, and C are given functions with f(x) ∈ Lp′ (�),
f(x) ∈ Lq′ (�),  ≤ C(x) ∈ Lp(�) and  ≤ C(x) ∈ Lq(�).

Lemma . [, ] Define the operators B : W ,p(�) → (W ,p(�))∗ and B : W ,q(�) →
(W ,q(�))∗ by

(w, Bu) =
∫

�

〈(
C(x) + |∇u|) p–

 ∇u,∇w
〉
dx + ε

∫
�

|u|r–uw dx, u, w ∈ W ,p(�)
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and

(w, Bv) =
∫

�

〈(
C(x) + |∇v|) q–

 ∇v,∇w
〉
dx + ε

∫
�

|v|s–vw dx, v, w ∈ W ,q(�).

Then Bi, i = , , is everywhere defined, strictly monotone, hemi-continuous, and coercive.
Moreover, it is noted from Lemma . that Bi, i = , , is maximal monotone. (Here 〈·, ·〉 and
| · | denote the Euclidean inner-product and Euclidean norm in R

N , respectively.)

Definition . Define A : Y → Y ∗ by A(u, v) = (Bu, Bv), for (u, v) ∈ Y .

Proposition . The mapping A : Y → Y ∗ is everywhere defined, monotone, and hemi-
continuous.

Proof Step . A is everywhere defined.
In fact, for any (u, v), (w, w) ∈ Y , we have |((w, w), A(u, v))| = |((w, w), (Bu, Bv))| ≤

|(w, Bu)| + |(w, Bv)|. Since B and B are everywhere defined, A is everywhere defined.
Step . A is monotone.
To show this, let (w()

 , w()
 ), (w()

 , w()
 ) ∈ Y , then

((
w()

 , w()


)
–

(
w()

 , w()


)
, A

(
w()

 , w()


)
– A

(
w()

 , w()


))
=

(
w()

 – w()
 , Bw()

 – Bw()


)
+

(
w()

 – w()
 , Bw()

 – Bw()


)
.

Since both B and B are monotone, A is monotone.
Step . A is hemi-continuous.
It suffices to show that for any (u, u), (v, v), (w, w) ∈ Y and k ∈ [, ],

(
(w, w), A

(
(u, u) + k(v, v)

)
– A(u, u)

) → ,

as k → . In fact, notice that both B and B are hemi-continuous, A is also hemi-
continuous. �

Lemma . [] The mapping � : W ,p(�) →R defined by

�(u) =
∫

�

ϕx
(
u|�(x)

)
d�(x), u ∈ W ,p(�)

is proper, convex, and lower-semi-continuous on W ,p(�). The subdifferential ∂� of � is
maximal monotone in view of Lemma .. Moreover,

(
w, ∂�(u)

)
=

∫
�

βx
(
u|�(x)

)
w|�(x) d�(x), u, w ∈ W ,p(�).

The mapping � : W ,q(�) →R defined by

�(v) =
∫

�

ϕx
(
v|�(x)

)
d�(x), v ∈ W ,q(�)



Wei et al. Boundary Value Problems  (2016) 2016:1 Page 10 of 24

is proper, convex, and lower-semi-continuous on W ,q(�). The subdifferential ∂� of � is
maximal monotone in view of Lemma .. Moreover,

(
w, ∂�(v)

)
=

∫
�

βx
(
v|�(x)

)
w|�(x) d�(x), v, w ∈ W ,q(�).

Proposition . The mapping � : Y →R defined by

�(u, v) =
∫

�

ϕx
(
u|�(x)

)
d�(x) +

∫
�

ϕx
(
v|�(x)

)
d�(x), (u, v) ∈ Y

is proper, convex, and lower-semi-continuous on Y . The subdifferential ∂� of � is maximal
monotone in view of Lemma .. Moreover,

∂�(u, v) =
(
∂�(u), ∂�(v)

)
.

Proof Since � and � are proper, it is not difficult to find that � is also proper.
For  ≤ λ ≤  and (u, v), (u, v) ∈ Y , we find

�
(
( – λ)(u, v) + λ(u, v)

)
= �

(
( – λ)u + λu, ( – λ)v + λv

)
=

∫
�

ϕx
(
( – λ)u|�(x) + λu|�(x)

)
d�(x) +

∫
�

ϕx
(
( – λ)v|�(x) + λv|�(x)

)
d�(x)

≤ ( – λ)
∫

�

ϕx
(
u|�(x)

)
d�(x) + λ

∫
�

ϕx
(
u|�(x)

)
d�(x)

+ ( – λ)
∫

�

ϕx
(
v|�(x)

)
d�(x) + λ

∫
�

ϕx
(
v|�(x)

)
d�(x)

= ( – λ)�(u, v) + λ�(u, v),

which implies that � is convex.
For (w, z) ∈ Y , since � and � are lower-semi-continuous, we have

lim inf
(u,v)→(w,z)

�(u, v) = lim inf
(u,v)→(w,z)

[∫
�

ϕx
(
u|�(x)

)
d�(x) +

∫
�

ϕx
(
v|�(x)

)
d�(x)

]

≥
∫

�

ϕx
(
w|�(x)

)
d�(x) +

∫
�

ϕx
(
z|�(x)

)
d�(x) = �(w, z),

which implies that � is lower-semi-continuous.
For (u, v), (w, z) ∈ Y , in view of the definition of the subdifferential, we get

�(u) + �(v) ≤ �(w) +
(
u – w, ∂�(u)

)
+ �(z) +

(
v – z, ∂�(v)

)
.

Then∫
�

ϕx
(
u|�(x)

)
d�(x) +

∫
�

ϕx
(
v|�(x)

)
d�(x)

≤
∫

�

ϕx
(
w|�(x)

)
d�(x) +

(
u – w, ∂�(u)

)
+

∫
�

ϕx
(
z|�(x)

)
d�(x) +

(
v – z, ∂�(v)

)
,
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which implies that

�(u, v) ≤ �(w, z) +
(
(u, v) – (w, z),

(
∂�(u), ∂�(v)

))
.

Thus,

∂�(u, v) =
(
∂�(u), ∂�(v)

)
.

This completes the proof. �

Lemma . [] Define G : W ,p(�) → (W ,p(�))∗ by

(w, Gu) =
∫

�

g(x, u,∇u)w dx, u, w ∈ W ,p(�).

Then G is everywhere defined, monotone, and hemi-continuous on W ,p(�).
Define G : W ,q(�) → (W ,q(�))∗ by

(w, Gv) =
∫

�

g(x, v,∇v)w dx, v, w ∈ W ,q(�).

Then G is everywhere defined, monotone, and hemi-continuous on W ,q(�).

Proposition . Define G : Y → Y ∗ by

(
(w, z), G(u, v)

)
= (w, Gu) + (z, Gv), (u, v) ∈ Y .

Then G is everywhere defined, monotone, and hemi-continuous on Y . Moreover, G is max-
imal monotone.

Proof The result follows from Lemma . and the definition of G. �

Theorem . For f(x) ∈ Lp′ (�) and f(x) ∈ Lq′ (�), the nonlinear (p, q)-Laplacian elliptic
system (.) has a unique solution in Y .

Proof Define T : Y → Y ∗ by

(
(w, w), T(u, v)

)
=

(
(w, w), A(u, v)

)
+

(
(w, w), G(u, v)

)
–

∫
�

fw dx –
∫

�

fw dx,

for (u, v), (w, w) ∈ Y . From Propositions . and ., T : Y → Y ∗ is everywhere defined,
monotone, hemi-continuous, and then it is maximal monotone.

Combining with Lemma . and Proposition ., we know that T +∂� is maximal mono-
tone.

Next, we shall show that

lim
‖(u,v)‖Y →+∞

((u, v), T(u, v) + ∂�(u, v))
‖(u, v)‖Y

= +∞.
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Noting that ∂�(, ) = (, ), G(, ) = (, ) and G is monotone, we have

((u, v), T(u, v) + ∂�(u, v))
‖(u, v)‖Y

≥ (u, Bu) + (v, Bv)
‖(u, v)‖Y

–
∫
�

fu dx +
∫
�

fv dx
‖(u, v)‖Y

≥ (u, Bu) + (v, Bv)
‖(u, v)‖Y

– ‖f‖Lp′ (�) – ‖f‖Lq′ (�).

Let ‖(u, v)‖Y → +∞, then ‖u‖,p,� → +∞ or ‖v‖,q,� → +∞.
Case . If ‖u‖,p,� → +∞ and ‖v‖,q,� ≤ const, then

((u, v), T(u, v) + ∂�(u, v))
‖(u, v)‖Y

≥ (u, Bu)
‖(u, v)‖Y

– ‖f‖Lp′ (�) – ‖f‖Lq′ (�)

=
(u, Bu)
‖u‖,p,�

× √
 +

‖v‖
,q,�

‖u‖
,p,�

– ‖f‖Lp′ (�) – ‖f‖Lq′ (�)

→ +∞,

as ‖(u, v)‖Y → +∞, since B is coercive.
Case . If ‖u‖,p,� ≤ const and ‖v‖,q,� → +∞, then the proof is similar to that of Case .
Case . If ‖u‖,p,� → +∞ and ‖v‖,q,� → +∞, then we split the discussion into the fol-

lowing cases:
(i) Suppose ‖u‖,p,�

‖v‖,q,�
→ +∞. In this case,

((u, v), T(u, v) + ∂�(u, v))
‖(u, v)‖Y

≥ (u, Bu)√
‖u‖

,p,� + ‖v‖
,q,�

– ‖f‖Lp′ (�) – ‖f‖Lq′ (�)

=
(u, Bu)

‖u‖,p,�

√
 +

‖v‖
,q,�

‖u‖
,p,�

– ‖f‖Lp′ (�) – ‖f‖Lq′ (�)

→ +∞,

since B is coercive.
(ii) Suppose ‖v‖,q,�

‖u‖,p,�
→ +∞. Similar to case (i), the result follows.

(iii) Suppose ‖u‖,p,�
‖v‖,q,�

→ const �= . In this case,

((u, v), T(u, v) + ∂�(u, v))
‖(u, v)‖Y

≥ (u, Bu)

‖u‖,p,�

√
 +

‖v‖
,q,�

‖u‖
,p,�

– ‖f‖Lp′ (�) – ‖f‖Lq′ (�)

→ +∞,

since B is coercive.
Therefore, for r > , there always exists (, ) ∈ D(T) ∩ D(∂�) such that

(
(u, v), T(u, v) + ∂�(u, v)

)
> ,

for all (u, v) ∈ Y with ‖(u, v)‖Y > r.
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Then, in view of Theorem ., the equation

(, ) = T(u, v) + ∂�(u, v) (.)

has a solution in Y , which is denoted by (u, v). From the strict monotonicity of B and B,
(u, v) is unique. Next, we shall show that this (u, v) is the solution of (.).

For (ϕ,ϕ) ∈ C∞
 (�) × C∞

 (�), using (.) we find
∫

�

〈(
C(x) + |∇u|) p–

 ∇u,∇ϕ
〉
dx + ε

∫
�

|u|r–uϕ dx +
∫

�

g(x, u,∇u)ϕ dx

+
∫

�

〈(
C(x) + |∇v|) q–

 ∇v,∇ϕ
〉
dx + ε

∫
�

|v|s–vϕ dx +
∫

�

g(x, v,∇v)ϕ dx

–
∫

�

fϕ dx –
∫

�

fϕ dx +
(
ϕ, ∂�(u)

)
+

(
ϕ, ∂�(v)

)

= –
∫

�

div
[(

C(x) + |∇u|) p–
 ∇u

]
ϕ dx + ε

∫
�

|u|r–uϕ dx +
∫

�

g(x, u,∇u)ϕ dx

–
∫

�

div
[(

C(x) + |∇v|) q–
 ∇v

]
ϕ dx + ε

∫
�

|u|s–uϕ dx +
∫

�

g(x, v,∇v)ϕ dx

–
∫

�

fϕ dx –
∫

�

fϕ dx = .

From the property of generalized function, we have

– div
[(

C(x) + |∇u|) p–
 ∇u

]
+ ε|u|r–u + g(x, u,∇u) – div

[(
C(x) + |∇v|) q–

 ∇v
]

+ ε|v|s–v + g(x, v,∇v) = f(x) + f(x). (.)

Using Green’s formula and (.), we have, for (w, ) ∈ Y ,

 =
∫

�

〈(
C(x) + |∇u|) p–

 ∇u,∇w
〉
dx + ε

∫
�

|u|r–uw dx +
∫

�

g(x, u,∇u)w dx dt

–
∫

�

fw dx +
(
w, ∂�(u)

)

= –
∫

�

div
[(

C(x) + |∇u|) p–
 ∇u

]
w dx +

∫
�

〈
ϑ ,

(
C(x) + |∇u|) p–

 ∇u
〉
w d�(x)

+ ε

∫
�

|u|r–uw dx +
∫

�

g(x, u,∇u)w dx –
∫

�

fw dx +
∫

�

βx(u)w d�(x).

Then

 = – div
[(

C(x) + |∇u|) p–
 ∇u

]
+

〈
ϑ ,

(
C(x) + |∇u|) p–

 ∇u
〉

+ ε|u|r–u + g(x, u,∇u) – f + βx(u). (.)

Similarly, using Green’s formula and (.), we have, for (, w) ∈ Y ,

 =
∫

�

〈(
C(x) + |∇v|) q–

 ∇v,∇w
〉
dx + ε

∫
�

|v|s–vw dx +
∫

�

g(x, v,∇v)w dx dt

–
∫

�

fw dx +
(
w, ∂�(v)

)
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= –
∫

�

div
[(

C(x, t) + |∇v|) q–
 ∇v

]
w dx +

∫
�

〈
ϑ ,

(
C(x) + |∇v|) q–

 ∇v
〉
w d�(x)

+ ε

∫
�

|v|s–vw dx +
∫

�

g(x, v,∇v)w dx –
∫

�

fw dx +
∫

�

βx(v)w d�(x).

Then

 = – div
[(

C(x) + |∇v|) q–
 ∇v

]
+

〈
ϑ ,

(
C(x) + |∇v|) q–

 ∇v
〉

+ ε|v|s–v + g(x, v,∇v) – f + βx(v). (.)

Since (u, v) satisfies (.), by using (.) and (.) we have

–
〈
ϑ ,

(
C(x) + |∇u|) p–

 ∇u
〉
–

〈
ϑ ,

(
C(x) + |∇v|) q–

 ∇v
〉 ∈ βx(u) + βx(v), a.e. x ∈ �.

Thus, (u, v) is the solution of (.). This completes the proof. �

3 Discussion of (p, q)-Laplacian parabolic system (1.11)
We recall that �, �, ϑ , ε, ε, βx, g, and g satisfy the conditions stated at the beginning
of Section .

Specific to system (.) In (.), T is a constant, f, f, C, and C are given functions
with f(x) ∈ (Lp(, T ; W ,p(�)))∗, f(x) ∈ (Lq(, T ; W ,q(�)))∗,  ≤ C(x, t) ∈ Lp(� × (, T)),
and  ≤ C(x, t) ∈ Lq(� × (, T)).

Lemma . [] Define the operators B̃ : Lp(, T ; W ,p(�)) → (Lp(, T ; W ,p(�)))∗ and B̃ :
Lq(, T ; W ,q(�)) → (Lq(, T ; W ,q(�)))∗ by

(w, B̃u) =
∫ T



∫
�

〈(
C(x, t) + |∇u|) p–

 ∇u,∇w
〉
dx dt + ε

∫ T



∫
�

|u|r–uw dx dt,

u, w ∈ Lp(, T ; W ,p(�)
)

and

(w, B̃v) =
∫ T



∫
�

〈(
C(x, t) + |∇v|) q–

 ∇v,∇w
〉
dx dt + ε

∫ T



∫
�

|v|s–vw dx dt,

v, w ∈ Lq(, T ; W ,q(�)
)
.

Then B̃i, i = , , is everywhere defined, strictly monotone, hemi-continuous, and coercive.
Moreover, B̃i, i = , , is maximal monotone.

Definition . Define Ã : Z → Z∗ by Ã(u, v) = (̃Bu, B̃v), for (u, v) ∈ Z.

Proposition . [] The mapping Ã : Z → Z∗ is everywhere defined, maximal monotone,
hemi-continuous, and coercive.

Lemma . [, ] The mapping �̃ : Lp(, T ; W ,p(�)) →R defined by

�̃(u) =
∫ T



∫
�

ϕx
(
u|�(x, t)

)
d�(x) dt, u ∈ Lp(, T ; W ,p(�)

)
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is proper, convex, and lower-semi-continuous on Lp(, T ; W ,p(�)). The subdifferential ∂�̃

of �̃ is maximal monotone in view of Lemma .. Moreover,

(
w, ∂�̃(u)

)
=

∫ T



∫
�

βx
(
u|�(x, t)

)
w|�(x, t) d�(x) dt, u, w ∈ Lp(, T ; W ,p(�)

)
.

The mapping �̃ : Lq(, T ; W ,q(�)) →R defined by

�̃(v) =
∫ T



∫
�

ϕx
(
v|�(x)

)
d�(x) dt, v ∈ Lq(, T ; W ,q(�)

)

is proper, convex, and lower-semi-continuous on Lq(, T ; W ,q(�)). The subdifferential ∂�̃

of �̃ is maximal monotone in view of Lemma .. Moreover,

(
w, ∂�̃(v)

)
=

∫ T



∫
�

βx
(
v|�(x, t)

)
w|�(x, t) d�(x) dt, v, w ∈ Lq(, T ; W ,q(�)

)
.

Proposition . The mapping �̃ : Z → Z∗ defined by

�̃(u, v) =
∫ T



∫
�

ϕx
(
u|�(x, t)

)
d�(x) dt +

∫ T



∫
�

ϕx
(
v|�(x, t)

)
d�(x) dt, (u, v) ∈ Z

is proper, convex, and lower-semi-continuous on Z. The subdifferential ∂�̃ of �̃ is maximal
monotone in view of Lemma .. Moreover,

∂�̃(u, v) =
(
∂�̃(u), ∂�̃(v)

)
.

Proof The proof is similar to that of Proposition .. �

Lemma . Define G̃ : Lp(, T ; W ,p(�)) → (Lp(, T ; W ,p(�)))∗ by

(w, G̃u) =
∫ T



∫
�

g(x, u,∇u)w dx dt, u, w ∈ Lp(, T ; W ,p(�)
)
.

Then G̃ is everywhere defined, monotone, and hemi-continuous on Lp(, T ; W ,p(�)).
Define G̃ : Lq(, T ; W ,q(�)) → (Lq(, T ; W ,q(�)))∗ by

(w, G̃v) =
∫ T



∫
�

g(x, v,∇v)w dx dt, v, w ∈ Lq(, T ; W ,q(�)
)
.

Then G̃ is everywhere defined, monotone and hemi-continuous on Lq(, T ; W ,q(�)).

Proof The proof is similar to that of Lemma .. �

Proposition . Define G̃ : Z → Z∗ by

(
(w, z), G̃(u, v)

)
= (w, G̃u) + (z, G̃v), (u, v) ∈ Z.

Then G̃ is maximal monotone.

Proof The result follows from Lemma . and the definition of G̃. �
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Lemma . [, ] Define S : D(S) = {u ∈ Lp(, T ; W ,p(�)) : ∂u
∂t ∈ (Lp(, T ; W ,p(�)))∗,

u(x, ) = u(x, T)} → (Lp(, T ; W ,p(�)))∗ by

Su(x, t) =
∂u
∂t

.

Then S is a linear maximal monotone operator possessing a dense domain in Lp(, T ;
W ,p(�)).

Define S : D(S) = {v ∈ Lq(, T ; W ,q(�)) : ∂v
∂t ∈ (Lq(, T ; W ,q(�)))∗, v(x, ) = v(x, T)} →

(Lq(, T ; W ,q(�)))∗ by

Sv(x, t) =
∂v
∂t

.

Then S is a linear maximal monotone operator possessing a dense domain in Lq(, T ;
W ,q(�)).

Proposition . [] Define S : Z → Z∗ by

(
(w, z), S(u, v)

)
= (w, Su) + (z, Sv), (u, v) ∈ D(S).

Then S is linear maximal monotone.

Theorem . For (f(x), f(x)) ∈ Z∗, the nonlinear (p, q)-Laplacian parabolic system (.)
has a unique solution in Z.

Proof Define T̃ : Z → Z∗ by

(
(w, w), T̃(u, v)

)
=

(
(w, w), Ã(u, v)

)
+

(
(w, w), G̃(u, v)

)
–

∫ T



∫
�

fw dx dt –
∫ T



∫
�

fw dx dt,

for (u, v), (w, w) ∈ Z. From Propositions . and ., T̃ : Z → Z∗ is everywhere defined,
monotone, hemi-continuous, and then it is maximal monotone.

Using Lemma . and Propositions . and ., we know that T̃ + ∂�̃ is maximal mono-
tone.

Next, we shall show that

lim
‖(u,v)‖Z→+∞

((u, v), S(u, v) + T̃(u, v) + ∂�̃(u, v))
‖(u, v)‖Z

= +∞.

Noting that ∂�̃(, ) = (, ), G̃(, ) =  and S(, ) = (, ), we have

((u, v), S(u, v) + T̃(u, v) + ∂�̃(u, v))
‖(u, v)‖Z

≥ (u, B̃u) + (v, B̃v)
‖(u, v)‖Z

–
∫ T


∫
�

fu dx dt +
∫ T


∫
�

fv dx dt
‖(u, v)‖Z

≥ (u, B̃u) + (v, B̃v)
‖(u, v)‖Z

– ‖f‖(Lp(,T ;W ,p(�)))∗ – ‖f‖(Lq(,T ;W ,q(�)))∗ .

Let ‖(u, v)‖Z → +∞, then ‖u‖Lp(,T ;W ,p(�)) → +∞ or ‖v‖Lq(,T ;W ,q(�)) → +∞.
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Case . If ‖u‖Lp(,T ;W ,p(�)) → +∞ and ‖v‖Lq(,T ;W ,q(�)) ≤ const, then

((u, v), T̃(u, v) + ∂�̃(u, v))
‖(u, v)‖Z

≥ (u, B̃u)
‖(u, v)‖Z

– ‖f‖(Lp(,T ;W ,p(�)))∗ – ‖f‖(Lq(,T ;W ,q(�)))∗

=
(u, B̃u)

‖u‖Lp(,T ;W ,p(�))
× √

 +
‖v‖

Lq(,T ;W ,q(�))
‖u‖

Lp(,T ;W ,p(�))

– ‖f‖(Lp(,T ;W ,p(�)))∗ – ‖f‖(Lq(,T ;W ,q(�)))∗

→ +∞,

as ‖(u, v)‖Z → +∞, since B̃ is coercive.
Case . If ‖u‖Lp(,T ;W ,p(�)) ≤ const and ‖v‖Lq(,T ;W ,q(�)) → +∞, then the proof is similar

to that of Case .
Case . If ‖u‖Lp(,T ;W ,p(�)) → +∞ and ‖v‖Lq(,T ;W ,q(�)) → +∞, then we split the discus-

sion into the following cases:
(i) Suppose

‖u‖Lp(,T ;W ,p(�))
‖v‖Lq(,T ;W ,q(�))

→ +∞. In this case,

((u, v), T̃(u, v) + ∂�̃(u, v))
‖(u, v)‖Z

≥ (u, B̃u)√
‖u‖

Lp(,T ;W ,p(�)) + ‖v‖
Lq(,T ;W ,q(�))

– ‖f‖(Lp(,T ;W ,p(�)))∗ – ‖f‖(Lq(,T ;W ,q(�)))∗

=
(u, B̃u)

‖u‖Lp(,T ;W ,p(�))

√
 +

‖v‖
Lq(,T ;W ,q(�))

‖u‖
Lp(,T ;W ,p(�))

– ‖f‖(Lp(,T ;W ,p(�)))∗ – ‖f‖(Lq(,T ;W ,q(�)))∗

→ +∞,

since B̃ is coercive.
(ii) Suppose

‖v‖Lq(,T ;W ,q(�))
‖u‖Lp(,T ;W ,p(�))

→ +∞. Similar to case (i), the result follows.

(iii) Suppose
‖u‖Lp(,T ;W ,p(�))
‖v‖Lq(,T ;W ,q(�))

→ const �= . In this case,

((u, v), T̃(u, v) + ∂�̃(u, v))
‖(u, v)‖Z

≥ (u, B̃u)

‖u‖Lp(,T ;W ,p(�))

√
 +

‖v‖
Lq(,T ;W ,q(�))

‖u‖
Lp(,T ;W ,p(�))

– ‖f‖(Lp(,T ;W ,p(�)))∗ – ‖f‖(Lq(,T ;W ,q(�)))∗

→ +∞,

since B̃ is coercive.
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Therefore, for r > , there always exists (, ) ∈ D(S) ∩ D(T̃) ∩ D(∂�̃) such that

(
(u, v), S(u, v) + T̃(u, v) + ∂�̃(u, v)

)
> ,

for all (u, v) ∈ Z with ‖(u, v)‖Z > r.
Then, in view of Theorem ., the equation

(, ) = S(u, v) + T̃(u, v) + ∂�̃(u, v) (.)

has a solution in Z, which is denoted by (u, v). From the strict monotonicity of B̃ and B̃,
this (u, v) is unique. Next, we shall show that this (u, v) is the solution of (.).

For (ϕ,ϕ) ∈ C∞
 (, T ;�) × C∞

 (, T ;�), using (.) we find

∫ T



∫
�

∂u
∂t

ϕ dx dt +
∫ T



∫
�

〈(
C(x, t) + |∇u|) p–

 ∇u,∇ϕ
〉
dx dt

+ ε

∫ T



∫
�

|u|r–uϕ dx dt +
∫ T



∫
�

g(x, u,∇u)ϕ dx dt

+
∫ T



∫
�

∂v
∂t

ϕ dx dt +
∫ T



∫
�

〈(
C(x, t) + |∇v|) q–

 ∇v,∇ϕ
〉
dx dt

+ ε

∫ T



∫
�

|v|s–vϕ dx dt +
∫ T



∫
�

g(x, v,∇v)ϕ dx dt –
∫ T



∫
�

fϕ dx dt

–
∫ T



∫
�

fϕ dx dt +
(
ϕ, ∂�̃(u)

)
+

(
ϕ, ∂�̃(v)

)

=
∫ T



∫
�

∂u
∂t

ϕ dx dt –
∫ T



∫
�

div
[(

C(x, t) + |∇u|) p–
 ∇u

]
ϕ dx dt

+ ε

∫ T



∫
�

|u|r–uϕ dx dt +
∫ T



∫
�

g(x, u,∇u)ϕ dx dt

+
∫ T



∫
�

∂v
∂t

ϕ dx dt –
∫ T



∫
�

div
[(

C(x, t) + |∇v|) q–
 ∇v

]
ϕ dx dt

+ ε

∫ T



∫
�

|v|s–vϕ dx dt +
∫ T



∫
�

g(x, v,∇v)ϕ dx dt

–
∫ T



∫
�

fϕ dx dt –
∫ T



∫
�

fϕ dx dt = .

From the property of generalized function, we have

∂u(x, t)
∂t

– div
[(

C(x, t) + |∇u|) p–
 ∇u

]
+ ε|u|r–u + g(x, u,∇u) +

∂v(x, t)
∂t

– div
[(

C(x, t) + |∇v|) q–
 ∇v

]
+ ε|v|s–v + g(x, v,∇v) = f(x, t) + f(x, t). (.)

Using Green’s formula and (.), we have, for (w, ) ∈ Z,

 =
∫ T



∫
�

∂u
∂t

w dx dt +
∫ T



∫
�

〈(
C(x, t) + |∇u|) p–

 ∇u,∇w
〉
dx dt

+ ε

∫ T



∫
�

|u|r–uw dx dt +
∫ T



∫
�

g(x, u,∇u)w dx dt
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–
∫ T



∫
�

fw dx dt +
(
w, ∂�̃(u)

)

=
∫ T



∫
�

∂u
∂t

w dx dt –
∫ T



∫
�

div
[(

C(x, t) + |∇u|) p–
 ∇u

]
w dx dt

+
∫ T



∫
�

〈
ϑ ,

(
C(x, t) + |∇u|) p–

 ∇u
〉
w d�(x) dt + ε

∫ T



∫
�

|u|r–uw dx dt

+
∫ T



∫
�

g(x, u,∇u)w dx dt –
∫ T



∫
�

fw dx dt +
∫ T



∫
�

βx(u)w d�(x) dt.

Then

∂u
∂t

– div
[(

C(x, t) + |∇u|) p–
 ∇u

]
+

〈
ϑ ,

(
C(x, t) + |∇u|) p–

 ∇u
〉

+ ε|u|r–u + g(x, u,∇u) – f + βx(u) = . (.)

Similarly, using Green’s formula and (.), we have, for (, w) ∈ Z,

 =
∫ T



∫
�

∂v
∂t

w dx dt +
∫ T



∫
�

〈(
C(x, t) + |∇v|) q–

 ∇v,∇w
〉
dx dt

+ ε

∫ T



∫
�

|v|s–vw dx dt +
∫ T



∫
�

g(x, v,∇v)w dx dt

–
∫ T



∫
�

fw dx dt +
(
w, ∂�̃(v)

)

=
∫ T



∫
�

∂v
∂t

w dx dt –
∫ T



∫
�

div
[(

C(x, t) + |∇v|) q–
 ∇v

]
w dx dt

+
∫ T



∫
�

〈
ϑ ,

(
C(x, t) + |∇v|) q–

 ∇v
〉
w d�(x) dt + ε

∫ T



∫
�

|v|s–vw dx dt

+
∫ T



∫
�

g(x, v,∇v)w dx dt –
∫ T



∫
�

fw dx +
∫ T



∫
�

βx(v)w d�(x) dt.

Then

∂v
∂t

– div
[(

C(x, t) + |∇v|) q–
 ∇v

]
+

〈
ϑ ,

(
C(x, t) + |∇v|) q–

 ∇v
〉

+ ε|v|s–v + g(x, v,∇v) – f + βx(v) = . (.)

Since (u, v) satisfies (.), by using (.) and (.) we have

–
〈
ϑ ,

(
C(x, t) + |∇u|) p–

 ∇u
〉
–

〈
ϑ ,

(
C(x, t) + |∇v|) q–

 ∇v
〉

∈ βx(u) + βx(v), (x, t) ∈ � × (, T).

Hence, (u, v) is the solution of (.). This completes the proof. �

4 Discussion of (p, q)-Laplacian integro-differential system (1.12)
We recall that �, �, ϑ , ε, ε, βx, g, and g satisfy the conditions stated at the beginning
of Section .
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Specific to system (.) In (.), T , a, and a are non-negative constants, f, f, C,
and C are given functions with f(x) ∈ (Lp(, T ; W ,p(�)))∗, f(x) ∈ (Lq(, T ; W ,q(�)))∗,
 ≤ C(x, t) ∈ Lp(� × (, T)) and  ≤ C(x, t) ∈ Lq(� × (, T)).

Lemma . [] Define S̃ : D(̃S) = {u ∈ Lp(, T ; W ,p(�)) : ∂u
∂t ∈ (Lp(, T ; W ,p(�)))∗,

u(x, ) = u(x, T)} → (Lp(, T ; W ,p(�)))∗ by

S̃u(x, t) =
∂u
∂t

+ a
∂

∂t

∫
�

u dx.

Then S̃ is a linear maximal monotone operator possessing a dense domain in Lp(, T ;
W ,p(�)).

Define S̃ : D(̃S) = {v ∈ Lq(, T ; W ,q(�)) : ∂v
∂t ∈ (Lq(, T ; W ,q(�)))∗, v(x, ) = v(x, T)} →

(Lq(, T ; W ,q(�)))∗ by

S̃v(x, t) =
∂v
∂t

+ a
∂

∂t

∫
�

v dx.

Then S̃ is a linear maximal monotone operator possessing a dense domain in Lq(, T ;
W ,q(�)).

Proposition . Define S̃ : Z → Z∗ by

(
(w, z), S̃(u, v)

)
= (w, S̃u) + (z, S̃v), (u, v) ∈ Z.

Then S̃ is linear maximal monotone.

Theorem . For (f(x, t), f(x, t)) ∈ Z∗, the nonlinear (p, q)-Laplacian integro-differential
system (.) has a unique solution in Z.

Proof Define T̃ , ∂�̃ : Z → Z∗ as in Theorem . and Proposition ., respectively.
Since S̃(, ) = (, ), similar to the proof of Theorem ., for r > , there always exists

(, ) ∈ D(̃S) ∩ D(T̃) ∩ D(∂�̃) such that

(
(u, v), S̃(u, v) + T̃(u, v) + ∂�̃(u, v)

)
> ,

for all (u, v) ∈ Z with ‖(u, v)‖Z > r.
In view of Theorem ., the equation

(, ) = S̃(u, v) + T̃(u, v) + ∂�̃(u, v) (.)

has a unique solution in Z, which is denoted by (u, v). As in the proof of Theorem ., this
(u, v) is unique. Next, we shall show that this (u, v) is the solution of (.).

For (ϕ,ϕ) ∈ C∞
 (, T ;�) × C∞

 (, T ;�), using (.) we have

∫ T



∫
�

∂u
∂t

ϕ dx dt +
∫ T



∫
�

(
a

∂

∂t

∫
�

u dx
)

dx dt

+
∫ T



∫
�

〈(
C(x, t) + |∇u|) p–

 ∇u,∇ϕ
〉
dx dt
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+ ε

∫ T



∫
�

|u|r–uϕ dx dt +
∫ T



∫
�

g(x, u,∇u)ϕ dx dt +
∫ T



∫
�

∂v
∂t

ϕ dx dt

+
∫ T



∫
�

(
a

∂

∂t

∫
�

v dx
)

dx dt +
∫ T



∫
�

〈(
C(x, t) + |∇v|) q–

 ∇v,∇ϕ
〉
dx dt

+ ε

∫ T



∫
�

|v|s–vϕ dx dt +
∫ T



∫
�

g(x, v,∇v)ϕ dx dt –
∫ T



∫
�

fϕ dx dt

–
∫ T



∫
�

fϕ dx dt +
(
ϕ, ∂�̃(u)

)
+

(
ϕ, ∂�̃(v)

)

=
∫ T



∫
�

∂u
∂t

ϕ dx dt +
∫ T



∫
�

(
a

∂

∂t

∫
�

u dx
)

dx dt

–
∫ T



∫
�

div
[(

C(x, t) + |∇u|) p–
 ∇u

]
ϕ dx dt

+ ε

∫ T



∫
�

|u|r–uϕ dx dt +
∫ T



∫
�

g(x, u,∇u)ϕ dx dt +
∫ T



∫
�

∂v
∂t

ϕ dx dt

+
∫ T



∫
�

(
a

∂

∂t

∫
�

v dx
)

dx dt –
∫ T



∫
�

div
[(

C(x, t) + |∇v|) q–
 ∇v

]
ϕ dx dt

+ ε

∫ T



∫
�

|v|s–vϕ dx dt +
∫ T



∫
�

g(x, v,∇v)ϕ dx dt

–
∫ T



∫
�

fϕ dx dt –
∫ T



∫
�

fϕ dx dt = .

From the property of generalized function, we get

∂u(x, t)
∂t

– div
[(

C(x, t) + |∇u|) p–
 ∇u

]
+ ε|u|r–u + g(x, u,∇u) + a

∂

∂t

∫
�

u dx

+
∂v(x, t)

∂t
– div

[(
C(x, t) + |∇v|) q–

 ∇v
]

+ ε|v|s–v + g(x, v,∇v) + a
∂

∂t

∫
�

v dx

= f(x, t) + f(x, t). (.)

Using Green’s formula and (.), we have, for (w, ) ∈ Z,

 =
∫ T



∫
�

∂u
∂t

w dx dt +
∫ T



∫
�

(
a

∂

∂t

∫
�

u dx
)

w dx dt

+
∫ T



∫
�

〈(
C(x, t) + |∇u|) p–

 ∇u,∇w
〉
dx dt + ε

∫ T



∫
�

|u|r–uw dx dt

+
∫ T



∫
�

g(x, u,∇u)w dx dt –
∫ T



∫
�

fw dx dt +
(
w, ∂�̃(u)

)

=
∫ T



∫
�

∂u
∂t

w dx dt +
∫ T



∫
�

(
a

∂

∂t

∫
�

u dx
)

w dx dt

–
∫ T



∫
�

div
[(

C(x, t) + |∇u|) p–
 ∇u

]
w dx dt

+
∫ T



∫
�

〈
ϑ ,

(
C(x, t) + |∇u|) p–

 ∇u
〉
w d�(x) dt + ε

∫ T



∫
�

|u|r–uw dx dt

+
∫ T



∫
�

g(x, u,∇u)w dx dt –
∫ T



∫
�

fw dx dt +
∫ T



∫
�

βx(u)w d�(x) dt.
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Then

∂u
∂t

+ a
∂

∂t

∫
�

u dx – div
[(

C(x, t) + |∇u|) p–
 ∇u

]
+

〈
ϑ ,

(
C(x, t) + |∇u|) p–

 ∇u
〉
+ ε|u|r–u + g(x, u,∇u) – f + βx(u) = . (.)

Similarly, using Green’s formula and (.), we have, for (, w) ∈ Z,

 =
∫ T



∫
�

∂v
∂t

w dx dt +
∫ T



∫
�

(
a

∂

∂t

∫
�

v dx
)

w dx dt

+
∫ T



∫
�

〈(
C(x, t) + |∇v|) q–

 ∇v,∇w
〉
dx dt + ε

∫ T



∫
�

|v|s–vw dx dt

+
∫ T



∫
�

g(x, v,∇v)w dx dt –
∫ T



∫
�

fw dx dt +
(
w, ∂�̃(v)

)

=
∫ T



∫
�

∂v
∂t

w dx dt +
∫ T



∫
�

(
a

∂

∂t

∫
�

v dx
)

w dx dt

–
∫ T



∫
�

div
[(

C(x, t) + |∇v|) q–
 ∇v

]
w dx dt

+
∫ T



∫
�

〈
ϑ ,

(
C(x, t) + |∇v|) q–

 ∇v
〉
w d�(x) dt + ε

∫ T



∫
�

|v|s–vw dx dt

+
∫ T



∫
�

g(x, v,∇v)w dx dt –
∫ T



∫
�

fw dx +
∫ T



∫
�

βx(v)w d�(x) dt.

Then

∂v
∂t

+ a
∂

∂t

∫
�

v dx – div
[(

C(x, t) + |∇v|) q–
 ∇v

]
+

〈
ϑ ,

(
C(x, t) + |∇v|) q–

 ∇v
〉

+ ε|v|s–v + g(x, v,∇v) – f + βx(v) = . (.)

Since (u, v) satisfies (.), using (.) and (.) we have

–
〈
ϑ ,

(
C(x, t) + |∇u|) p–

 ∇u
〉
–

〈
ϑ ,

(
C(x, t) + |∇v|) q–

 ∇v
〉

∈ βx(u) + βx(v), (x, t) ∈ � × (, T).

Thus, (u, v) is the unique solution of (.). This completes the proof. �

5 Examples
In this section, we give some examples of the systems (.)-(.) discussed in this paper.

Example . We list two examples of (.) - the first system (.) is from [] and the
second system (.) is discussed in []. However, different methods have been employed:{

–u′′ + εu = f (x),
–u′ = .

(.)

⎧⎪⎨
⎪⎩

–�u – μ�v = g(x, v), x ∈ �,
–�v – λ�u = f (x, u), x ∈ �,
u = v = , x ∈ �.

(.)
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Example . The following system, which has been studied in [], is an example of (.):

⎧⎪⎨
⎪⎩

∂u
∂t – �pu + a ∂

∂t
∫
�

u dx = f (x, t), (x, t) ∈ � × (, T),
u(x, t) = , x ∈ �,
u(x, ) = , x ∈ �.

(.)

Once again, different methods have been employed.

Example . If � reduces to a bounded interval (a, b) in R
, examples of βx and gi (i = , )

can be found readily. For example, for x ∈ �, take ϕx = ϕ(x, t) = tx. Then ϕx ≡ ϕ(x, ·) :
R → R is a proper, convex, and lower-semi-continuous function. Further, βx = tx. For
i = , , take gi(x, t, t) : � ×R×R →R as

g(x, t, t) =

{
min{a, x} + ( max{|t|p–, |t|p–} – |t|p–)(sgn t), |t| ≥ |t|,
min{a, x} + ( min{|t|p–, |t|p–} – |t|p–)(sgn t), |t| ≤ |t|

and

g(x, t, t) =

{
min{a, x} + ( max{|t|q–, |t|q–} – |t|q–)(sgn t), |t| ≥ |t|,
min{a, x} + ( min{|t|q–, |t|q–} – |t|q–)(sgn t), |t| ≤ |t|.

Then gi satisfies the assumptions (a)-(c). If, a ≡ , then the assumption (d) is also satisfied.
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