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Abstract

This paper is concerned with two classes of delayed nonlinear fractional functional
differential equations (FDEs) with nonlinear Riemann-Stieltjes integral boundary value
conditions. By employing the well-known Leggett-Williams fixed point theorem and a
generalization of Leggett-Williams fixed point theorem, some new sufficient criteria
are established to guarantee the existence of at least triple positive solutions. As
applications, some interesting examples are presented to illustrate our main results.
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1 Introduction

Fractional differential equations arise in many engineering and scientific disciplines as
the mathematical modeling of systems and processes in the fields of physics, chemistry,
aerodynamics, electrodynamics of complex medium, polymer rheology, Bode’s analysis
of feedback amplifiers, capacitor theory, electrical circuits, electron-analytical chemistry,
biology, control theory, fitting of experimental data, and so forth. Fractional differential
equations also serve as an excellent tool for the description of hereditary properties of
various materials and processes. For example, in physics, the traditional way to deal with
the behavior of certain materials under the influence of external forces in mechanics is to
use the laws of Hooke and Newton. If we are dealing with viscous liquids, then we can use
Newton’s law ne’(t) = o (t), where o (¢) and &(¢) denote stress and strain at time ¢ respec-
tively, i is the so-called viscosity of the material. In view of some possible interpolation
properties, it is natural for us to design the classical Newton’s law according to

nDS.e(t) =o(t), ke(m—1,m),neN,

which is called Nutting’s law [1]. As a consequence, the subject of fractional differential
equations is gaining much importance and attention. Especially, the boundary value prob-
lems of fractional differential equations have been one of the hottest problems. There have
been many papers focused on boundary value problems of fractional ordinary differential
equations; see [1-16]. Moreover, the boundary value problems with Riemann-Stieltjes in-
tegral boundary condition arise in a variety of different areas of applied mathematics and
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physics (for more comments on Stieltjes integral boundary condition and its importance,
we refer the reader to the papers by Webb and Infante [17, 18] and their other related
works). For example, blood flow problems, chemical engineering, thermo-elasticity, un-
derground water flow, population dynamics, and so on can be reduced to nonlocal inte-
gral boundary problems. By means of some well-known fixed point theorems, some pa-
pers deal with the existence and multiplicity of solutions or positive solutions for this type
of boundary value problems involving fractional differential in the recent references (see
[19-25]).

In the real world, the time-delay phenomenon exists commonly and is inevitable. Many
changes and processes not only depend on the present status but also on the past status.
Therefore, it is necessary to consider the time-delay effect in the mathematical modeling of
fractional differential equations. To the best of our knowledge, there are rare papers deal-
ing with the existence of positive solutions for fractional Riemann-Stieltjes integral BVPs
with time-delays by the well-known Leggett-Williams fixed point theorem. Therefore, the
main goal of this paper is to study the existence of multiple positive solutions of Riemann-
Stieltjes integral boundary value problems (BVP for short) involving time-delays for two
classes of nonlinear Caputo fractional differential equations (1.1) and (1.2) as follows:

DE,u@) +f(t,u,u) =0, tel,2<q<3,
au(0) - Bu'(0) = g1( [y u(s)dAr(s)),  u'(0) =0,

1 (1.1)
yu(l) +8u/'(1) = &o( [, u(s) dAs(s)),
M(S) = d’(s)r RS [—‘L’,O] é]
and
DI u(t) + g(t,u,u,u') =0, tel,2<q<3,
au(0) — B (0) = [y h(s, u(s)) dAs(s), u"(0) =0, (1.2)

yu() +8u'(1) = [ ha(s, u(s)) dAs(s),
M(S) = ¢(S)’ s € [_tr 0] é];

where I £ [0,1], D, is the standard Caputo fractional derivative of fractional order g. f €
C([0,1] x R%,R*), g; € C(R*,R*) (i =1,2), g € C([0,1] x R3,R*), h; € C([0,1] x R,R*) (i =
1,2), R = (—00, +00), R* = [0, +00). a, B, ¥, & are all nonnegative constants with p = ay +
ad + By > 0. fol u(s) dA;(s) (i = 1,2) denotes the Riemann-Stieltjes integrals. A4; : [0,1] - R
(i =1,2) is the increasing function of bounded variation. 7 > 0 is the constant time-delay.
¢(t) € C; (C; will be given in Section 3), u; € C;, u:(0) = u(t +0), 0 € [-7,0].

The rest of this paper is organized as follows. In Section 2, we introduce some definitions
and lemmas to prove our main results. In Section 3, one sufficient condition is given by
the well-known Leggett-Williams fixed point theorem to guarantee the existence multiple
positive solutions for BVP (1.1). Applying a generalization of the Leggett-Williams fixed
point theorem, we establish the existence of at least three positive solutions for BVP (1.2)
in Section 4. As applications, some interesting examples are presented to illustrate the
main results in Section 5.

2 Preliminaries and statements

For the convenience of the reader, we state some background materials from the theory
of both fractional calculus and cones in Banach spaces. These definitions and properties
can be found in the literature.
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Definition 2.1 (see [26, 27]) The Riemann-Liouville fractional integral of order « > 0 of
a function f : (0, 00) — R is given by

1 t
ft)=— / (t—s)*""f(s)ds
0 f F(a) 0 f
provided that the right-hand side is pointwise defined on (0, 00).

Definition 2.2 (see [26, 27]) The Caputo fractional derivative of order « > 0 of a contin-
uous function f : (0,00) — R is given by

A Y Ot
DO 5 J, o

where n — 1 < @ < n, provided that the right-hand side is pointwise defined on (0, c0).

Lemma 2.1 (see [26]) Assume thatu € C(0,1)NL(0,1) with a Caputo fractional derivative
of order o > 0 that belongs to u € C"[0,1], then

I8, DY u(t) = u(t) + co + crt + - + ¢yt
forsomec; e R (i=0,1,...,n—1), here n is the smallest integer greater than or equal to o.

Definition 2.3 Let X be a real Banach space. A nonempty closed convex set P C X is
called a cone if it satisfies the following two conditions:

(i) x € X, x>0 implies Ax € P;

(ii) x € P, —x € P implies x = 0.

Every cone P C X induces an ordering in X given by x < y if and only if y —x € P.

Definition 2.4 The map ¢ is said to be nonnegative continuous concave on a cone P
of a real Banach space E provided that ¢ : P — [0, 00) is continuous and for all u,v € P,
A € [0,1] such that

1/f(ku +(1- A)V) > A (u) + (1= AP (v).

Similarly, the map @ is said to be nonnegative continuous convex on a cone P of a real
Banach space E provided that @ : P — [0, 00) is continuous and for all #,v € P, A € [0,1]
such that

o (u+(1-1)v) Ao () + 1- V@ V).
Let P be a cone in a real Banach space E. For ¢ > 0, 0 < b < d, we define
PC:{xeP:||x||<c}, I_JC:{xeP:IIxIISC}
and
P(y,b,d)={xe€P:b<y(x), x| <d}.

It is easy to see that P(v/, b, d) is a convex and closed subset of P.
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Lemma 2.2 (Leggett-Williams fixed point theorem, see [28]) Let P be a cone in a real
Banach space E,  be a nonnegative continuous concave functional on P such that v (x) <
x|l for x € P,. Suppose that A : P, — P, is completely continuous and there exist 0 < a <
b <d < csuch that

(i) {x€P(y,b,d): ¥(x)>b}#0 and Y (Ax) > b for all x € P(yr, b, d);

(ii) |Ax| < a forall x € P,;

(iii) ¥ (Ax) > b for all x € P(Y, b, c) with || Ax| > d.
Then A has at least three fixed points x,, x, and x3 satisfying

ol <a<llxsll, — ¥(xs) <b<(x)

Next, we are prepared to state an important generalization of the Leggett-Williams fixed
point theorem, which comes from Bai and Ge in [29].

Let ¢ be a nonnegative continuous concave functional on P, and let zr and w be non-
negative continuous convex functionals on P. For nonnegative real numbers r, 2 and /, we

define the following convex sets:

Plw,r;,w,l) = {u eP:w(u)<r,w(u) < l},
P(w,r;m,1) = {u eP:w(u) <rwu) < l},
Plw,r;w, 0, a) = {u eP:wu) <r,w(u) <, y(u) > a},

P(@,r;w, 5, a) = {u eP:wu) <rou) <Ly > a}.

Lemma 2.3 (see [29]) Let P be a cone in a real Banach space E. Assume that constants
r, b, d, ry, b and I satisfy 0 <ry <b<d <ryand 0 <l <. If there exist two nonnega-
tive continuous convex functionals w and w on P and a nonnegative continuous concave
functional  on P such that:

(A1) there exists M > 0 such that ||ul| < M max{w (u), w(u)} for all u € P;
(Ag) P(w,r;w,l) #0 forany r >0 and [ > 0;
(As) V() <ow(u)forallu € P(w,r;w,l);

and if A : P(w,ry; w,ly) — P(w, r; w,12) is a completely continuous operator which satis-

fies

(B1) {u € P(w,d;w,ly;¥,b): ¥(u) > b} #0, Y (Au) > b forallu € P(w,d;w,ly; ¥, b);
(By) @ (Au) < r1, w(Au) < I for u € P(w,r;w,1);
(B3) W (Au) > b for u € P(w,ry; w, lo; ¥, b) with w(Au) > d,

then A has at least three different fixed points uy, uy and us in P(w, ry; 0, by) with

m €P(@,r;oh), € {ueP(w,d;w,b;y,b): Y (u)> b},
uz € P(w,ra;0,1) \ (P(@, 1y 0,39, b) U P(w, 115 0, 1))
3 Triple positive solutions for BVP (1.1)

In this section, we discuss the existence of multiple positive solutions for boundary value
problem (1.1).
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Let C; £ {¢|p : [-7,0] — R* is continuous}. Then C, is the space with the norm
lloll(=z,0] = MaxXge[_r,0] l(6)] for all ¢ € C;. C(I,R) represents the Banach space of con-
tinuous functions from I to R with the norm ||u||; = max,¢; |u(t)|, where I £ [0,1].

Now let us consider the boundary value problem as follows:

DE,u@)+y(t)=0, te(0,1),2<q<3,
au(0) - Bu'(0) = @i (fy u(s)dAr(s),  u"(0)=0, (3.1)
yu(l) + 8u'(1) =g2(f01 u(s) dA,(s)).

Lemma 3.1 Assume that A; : [0,1] — R (i = 1,2) is a function of bounded variation,
g€ CR,R), p2ay +ad + By #0 and y € C([0,1]). Then u € C(I,R) is a solution of
the boundary value problem (3.1) if and only if u(t) is a solution of the following integral

equation:
1 1
1-8)+6
u(t) = / Glt,s)y(sds + LE=D 0 ( f u(s) dAl(s)>
0 P 0
at+ B !
ML ( / u(s) dAz(S))y (3:2)
P 0
where
—p(t—sw*l+(ar+ﬁ)l£yr<é—>s)+<q—1>61<1—s)q*2, O<s<t<1,
G55 = pie 2;((2)_1)5](1_5){1_2’ 0<t<s<1 (3.3)

Proof Applying Lemma 2.1, Eq. (3.1) can be translated into the following equivalent inte-

gral equation:

1 t
u(t) = 1L, y(t) + co + a1t + cot? = —Tq) (t —s) 17 y(s) ds + co + c1t + cot?. (3.4)
0

From (3.4), we obtain

L(t—s)12 t(t—s)13

u'(t) = - i my(s) ds+c +2ctu'(t)=- | my(s) ds + 2¢. (3.5)

Condition #”(0) = 0 gives ¢, = 0. By the second boundary value condition of problem (3.1),

we have
) 1
yeo + (y +8)c = ylg+y(1) + Mg: y(1) + & (/ u(s) dAz(s)). (3.6)
0

From (3.5) and the first boundary value condition of problem (3.1), we have

1

1
€ = %[ylgﬂ(l) + (SIgIIy(l) + & </0 u(s) dAz(s)) - ggl (/0

_B
Co=—
P

u(s) dAl(s))i|, (3.7)

1 1
[ﬂgﬂ(l) + 815 y(1) +g2( / u(s) dA2(5)>:| 22 Sgl ( / u(s) dAl(s)>' (3.8)
0 1Y 0
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Substituting (3.7) and (3.8) into (3.4), we get

¢ 1
u(t) = —L (t— )7 y(s)ds + ¢ |:y1qy(1) +8177y(1) + g (/ u(s) dA2(s)>
I'(q) Jo P 0

! 1
5o (/ () dAl(S))]f . [J/qu(l) +81y(1) + gz( / u(s) dAz(S)):|
0 0 )
1
+ 22 6g1 (/ u(s) dAl(s))
L 0
(t—s)1! (at+,3)y< ) (t —5)1!
= dsa g
/0 I'(q) ¥ / / T'(g) y(s)ds
(at + /3)(3 = S)qu M 1 >
</ / ) (g-1) y(s)ds + P & (/0 u(s) dA;(s)
at; ﬁgz ( /0 uls )dAz(s)>
1 B 1 .
- /0 G(t,5)y(s) ds + w&( /0 u(s)d AI(S)) . at; B, ( /0 . (S)dAz(s)),

where G(t,s) is defined by (3.3). This indicates that « is a solution of (3.2). Conversely,
noting that the above derivations are reversible, we assert that if u is a solution of the

integral equation (3.2), then u is also the solution of BVP (3.1). The proof is complete. [

Lemma 3.2 Assumea, B,y,8 € [0,00) with p 2 ay +as + By > 0, then the function G(t,s)
defined by (3.3) has the following properties:

(1) G(¢,s) is continuous on [0,1] x [0,1];

(2) G(t,s) >0 foranyt,se|[0,1];

(3) G(¢,5) <G(s,s) forany t,s € (0,1);

(4) there exists a positive number A such that G(t,s) > LG(s,s) for any t,s € (0,1), where
A 4ayd[(g-2)e+(g-1)B]xmin{l,B} 1:

l(g-Dad+ay— ﬂV]2+4aﬁy[(q 1%5+)/] ’

(5) |dG(ts | < A(S) )p(1—s)7 +ot[]/(t

s Dt = forall t,s € [0,1].

The proof is similar to the proof of Lemmas 3.2 and 3.3 in [7] or Lemma 3.2 in [8], so
we omit it here.

For each ¢ € C; and u € C(I,R), we define

u(t+s), t+s>0,

u(s, @) = o(t+s), t+s<0,s€].

Obviously, u,(-,¢) € C(I,R). Thus we have the following assertion.

Proposition 3.1 A function u € C(I,R) is a solution of BVP (1.1) if and only if, for certain
¢ € Cy, u is a solution of the following BVP:

DEu@) +f(t,u,u,(-,$)) =0, te[0,1],2<g<3,
au(0) - B (0) = &i(f; u(s)dAi(s)),  u"(0)=0,
yu(l) +8u'(1) = go(f; u(s) dAs(s)).
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Therefore, by Lemma 3.1, we have u(t) € C(,R) is a solution of BVP (1.1) if and only if
u(t) is a solution of the integral equation as follows:

1 1
o)~ [ G(t,sy(s,u(sxus(-,m)ds+wg( / u(S)dAl(s)>
0 0
1
ML g2</ u(s)dAz(s)), telo,1], (3.9)
o 0

where G(t,s) is defined by (3.3).
In order to study the existence of solution of (1.1), we define the operator A4 : C(I,R) —
C(,R) as

1 _ 1
(Apu)(t) 2 /O G(t,s)f(s,ms),us(-,w)ds+wg( /0 u(s)dA1<s)>

Nk ﬂgz (/1u(s) dAz(s)), te[0,1]. (3.10)
P 0

Then solving the solutions of BVP (1.1) reduces to solving the fixed points of the opera-
tor equation u = Ayu, where A, is given by (3.10). Thus, the fixed point of operator A,
coincides with the solution of BVP (1.1).

For the sake of convenience, we introduce some assumptions as follows:

(Hy) a,B,y,8 €[0,00) with p = ay +ad + By > 0;

(Hz) feC([0,1] x R* x R*,R*) with f(¢,0,0) #0 for all £ € [0,1];

(Hs) g € CR",RY) (i=1,2); ¢ € C([-7,0],RY);

(Ha) A;:[0,1] = R (i = 1,2) is the increasing positive function of bounded variation.

Theorem 3.1 Assume that conditions (H;)-(H4) hold. Suppose further that there exist 0 €

— Y
(0, ), £ €(0,1),0 € (1,+00), k € [3,+00), [ € (0 o) A ], I, € (0, 3(a+f!)f01dA2(s)] and

some positive constants a, b, c with 0 <a < b < u’c such that thefollowing conditions

Hs) |gi(u) — gi(v)| < lilu —v| with g,(0) = 0 for u,v € [0,+00), i = 1,2;

(
(He) f(t,u,v) < fl—for tuv)e[O 1] x [0,a] x [0,a];
(H7) f(t M,V) = Wfor t M,V) (S [9 1- 9] X [b ] X [b, %],
(Hg) ft,u,v) < Py TRy for (t,u,v) € [0,1] x [0,c] x [0 cl,
N 0+8 ab+f _ 4ayél(g—2)a+(g-1)B]xmin{1,8}
have also been fulfilled, where ju = min{, 22, €752}, & = (2l S Gl 2 <1

Then BVP (1.1) has at least three positive solutions uy, uy and us satisfying

luillr <a < lusllz, min u3(f) <b< min uy(¢).
9<i<1-9 9<i<1-6

Proof Define a cone P in C(I,R) as follows:

P {ut) e CULR):u®) =0, min u)=plul}.

Let ¢ : P — [0, +00) be the nonnegative continuous concave functional defined by

¥(u) = efr?ii{l_g u(t), ueP.

Evidently, for each u € P, we have ¥ () < || u]|;.
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Now we will prove the assertions of Theorem 3.1 through two steps.

Stepl. Take P, = {u e P:|lull; <c}, Pa={uecP:|ul;<a),thenP.={uecP:|ul; <c},
P.={uecP:l|ul; <a}. Define an operator Ay :P. — P as (3.10). Now it is necessary to
show that A, : P, — P, is completely continuous. In fact, for any u € P, C P and any
t € I, by Lemma 3.2, we have

[Agull; = max|(Agu) ()|
tel
= max

1 _ 1
na /0 G(t,s)f(s, u(s), us(~,¢>)) ds + wgl (/o u(s) dAl(S))

1
+ oet; '3g2 (/0 u(s) dAz(s))‘

1 1
< /0 G(s,s)f(s,u(s),us(-,(b))ds+y;(sgl( /0 u(s)dAl(s))

1
. “+’3g2</ M(S)dAz(S)>,
1% 0

which implies that

in (A
o Join ,Asn)(®)

= min

1 _ 1
min| [ 6oy uo, o) dse 00 ([ uran)

Nl ( f ) dAz(s))'
P 0

1 1
Z/o OrgtiglG(t,s)f(s,u(s),us(-,¢))ds+ min [Mgl(/o u(s)dAl(s)>

0<t<1-6 p
1
Lo ﬂg2(/ u(s) dAz(s))]
P 0

! 0 +8 !
zk/o G(s,s)f(s,u(s),us(-,qﬁ)) ds + 5 a (/(; u(S)dAl(S))

1
+ a9p+ 'Bgz (/0 u(s) dAz(S))

y0+8 abf +p
y+8 a+p

1 1
+“‘3g1< / u(s)dAl(s)>+a+'Bgz< / M(S)dA2(S))}=M||A¢M||1. (3.11)
P 0 o 0

1
> min{)\, }[ /0 G(s,8)f (s, u(s), us(-, ) ds

On the other hand, when u € P,, then ||u||; < c. Noting the assumptions of «, /; and I,
by applying Lemma 3.2 and conditions (H3) and (Hg), we obtain

[Agull; = max|(Agu) ()|
tel

= max
tel

1 _ 1
f Glt, ) (5, u(s) s ) ds + VIO H 0 ( / u(s) dAl(s>)
0 Y 0

1
AL, (/ u(s)dAg(s)>’
1% 0
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1 1
< / G(s,sy(s,u(s),us(-,m)ds+y+5g1( / u(s)dAl(s))
0 0

0
1
+ il '3g2 (/ u(s) dAz(s)>
p 0

1 l 8 1
1;/ G(S,S)dSJrM/ dA(s)
K [y G(s,s)ds Jo P 0

. Lo + B)llulls /1dA2(s)
Y 0

c 0 c(y +8) !
— dA
< 3G ee) [TdaG) P /o 1

1
x C(“; 2 /0 dAy(s)

=c. (3.12)

IA

IA

+ P -
3(c + B) [, dAs(s)
c

<—+—-+ —+
3

IA

c
—+
3

X |la
wla
wla
wla

By (3.11) and (3.12), we conclude that A¢(fc) C P, that is, Ay P. — P, is well defined.
Similar to the arguments of (3.12), it is easy to show that A4 maps any bounded subset of
P into the bounded subset of R. So we omit it here. Thus, according to the Arzela-Ascoli
theorem, we know that A : P, — P, is completely continuous. Similarly, one can prove
that A, : P, — P, defined as (3.10) is also completely continuous.

Step 2. In the following, we will verify conditions (i)-(iii) of Lemma 2.2. In fact, when u €
Pas according to assumption (Hg), it is similar to (3.12) that A¢(fa) C P, which implies
that ||Agull; < a for all ||u||; < a. Noticing that assumption (Hg) is a strict inequality, we
conclude that ||Agull; < a for all ||u||; < a. This indicates that condition (ii) of Lemma 2.2
holds.

Next, we show that condition (i) of Lemma 2.2 is satisfied. Clearly, {z € P(v, b, :42 :
¥ (u) > b} # . Moreover, if u € P(y, b, %), then ¢ (u) = M% >b,s0 b <u(t) < % fort e
[6,1-6]. Thus, for t € [6,1 — 0], from condition (H7), we have

1 _ 1
(Apu)(t) = /0 G(t,s)f(s, u(s), us(- @)) ds + wgl (/0 u(s) dAl(s)>

1
+ ot 'ng (/ u(s) dAz(s)>
1Y 0

1-6
> / G(z, s)f(s, u(s), us(-,qb)) ds >
0

bo 1-6
_— G(t,s)ds. 3.13
W GES) Zl cedn em

In view of (3.13) and the definition of ¥, we get

Y(Agw) = min (Apu)(6) = mllAglls = max|u(Au)(6)] = 1(Agu)(€)

bo i

1-6
_— G(&,s)ds=0b>b.
Zuf;“’G(s,s)ds/e Gl =ab>

Therefore, condition (i) of Lemma 2.2 is satisfied. Finally, we show that condition (iii) of
Lemma 2.2 also holds. Indeed, assume that z € 5% with [|Ag|l; > %, then by the defini-
w
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tion of cone P, we have
YAgu) = min (Agu)(t) = wlAgls > 2y = 2 >
o102, 0 (A Z A > i = >

Hence, according to Lemma 2.2, BVP (1.1) has at least three positive solutions u;, us, us3

satisfying
uillr <a < luslls, min u3(t) <b< min u,(t).
llzea NIz llusllz ,fnin 3(t) ,nin 2(t)
The proof is complete. O

4 Triple positive solutions for BVP (1.2)

In this section, by employing a generalization of the Leggett-Williams fixed point theo-
rem, we investigate the existence of at least three positive solutions for boundary value
problem (1.2).

Consider the following boundary value problem:

Dg+u(t) +y()=0, te(0,1),2<gq<3,
au(0) — Bu'(0) = fol hy(s, u(s)) dAq(s), u”(0) = 0. (4.1)
yu() +8u'(1) = [ ha(s, u(s)) dAs(s).

Lemma 4.1 Assume that A;:[0,1] — R (i =1,2) is a function of bounded variation, h; €
C([0,1] x R,R), p 2 ay +ad + By #0 and y € C([0,1]). Then u € C(I,R) is a solution of
the boundary value problem (4.1) if and only if u(t) is a solution of the following integral

equation:
1 _ 1
u(t) =/(; G(t,8)y(s)ds + w/o hl(s,u(s)) dA1(s)
1
+O‘tp+’3 /0 s (5, u(s)) dAs(s), (4.2)

where G(t,s) is defined by (3.3).

The proof is similar to the proof of Lemma 3.1, so we omit it here.
Let C, and C(I,R) be defined as in Section 3. E = C'[0,1] = {u: u,u' € C(I,R)}. Then E

is a Banach space with respect to the norm

l

)l cr = max{max‘u(t) ,max’u’(t)
tel tel

where I £ [0,1].
Define

= {u € E: u(t) > 0, u(t) is concave on [0,1] }

Clearly, P is a cone.
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For each ¢ € C; and u € E, we define

u(t+s), t+s>0,

uy(s, ) = o(t+s), t+s<0,s€].

Obviously, u,(-,¢) € E. Thus we have the following assertion.

Proposition 4.1 A function u € E is a solution of BVP (1.2) ifand only if, for certain ¢ € C,
u is a solution of the following BVP:

D¢, u(t) + g(t,u,u,(,¢),u/) =0, te[0,1],2<g<3,
au(0) - fu'(0) = [ (s, u(s)) dAi(s),  u"(0) =0,
yu(l) +8u'(1) = fol ho(s, u(s)) dA,(s).

Consequently, by Lemma 4.1, we have u(¢) € E is a solution of BVPs (1.1) if and only if
u(t) is a solution of the integral equation as follows:

1 _ 1
o) - [ G(t, g (5, ), s ), 10 (5)) s + YEZOH2 [ s us) dae
0 0
1
LR / ha (s, u(s)) dAs(s), £ <[0,1], (4.3)
Y 0

where G(t,s) is defined by (3.3).
By way of investigating the existence of solution of (1.2), we define an operator A, : P —
E by

1 _ s !
(Agu)(t) £ /0 G(t,s)g(s,u(s),us(-,qb), u’(s)) ds + %/0 hl(s, u(s)) dA1(s)

1
LHP f hy(s,14(5)) dAa(s), £ [0,1], (4.4)
P 0

Then solving the solutions of BVP (1.2) reduces to solving the fixed points of the oper-
ator equation u = Agu, where Ay is given by (4.4). Thus, the fixed point of operator A,
coincides with the solution of BVP (1.2).

In this section, we assume that the following conditions are satisfied:

(G1) a,B,y,8 €[0,00) with p 2 ay +ad + By >0;

(Gp) ge C([0,1] x R* x R* x R*,IR*) with g(¢,0,0,0) # 0 for all ¢ € [0,1];

(Gs) hi € C([0,1] x R",R") (i=1,2); ¢ € C([-7,0],R");

(Ga) A;:[0,1] = R (i = 1,2) is the increasing positive function of bounded variation.

Lemma 4.2 Assume that (G1)-(Ga) hold. Then, for u € P, we have:
(1) (Apu)(2) is concave on [0,1];
(ii) (Apu)(t) >0 forte[0,1].

Proof (i) By the definition of A, and G(¢,s), for u € P, we have

1 (t _ S)q—?;

(g0 = | T8

(s, 14(), us (- $), 4/ (s)) ds < 0, (4.5)

so (Agu)'(¢) is nonincreasing. This implies that (A, u)(¢) is concave.
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(ii) According to the nonnegativity of G(¢,s) and g(s, u(s), us(-, ¢), #/(s)), we can verify that
(Apu)(t) = 0 for t € [0,1].
The proof is complete. d

Lemma 4.3 Suppose that (G;)-(G4) hold. Then Ay : P — P is a completely continuous

operator.

Proof From Lemma 4.2 it follows that A, : P — P is well defined. Next, we show that A is
completely continuous. To this end, we assume that r is a positive constant and u € Q, =
{u e P:|ulla <r}. Note that the continuity of g(¢, u(¢), us, u'(t)) and h;(¢, u(t)) (i = 1,2)
guarantees that there exist some constants M; > 0 (i =1,2,3) such that g(¢, u(¢), us, v/ (¢)) <
My, hy(t,u(t)) < M, and hy(t, u(t)) < M3 for all t € [0,1]. Therefore, by Lemma 3.2, we
have

max |(A¢ u)(t)|

te[0,1]
= fen[g,’f](A"’”)(t)
1 _ 1
= trén{g)f}{/() G(t, s)g(s, u(s), us(-, @), u/(s)) ds + w /0 h (s, u(s)) dA;(s)
1
v “t; d /0 (5, u(s) dAg(s)}

1 1 1
ngf G(s,s)ds+@/ dAl(s)+%/ dAy(s)
0 0 0

and

trél[g?f]!(A¢u)/(t)!

= max

te[0,1]

! 1
/0 8G8(Z,s)g(s,u(s),us(-,¢>),u/(s))ds+%/(; s (s, 1(s)) dAs (s)

o
+_
0

1 M 1 M 1
5M1/ Als)ds+ L 2/ dAy(s) + 2 3/ dAy(s),
0 14 0 1% 0

1
/ hy (s, u(s)) dAs(s)
0

which imply that A4(2,) is uniformly bounded.
Next, we shall prove that Ay : P — P is equicontinuous. Indeed, for any « € Q,, ti,t €
[0,1], we have

|(A¢u)(t2) - (A¢M)(t1)|

1
/O [Glta,5) - Glt1,9)]g (s, 1(5), 1 ), ' (5)) s

_ — 1 - !
+ wfo by (s, u(s)) dAi(s) + M/O ha (s, u(s)) dAs(s)

,0
1
</
0

G(§,s)
ot

|t2 -t |g(5, M(S), us(" ¢))» M/(S)) ds
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— 1 - !
+ wfo hy (s, u(s)) dAi(s) + y/o o (s, (s)) dAs(s)

1 M 1 M 1
S[le Als)ds + 2’”/ dAl(s)+—3a/ dAz(s)]ltz—tﬂ
0 L Jo P Jo

—0, asty—>h (4.6)

and

[(Agu) () = (Agu) (1))

~ /1 3G(tr,8)  9G(t1,s)
o ot ot

}g (s, u(s), s, ), ' (5)) ds

1

< / (t —8)T2 = (1 —5)"2|ds — 0, ast,— h. (4.7)
F(g-1) Jo

Therefore, (4.6) and (4.7) imply that A, is equicontinuous for all u € Q,. By applying the

Arzela-Ascoli theorem, we can see that A, (2,) is relatively compact. In view of Lebesgue’s

dominated convergence theorem, it is clear that A, is a continuous operator. Hence, A4 :

P — P is a completely continuous operator. The proof is complete. d

For u € P, we define

¥ (1) = min u(z),

w (1) = max ‘u(t)!, w(u) = max
te[v,1]

te[0,1] tef0,1]
where ¥ € (0,1). It is easy to verify that @, : P — [0, +00) are nonnegative continuous
convex functionals with |« ;1 = max{@ (4), w(x)}. ¥ : P — [0, +00) is a nonnegative con-
cave functional. We have ¥ (u) < @ (u) for u € P, this means that assumptions (A;)-(A3)
in Lemma 2.3 hold.

Theorem 4.1 Assume that conditions (G1)-(Ga) hold. If there exist constants ry, r, 2, I

and l, with 0 <ri<r< % <ry, 0 <l <. Suppose further that g, h; (i = 1,2) satisfy the

following conditions:

(Gs) glt,u,v,w) < mm{gf oo ds’ 3f0 }for (t,u,v,w) € [0,1] x [0,r3] x [0,r2] X

[, b]; In(t,u) < %ﬂ;’ it < sl for (6w € [0,1] x [0,
Jor G u,v,w) € [9,1] X [, 5] x [r, 5] x [, b ];

3 /LGl ds’ 3/ Ao for Guv,w) € 10,110, x [0, ] x [=h, hl;

pmin{ry,l} pmm ril}
hi(t,u) < 7&)[ ) hz(t u) < 7}3” ) ,for (¢, u) € [0,1] x [0,7];
min{2, 3 a19+/3}
(Gs) W >,

(Ge) glt,u,v,w) > AflT

(G7) g(t,u,v,w) < min{

4ay8l(g-2)a+(g=1)B]xmin{1,) (@=Dp(1-59)12+aly (1-5)+(q-1)5](1-5)1~2
T tabviy -y ey llgtany] < 1 A6) = T@ - Then
BVP (1.2) has at least three nonnegative solutions uy, u and us satisfying

where ) £

max{m(®) <r,  max{lm@[} <d,
r< min {ux(®)} < max {ux)} <r2, - max {[u;0)]} <L

. r !
tg[léf}]{%(t)} <, 1< tI;l[Eol?(H{ug(t)} < 5 h < tren[oai(]{ ’ug(t)’} <.
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Proof The boundary value problem (1.2) has a solution u = u(t) if and only if u solves
the operator equation Agu = u. Thus, we set out to verify that the operator A4 satisfies
Lemma 2.3, which will prove the existence of a fixed point of A,.

We first prove that if assumption (Gs) is satisfied, then A, : P(w, 150, 1) — P(w, 13
w,1l,) defined as (4.4). In fact, let u € P(w, ry; w, b5), then

@ (u) = max |u(t)| <rp,  w(u)= max W/ (t)| < b,
te[0,1] te[0,1]

and assumption (Gs) implies

’ . ry Iy
) y Uty E ) ) 0,1 .
gt lt) el ) mm{ 3/, G(s,s)ds 3 [ Als) ds} felo]

For all # € P, we have Ayu € P, therefore,

w(Apu) = tI;l{g)ﬁ‘(Aq;u t)’ rr%(a)ul(](Aq;u)(t)
1
= tgl[(;a)l{]{/o G(t,5)g(s, uls), us(, ), 1w (s)) ds
w / (s, u(s)) dAy(s) + O’”ﬁ / s sus))dAz(s)}
r Y+
_ G(s,s)d dA
S?>f01G(s,s)a,’sX/o (5)ds + P x 3(y +6) deAl / 1(5)
o+p pra !
dA
T 3@ p) 1A X/o 24¢)
nn,n_
3

and
A = A (¢
@(Agn) g{%}]“ ¢u)()|

= max
te[0,1]

L 3Gt
/ ;i S)g(s, u(s), us(-, @), u'(s)) ds
0

+ 7)//0 hy (s, u(s)) dAi (s) + %/0 ha (s, u(s)) dAs(s)

) ! 14 ol !
51—></ A(s)ds+—x—1x/ dA;(s)
3 [y Als)ds  Jo P 3y +8) [, dAiis) Jo

o
+ — / dAz
,0 3(a+ B) fo dA(s)
L L I
<24+242-p,
3 3 3
Thus, Ayu € P(w,r9;0,1) and A¢(I_3(w, ry;w,1)) C P(w,ry;m,1). In addition, according
to Lemma 4.3, we know that A, : P(w,ry;0,1) — P(w,ra;0,1) is completely continuous.
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Secondly, we show that condition (B;) of Lemma 2.3 holds We let u(t) = ; for t € [0,1].
It is obvious that u(t) = § € P(w, - ssw,0) and ¥ (u) = 5 > r, and consequently

{u el_’(w, g;w,lz;w,r> 2y (u) > r} Z0.

For all u € P(w, 530, b; Y, 1), we have r <u(t) < 5, |u/(t)| <[, for all £ € [#,1]. Thus, by
assumption (Gg), we get

g(t,ult), ' () > m for ¢ € [9,1].

From the definition of the functional ¥ and Lemma 3.2, we know that

V(Agu) = [Iel[lggll(Aw)(t)l = tlel[lzgg](A¢u)(t)

1
= min {/ G(t,s)g(s,u(S),Ms(-,qb),u/(s)) ds

te[v,1]
y(1-t)+4 ot +
+ —

0

1
/ h (s, u(s)) dAq(s) + p / hy (s, u(s)) dAz(s)}

0

1
> /0 0?321 G(,5)g(s, u(s), us( $), 1/ (s)) ds
1
A/ G(s,9)g (s, uls), us (-, p), ' (s)) ds
0

1
A/ G(s,s)ds x % =
0 1 [, Gls,s)ds

So, we obtain V¥ (Asu) > r for u € P(w, g;w, ly; ¥, r). Therefore, condition (B;) of Lem-
ma 2.3 is satisfied.

Thirdly, we show that condition (B;) of Lemma 2.3 is satisfied. For all u € P(w,r;m,0),
we have 0 < u(t) <n, -4 <u/(t) <1 for t € [0,1]. From assumption (G7) we obtain

n h } for t € [0,1].
s

&(t,u(t), ue ' (0)) < “““{ 3Jy Gls,5)ds' 3 [y Als)d

Thus

@ (Apu) = max |(A¢u)(t)| = max (A4u)(t)
te[0,1] te(0,1]

1
= max {/(; G(t,5)g(s, u(s), us(- $), 1/ (s)) ds

te[0,1]

_ 1
+w/0 I (s, 14(5)) dA(9) “”ﬁ/ Iy (s, )dAg()}

1
< % Xf G(s,s)ds
3 [, Gls,s)ds  Jo

FRALEY / dAy(s)
P 3(y +6) fo dA(s)
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1
+ a+hp X prll X / dA,(s)
P 3(a+B) [, dAy(s)  Jo
ry ry r
<—4+—=—4+—==n
3

and
w(Apu) = max |(A¢M)/(t)|
te(0,1]

= max
te(0,1]

LaG(t,
/ ;; S)g(s,u(S), us(- p), u'(s)) ds
0

+ %fo I (s, u(s)) dA1(3)+%/(; (s, u(s)) dAs(s)

L ! % oh !
~ 8 a@ds+ Lx— P [ aa
3 TAG)ds X/o W 5 +5) [LdAy(s) X/o 1

Ji 1
+gxp—llx/dA2(s)
P 3+ p) [, dA(s)  Jo
h L h
<—+—+—-=0
3 3 3

WegetAy: P(w,r;w, 1) = P(w,rm; w, ), which means that (B,) in Lemma 2.3 is satisfied.
Finally, we show that condition (B3) of Lemma 2.3 holds. Indeed, according to Lem-
ma 3.2, we have

Y(Aypu) = min {‘(A¢u)(t)|} = min {(A¢u)(t)}

te[v,1] te[v,1]

te[v,1]

1
= min {/(; G(t,5)g(s, u(s), us(,$), 1/ (s)) ds

+ w/o I (s,u(s)) dAs(s) + Oét;ﬂ /o oo ) dAZ(S)}

1 1
> A/(; G(s,s)g(s,u(s),us(-,qﬁ),u/(s)) ds + %/0 hl(s,u(s))dAl(s)

+

1
"“9;’9 /0 iy (s, (s)) dAy (s)

§ at
Zmin{)»,—,a +h
Jo

1
} |:/0 G(s,5)g(s, u(s), us(-, p), u/(s)) ds
1 1
+/ hl(s,u(s)) dAq(s) +/ hz(s, u(s)) dAz(s)} (4.8)
0 0
and
@ (Apu) = }3[3’1‘]{|(A¢”)(t)|} = fé}g,’f]{(A"’”)(t)}

1
= max {/0 G(t,5)g(s, uls), us(, ), u'(s)) ds

te(0,1]

at+ B

+w‘/o Iy (5, 14(5)) A (5) + /hz(s,u(S))dAz(S)}

0
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1
< f G(s,9)g (s, uls), us (-, p), ' (s)) ds
0

+J/+5 +B

/ n (s, u(s)) dA1(s) + / hz s, u(s)) dA,(s)

< max{l,

y+46 a+ﬂ}[

P 5 / G(s,9)g (s, uls), us (-, p), ' (s)) ds

0

1 1
+ / h (s, u(s)) dAq(s) + / hy (5, u(s)) dAz(s):|. (4.9)
0 0

For all u € P(w,rs; w,lo; Y, r) with @ (Apu) > 7, in the light of (4.8), (4.9) and condition
(Gg), we have
8 M}

min{A, L

w(A¢M) > W U)’(A¢M) >7r.

Therefore, condition (B3) of Lemma 2.3 is satisfied. So, all the conditions of Lemma 2.3
are satisfied. It follows from Lemma 2.3 and the assumption that g(¢,0,0,0) # 0 on [0,1]
that A4 has at least three fixed points u, u; and u3 satisfying

trer%g}]{ul(t)} <, tren[g,)l(]ﬂui(t){} <h,
r< min {0} < maxfe@®} <r - max{lia@) <&
minfu@)<r  n<mlaOl<g,  h<mu ol <h
The proof is complete. O

5 Some examples

In this section, we present some examples to illustrate our main results.

Example 5.1 Consider the boundary value problem of delayed nonlinear fractional dif-
ferential equations as follows:

Diu(t) + (t wu)=0, telo, 1]
%u( )—u'(0)=g fo u(s) dA;(s) u”(0) =0, (5.1)
1 1 .
su(l) + 5u( 1) =% fo u(s) dAz(S))
u(s) = ¢(s), sel-r,0],

where, g = %,a:y =§= %,,3 LaWw) =gl = |s1n4| Aq(s) =Ay(s) = %s,r >0, ¢p(s) € C;

Pl - S';‘é’ét +3w+v)3, tel0,1lu+v<l,
w+%+10, te0,1,u+v>1.

100
It is easy to see that assumptions

(H1)-(H4) hold and £(z, 0, 0)7’0 on [0,1], g,(O)- (i=
1,2),p=ay +ad+ By = 10<ll—i

7 = = - 7 2
3(y+9) fo dA1(s) land 0 </ = 4 < 3(a+p) [y dAs(s) 3

Page 17 of 20
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Take 6 = 1 € (0, 1) £=1€(0,1),0=2€(1,+0),k=4€[3,+0),a=01,b=1and c=

4ayd((g-2)a+(g-1)p]xmin{lLB}  _
50withO<a<b <z S . By asimple calculation, we obtain A = (D) ray - ﬁy]2+4o¢ﬁy[(q v

. 0+5 b . 2)[2(1-5)2 +3(1=s)2
ﬁ <1, u = min{}, )/V:B , O;:If} :mm{%, %, %} = %, G(s,s) = %;S] fo G(s,s)ds =

3
U6_ ~0.623295, [, G(&,5)ds = [} G(1,5)ds = 234347 ~ 0341746 and
4

1057 480 7
i t
Flt,u,v) = SHII((;(T) ) 30u+ ) < 0.034
—— ~0.040109 for (¢t,u,v) € [0,1] x [0,0.1] x [0,0.1],
"fo (
t
Ft,u,v) = Sin(re) utv 610107071
100 20
bo 13 64 64
> —— 55— ~9.363679 for t,u,v)e|—, - | x[1,—= [ x [1,— |,
I G(&,s)ds 4 4 25 25
t
ftu,v) < Sm(” ) 7Y 10 <15.01
100 20

~20.054709 for (¢,u,v) € [0,1] x [0,50] x [0,50].

<1
K [, Gls,s)ds

Thus, all the conditions of Theorem 3.1 are satisfied. According to Theorem 3.1, BVP (5.1)
has at least three positive solutions uy, #; and u3 such that

llzeall; < 0.1 < |las]lss min_u3(£) <1< min_ uy(f).

I <t< I I <t< I
Example 5.2 Consider the following boundary value problem:

D3u(t) +g(t,wupu’) =0, tel0,1],

1u(0) — /' (0) = fo1 (s, u(s)) dA(s), u"(0) =0,
Lu@) + 2/ (1) = [, ha(s,u(s) dAs(s),

u(s) = ¢(s), se[-,0],

(5.2)

whereg=32,a=y=38=3,8=1Mh(tu) = tZT” + (43¢, hy(t,u) = Z“ Aj(s) = Az(s) = 52,

>0, ¢(s) € C; and

100

gt u,v,w) = LJ’%(”S*VS“(% 5, tel0,1lu<3,
+(355)° + 18, te[0,1],u>3.

Clearly, assumptions (G;)-(G4) hold and g(¢,0,0,0) #0 on [0,1].
Choose ¥ = é €(0,1), r=3, r1=%,r2=120,11=%and12=90. SoO<r1<r<§and
. . _ _ __ 4aydl(g-2)a+(g-1)Blxmin{l,B}  _
0<hL<l.By calculatmg, we obtam p=ay+ad+By=1,A= o Db ray—fy [Erdafy q-T5+7] 1_
(s+2)[2(1 —s)7+3 —s) — 16 _ 2(1-s)2 +15(1-s)2
56 1, G(s,s) = 8—1_( ) fo G(s,s)ds = 1057 0.623295, A(s) = 7”(%) )
f A(s)ds = 7 ~ 1.015541. Now, we show that conditions (Gs)-(Gg) are satisfied:

(Gs) g(t,u,v,w) < 18.749 < 29.540904 = min{64.175069,29.540904} ~ mln{?’f1
3f1A( } for (¢, u,v,w) € [0,1] x [0,120] x [0,120] x [-90,90]; &1 (t,u) < 41. 728 <

= M = M
90 = L e yha(tu) <24 <60 = Y for (¢,u) € [0,1] x [0,120];
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(Ge) gt,u,v,w) >17.275> 6.961849 ~ m for (¢, u,v,w) € [%,1] x [3,15] x [3,15] x
o G(s,8)ds

[-90,90];

(G7) gt,u,v,w) < 0.186633 < 0.246174 = min{0.267396,0246174} ~ min{gflG'ﬁ,
o Gls,5)ds

L 1 1 _3 3. =
sTama) for (6w v,w) € [0,1]x[0,31% [0, 3] x [-3, 71 (6, 4) = 0.016668 < 0.25
pmin{ry,l} 1 _ _ pmin{r b} 17.
Sy g 2B 1) =01 < 5= 2 i for (6u) € 10,11 [0, 3];
(G ) min{)u,%,#} 1 1 _ 9
8 max{l,l%a,%} -3 > 57 7

From the above, we see that all the conditions of Theorem 4.1 are satisfied. Hence, by
Theorem 4.1, BVP (5.2) has at least three nonnegative solutions u;, #; and u3 such that

3
max {ul(t)} <=, tren[g,xl]”u/l(t)” <7

2
3 < min {u2(t)} < mg)f]{MZ(t)} <120, max{’u’z(t)|} <90,

te[v,1] telo, te[0,1]
min (50} <3, =< max () <15, =< max{[u(0)]} <90.
te[,1) 2 tef0]] 4 telo,1] -
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