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Izmir University of Economics, the distinguishability of input-output mappings in the linear time fractional

lsza;?r’é?jggiejwm%/ Balcova, inhomogeneous parabolic equation D¥u(x, 1) = (k(x)uy)y + rOF(x, 1), 0 < o < 1, with
, U . . .

Full list of author ir{formation s mixed boundary conditions u(0, t) = Yo (t), ux(1,t) = Y (t). By defining the

available at the end of the article input-output mappings ®[-]: K — C'[0, 7] and W[-]: K — C[0, T] the inverse

problem is reduced to the problem of their invertibility. Hence, the main purpose of
this study is to investigate the distinguishability of the input-output mappings ®[-]
and W[.]. Moreover, the measured output data f(t) and h(t) can be determined
analytically by a series representation, which implies that the input-output mappings
®[]: K — C'[0,T]and W[]: K — C[0,T] can be described explicitly, where

D[] = k(X)uy(x, t;N]x=0 and W[r] = ulx, t;1)]x=1. Also, numerical tests using finite
difference scheme combined with an iterative method are presented.

1 Introduction

The inverse problem of unknown source function in a linear inhomogeneous parabolic
equation by using over-measured data has generated an increasing amount of interest
from engineers and scientist during the last few decades. This kind of problems play a
crucial role in engineering, physics and applied mathematics. The problem of recover-
ing an unknown source function in the mathematical model of a physical phenomenon
is frequently encountered. Intensive study has been carried out on this kind of problem,
and various inverse problems and many numerical methods developed. In papers [1-3]
a coupled method for inverse source problem of spatial fractional anomalous diffusion
equations and a boundary-type collocation method for inverse Cauchy inhomogeneous
potential problems were considered. The inverse problem of an unknown coefficient in
quasi-linear parabolic equations was studied by Demir and Ozbilge [4, 5]. Moreover, the
existence and uniqueness of solutions for fractional differential equations with nonlo-
cal and integral boundary conditions were studied by Ashyralyev and Sharifov [6]. Ini-
tial boundary-value problems for the one-dimensional time fractional diffusion equation
were studied by Amanov and Ashyralyev in [7], the finite difference method for fractional
parabolic equations with Neumann boundary conditions was studied by Ashyralyev and
Cakir in [8], numerical solution of a fractional Schrodinger differential equation with the
Dirichlet boundary condition was studied by Ashyralyev and Hicdurmaz in [9]. Moreover,
Ashyralyev and Dal studied finite difference methods and iteration methods for fractional
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hyperbolic partial differential equations with the Neumann condition in [10]. Second or-
der implicit finite difference schemes were applied to the right-hand side of the identifi-
cation problem by Erdogan and Ashyralyev [11].

Fractional differential equations are generalizations of ordinary and partial differential
equations to an arbitrary fractional order. By a linear time-fractional parabolic equation
we mean certain parabolic-like partial differential equation governed by master equations
containing fractional derivatives in time [12, 13]. The research areas of fractional differen-
tial equations range from theoretical to applied aspects.

An inverse time independent source problem for a fractional diffusion equation is stud-
ied and analytical solution can be obtained based on the method of the eigenfunction
expansion. Moreover, the uniqueness of the inverse problem is established by analytic
continuation and Laplace transform. The efficiency and accuracy of the proposed com-
putational method are supported by the numerical examples [14]. A time dependent in-
verse source problem with additional measurement data at an inner point for the frac-
tional diffusion equation is investigated and stable and accurate numerical approximation
is obtained by means of the boundary element method and the first order Tikhonov reg-
ularization. Results are verified by the numerical examples [15].

In this paper, the mathematical analysis of a time dependent inverse source problem
with additional measurement data at a boundary point for the fractional diffusion equa-
tion is done. The distinguishability of the input-output mappings is investigated and the
measured output data f(£) and /(f) can be constructed, which leads to the explicit form
of the input-output mappings. It is shown that the distinguishability of the input-output
mappings holds, which implies the injectivity of the inverse mappings ®~* and ¥,

Since fractional derivatives are necessarily nonlocal, the sensible models of nonlocal
phenomena are made by means of them. In the modeling of the anomalous diffusion in
porous media, the best approach was made by the use of the fractional derivatives since
it includes the nonlocal phenomena and the anomalous behaviors can be governed by the
derivative order. The analysis of the time-fractional porous medium equation was given
in [16, 17], and a sensible model for the anomalous diffusion in porous medium equation
was shown.

The main goal of this study is to investigate the distinguishability of the unknown source
function via input-output mappings in a one-dimensional time fractional inhomogeneous
parabolic equation. We first obtain the unique solution of this problem using the Fourier
method of separation of variables with respect to the eigenfunctions of the correspond-
ing Sturm-Liouville eigenvalue problem under certain conditions [18]. As the next step,
the noisy free measured output data f(£) and /(¢) are used to introduce the input-output
mappings ®[-] : K — C'[0, T] and ¥[-] : K — C[0, T], where K represents the set of ad-
missible source functions. The set of admissible source functions X includes all functions
r(£) such that problem (1) has a solution. Finally, we investigate the distinguishability of
the unknown function r(£) via the above input-output mappings ®[-] and W[-].

Consider now the following initial boundary value problem:

D¢ u(x, t) = (k(x)uy)y + r()F(x,t), O0<oa <1,(x¢) € Qr,
u(x,0) =gx), O0<x<l, (1)
M(O’ t) = Wo(t), Mx(lr t) = 1ubl(t)r 0<t<T,
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where Q7 = {(x,£) € R?: 0 <x < 1,0 < ¢ < T} and the fractional derivative D?u(x, ) is de-
fined in the Caputo sense D%u(x, t) = (I'™*/)(¢), 0 < « < 1, I* being the Riemann-Liouville

fractional integral,

ﬁaﬁ“—fV?ﬂﬂdn O<a<l,

()0 =
f(®), a=0.
The left and right boundary value functions ¥ (¢) and v (¢) belong to C[0, T]. The func-
tions 0 < ¢g < k(x) < ¢1 and g(x) satisfy the following conditions:

(C1) k(x) € C'[0,1],

(C2) ¢®) € C2[0,1], g(0) = Yo(0), g'(1) = Y1 (0).

Under these conditions, the initial boundary value problem (1) has the unique solution
u(x, t) defined in the domain Q7 = {(x,£) € R*: 0 <x <1,0 < ¢ < T} which belongs to the
space C(7) N W}(0, TINC%(0,1). Moreover, it satisfies the equation, initial and boundary
conditions. Note that the space W}(0, T] contains the functions f € C*(0, T] such that
f'(x) € L(0,T).

Consider the inverse problem of determining the distinguishability of the unknown
function r(£) from the mixed type of measured output data at the boundaries x = 0 and

x =1, respectively,

D[] = k(®)uy (%, 7)o, 7€ K S CHQT),

W[r]l =ulx, ;1)1 €K S C(Qr).

Then, the inverse problem with the measured output data f(¢) and %(£) can be formulated
as follows:

@[l =f, feCN0,T],
W[rl=h, heC(,T].

These formulations reduce the inverse problem of determining an unknown function r(t)
to the problem of invertibility of the input-output mappings ®[-] and W[-]. This leads us
to investigating the distinguishability of the source function via the above input-output
mappings. We say that the mappings ®[-] : K — C'[0, T] and ¥[-] : K — C[0, T] have the
distinguishability property if ®[r;] # ®[r,] implies r1(£) # r»(t) and W[r1] # ¥[r,] implies
r1(¢) # r5(¢). This, in particular, means injectivity of the inverse mappings ® and ¥. In
this paper, measured output data of Neumann type at the boundary x = 0 and measured
output data of Dirichlet type at the boundary x = 1 are used in the determination of the
distinguishability of the unknown function r(¢). In addition, in the distinguishability of the
unknown function r(¢), analytical results are obtained.

The paper is organized as follows. In Section 2, analysis of the inverse problem with the
single measured output data f(¢) at the boundary x = 0 is given. Analysis of the inverse
problem with the single measured output data /() at the boundary x = 1 is considered
in Section 3. Numerical procedure and an example are given in Section 4. Finally, some

concluding remarks are given in the last section.
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2 Analysis of the inverse problem with given measured data f(t)
Consider now the inverse problem with one measured output data f(£) at x = 0. In order to
formulate the solution of parabolic problem (1) by using the Fourier method of separation
of variables, let us first introduce an auxiliary function v(x, t) as follows:

v(x, £) = ul(x, t) — Yo (t) — Yn()x, x€(0,1],

by which we transform problem (1) into a problem with homogeneous boundary condi-
tions. Hence the initial boundary value problem (1) can be rewritten in terms of v(x,¢) in
the following form:

DS v(x,t) — Viy(x, £)

= ((k(x) = Dvi(x, 1)) — xDF Y1(8) = Dy o (2) + K (%)Y (2) + r(6)F(x, 1),
v(x,0) = g(x) — ¥o(0) — Y1 (0)x, O<x<l,
v0,0)=0,  v(L,H)=0, O0<t<T.

(2)

The unique solution of the initial-boundary value problem can be represented in the
following form [18]:

v, £) = > (£(0), $u(0))Et (~2nt™) u()
n=1

+z(/ 7 B (=2ns”) (£ 6, - 5),4(6))

+ (r(t - S)F(@, t- S)r ¢n(9)>) ds>¢n(x)»
where

¢ (x) = g(x) = ¥0(0) - ¥1(0)x,
£ 1) = ((k(x) = 1)ve(x, 1)), = xDF Y (8) = DY Yo (8) + K (%)Y (0).

Moreover, (£(0),9,.(0)) = fol ¢,(0)¢(0)d6, E,p being the generalized Mittag-Leffler
function defined by

o0 n

VA
Eer®= D Fpns e

Assume that ¢, (x) is the solution of the following Sturm-Liouville problem:

—due(x) = Ap(x), O<x<1,
¢(0) =0, ¢:(1)=0, O0<t<T.

The Neumann type of measured output data at the boundary x = 0 can be written in terms
of v(x,t) in the following form:

k(O)(vx(O, )+ wl(t)) =f(), te(0,T]. (3)
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In order to arrange the above solution, let us define the following:

Zn(t) = <§(9)7 ¢)n(9)>Ea,l (_)\nta):

Wn(t) = [) Sa_lEoz,a (_}‘nsa)(g (91 t- S)r ¢n(9)> dS, (4)
Yu(t) = /t " Eyq (—)»,,s"‘)(r(t —s)F(0,t-s), gbn(@)) ds.
0

The solution in terms of z,(¢), w,(¢) and y,(¢) can then be rewritten in the following form:

V1) = Y 2u(Bpn(0) + D wa(OGu®) + Y yu()pu(x).

n=1 n=1 n=1

Differentiating both sides of the above identity with respect to x and substituting x = 0

yields
ve(0,8) = Y zu(£),(0) + > wul()$,,(0) + Y yu(£),(0).
n=1 n=1 n=1

Taking into account the over-measured data k(0)(v,(0, £) + ¥1(¢)) = f(¢),

f@®) = k(0) (m(r) +3 " zu()6,(0) + Y wa(t)g),(0) + Zyn<t)¢;(0)) )
n=1 n=1 n=1

is obtained, which implies that f(£) can be determined analytically. The right-hand side of
identity (5) defines the input-output mapping ®[r] on the set of admissible source func-

tion KC:
®[r](£) := k(0) (wl(t) + Y zu(0)$,(0) + Y w,(D)$,(0) + Zyn(t)qs;(O)),
n=1 n=1 n=1
vt e [0, T]. (6)

The following lemma implies the relation between the source functions r;(z), 7, (¢) € K at
x = 0 and the corresponding outputs f;(t) := k(0)u,(0,£7),j =1,2.

Lemma 1 Let vi(x,t) = v(x, ;1) and vy(x,t) = v(x, t;r2) be the solutions of the di-
rect problem (2), corresponding to the admissible parameters ri(t),r(t) € K. If fi(t) =
k(0)(vx(0,t;1)) + yn(t)), j = 1,2, are the corresponding outputs, the outputs f;(t), j = 1,2,
satisfy the following integral identity:

AF(®) = K(0) (Z AW, OF,0)+ 3 Ayn(tw,;(m)
n=1 n=1

for each t € (0, T], where Af(t) = fi(t) — fo(£), Aw, () = wk(t) — w2(¢), Ar(t) = ri(2) — ra(2)
and Ay, (t) = Yo () = y2(8) = [y S*Eqq(~Ans)([AF(E — $)IE(t ~ 5), $u(0)) dis.
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Proof By using identity (5), the measured output data f;(£) := k(0)(v,(0,£) + ¥1(2)),j = 1,2,
can be written as follows:

fi(®) = k(0) (wl(w + Y 2, (0)¢,(0) + Y wy(£),(0) + Zy;(tw;(m),

n=1 n=1 n=1

f(t) = k(0) (vfl(t) + Yz (0¢,(0) + Y wa(D)$,(0) + Zyi<t)¢;(0)>,

n=1 n=1 n=1

respectively. Hence the difference of these formulas implies the desired result. d
The lemma and the definitions enable us to reach the following conclusion.

Corollary 1 Let the conditions of Lemma 1 hold. If in addition

(r1() = r2(), ¢u(x)) = 0,
Vte(0,T],Vn=0,1,... holds, then fi(t) = fr(t), Vt € [0, T].

Since ¢,(x), Vn =10,1,2,..., form a basis for the space and ¢/ (0) #0,Vn=0,1,2,..., then
r1(2) # ro(¢) implies that (r1(t) — ro(£), (%)) # 0 at least for some n € . Hence by Lemma 1
we conclude that f(¢) # f>(¢), which leads us to the following consequence: ®[r;] # ®[r;]
implies that r(£) # ry(2).

Theorem 1 Let conditions (C1), (C2) hold. Assume that ®[-]: K — C'0,T] is the
input-output mapping defined by (6) and corresponding to the measured output f(t) :=
k(0)u(0, ). In this case the mapping ®[r] has the distinguishability property in the class
of admissible parameters K, i.e.,

O] #®[r] Vrnrnek = ) #n).
Proof From the above explanations the proof of the theorem is clear. d

3 Analysis of the inverse problem with given measured data h(t)
Consider now the inverse problem with one measured output data /() at x = 1. Taking
into account the over-measured data /(¢) = (v(1, £) + Yo (£) + ¥1(2)),

h(t) = (wom Y1)+ Y za(Opu(1) + Y walt)pu(D) + Zyn(tm(l)) (7)

n=1 n=1 n=1

is obtained, which implies that /(¢) can be determined analytically. The right-hand side of
identity (7) defines the input-output mapping ¥[r] on the set of admissible source func-
tions K:

WIr]() = (wo(n Y1)+ Y zu(Opu(D) + Y w(t)pu(D) + Zyn(t)m(l)),
n=1 n=1

= = n=1

vt e (0, T]. (8)
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The following lemma implies the relation between the parameters r;(¢), 7, (t) € L atx =1

and the corresponding outputs /;(t) := u(1,£rj), j = 1,2.

Lemma2 Let v(x,t) = v(x, t;11) and vs(x, t) = v(x, £ r2) be the solutions of the direct prob-
lem (2), corresponding to the admissible parameters ri(t),ro(t) € K. If hi(t) = v(1,t;17) +
Y1(t) + Yo(t), j = 1,2, are the corresponding outputs, the outputs hy(t), j = 1,2, satisfy the
following integral identity:

A(e) =y Aw,O$,(1) + Y Ayu(O)n(1)

n=1 n=1
Soreach t € (0, T], where Ah(t) = hi(t) — ha(£), Awy(£) = wh(£) — w2(8), Ar(e) = r1(£) — ra(2).

Proof By using identity (7), the measured output data /;(t) := v(1, £) + Yo () + Y1 (), j = 1,2,

can be written as follows:

I(8) = o (6) + Y1 () + Y zp(O)pu(D) + Y wh(OPa1) + Y yh(O)bu(D),

n=1 n=1 n=1

ha(®) = Yo(t) + Y (t) + Y z2(Odu(1) + Y _wa(B)pu(D) + Y y2(E)pu(D),

n=1 n=1 n=1

respectively. Since z.(¢) = z2(¢) from the definition then the difference of these formulas

implies the desired result. d

Corollary 2 Let the conditions of Lemma 2 hold. If in addition
(1) = ra(t), ¢u(x)) =0, Vn=0,1,...
holds, then hy(t) = hy(t), Vt € (0, T].

Since ¢,(x), Vn=0,1,2,..., form a basis for the space and ¢/ (0) #0,Vn =0,1,2,..., then
r1(t) # ro(¢) implies that (r(£) — r2(£), . (x)) # 0 at least for some n € A/. Hence by Lemma 2
we conclude that /() # h,(t), which leads us to the following consequence: W[r] # W |[r;]
implies that 7 (£) # ry(£).

Theorem 2 Let conditions (C1), (C2) hold. Assume that V[-] : KK — C[0, T is the input-
output mapping defined by (8) and corresponding to the measured output h(t) := u(l,¢).

In this case the mapping V[r] has the distinguishability property in the class of admissible

parameters K, i.e.,
Y[r]#Wr] Vr,nek = n(t)#n).

Proof From the above explanations the proof of the theorem is clear. O
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4 Numerical procedure

We use finite difference method to problem (1). We subdivide the intervals [0,1] and [0, T
into M and N subintervals of equal lengths / = % and 7 = ]%, respectively. The first order
implicit scheme of problem (1) is as follows [19]:

= %(/ i1 Mi'“h_ Ut _h”i'*) +rF, ©)
U} = gi (10)
y =V, (11)
i = (e + VD), (12)

where 1 <i <M and 0 <j < N are the indices for the spatial and time steps, respectively,
W, = ulwi, t), ¥ = r(t), g = gxi), Fl = Flxi ), ¥ = Yo(ty), Y] = Ya(t)), % = ih, 1 = jT. At the
t = 0 level, adjustment should be made according to the initial condition and the compat-
ibility requirements.

Now, let us construct the predicting-correcting mechanism. Firstly, if we use the mea-
sured output data is u(1,t) = h(t), we obtain

DEh(t) = (k(Dux(1,))x

r = £, 1)

(13)

The finite difference approximation of r(t) is

1 — L (kg 1 — kyy 270

Ey

’

where H' = D?h(t)),j = 0,1,...,N.

In numerical computation, since the time step is very small, we can take PO = -1,
uﬁ(o) = 14_1,]' =0,1,2,...,N,i=1,2,..., M. At each sth iteration step we first determine /**
from the formula

. . JO_ O
[H — 5 (kppsa g — kg 225241)]

Fyy

PO =

Then from (9)-(12) we obtain

1 i F(—k—a+1) [ ul® -y
ri-a) =k =

k=1

i(s) j(s) j(s) j(s)
:l</('lu]l'+l_u]i _ku]t _ui‘—l
h i+ 13

. ; ) +r9F, (14)

u; = g (15)
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=¥l )
iy = (g +YV)h, s=0,12,.... (17)

The system of equations (14)-(17) can be solved by the Gauss elimination method and
u’i(s) is determined. If the difference of values between two iterations reaches the pre-
scribed tolerance, the iteration is stopped and we accept the corresponding values 7/,
AL (i=1,2,...,Ny) as 7, o/, (i =1,2,...,Ny), on the (j)th time step, respectively. In virtue

l l y
of this iteration, we can move from level j to level j + 1.

Example 1 Consider the following problem for o =1/2:

Di/zu(x, t) = (exux)x + r(t)[(%\/z + %Ztex) sin %x — %te" cos %x],
u(x,0) =0,
u(0,¢) =0,
u(1,¢) =0,

and the measured output data is /() = £3.
The exact solution of this problem is {r(¢), u(x, )} = {¢*,£* sin Zx}.

Let us apply the scheme above for the step sizes # = 0.05, T = 0.05. Figures 1, 2 show the
exact and the numerical solutions of {r(¢), u(x, )} when T =1/2.

From these figures it can be seen that the agreement between the numerical and exact
solutions for r(¢) and u(x, T') is excellent.

Next, we will illustrate the stability of the numerical solution with respect to the noisy
overdetermination data, defined by the function

hy (8) = h()(1 + y ), (18)

where y is the percentage of noise and 6 are random variables generated from a uniform
distribution in the interval [-1,1].

In the case when T = 1/2, the illustrations of the sensitivity of the scheme with respect
to noisy overdetermination data are shown in Figures 3, 4 and 5.

0.25

Figure 1 The exact and numerical solutions
of r(t). The exact solution is shown with a dashed
line. 02f

0.151

r(t)

0.1F

0.051

— L L L
0 0.1 0.2 0.3 0.4 0.5
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Figure 2 The exact and numerical solutions of

u(x, T). The exact solution is shown with a dashed 012l e

line.

u(x,1/2)

0.35 T T T T

Figure 3 The exact and numerical solutions of r(t)
for 1% noisy data. The exact solution is shown with sl
a dashed line.
0.25F
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e
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0 — "'—/w L L L
0 0.1 0.2 0.3 0.4 0.5
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. . . 0.35
Figure 4 The exact and numerical solutions of r(t)
for 3% noisy data. The exact solution is shown with sl
a dashed line.
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Example 2 In the previous Example 1, a smooth function given by r(t) = £? is considered.

In Example 2, a more severe discontinuous test function is given:

_tzr t € [01 l )
0=1 1
te, te E’E]'

Let us apply the scheme above for the step sizes # = 0.05, T = 0.05. Figure 6 shows the

exact and the numerical solutions of r(¢) when T =1/2.
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. . . 0.35
Figure 5 The exact and numerical solutions of r(t)
for 5% noisy data. The exact solution is shown with 0al
a dashed line.
0.25} y.
N//
02f / 1
7
0.15[ ]’
/
/
01t e
e
///7
0.05F o~
o ‘
0 0.1 0.2 0.3 0.4 0.5
t
. . . 0.3
Figure 6 The exact and numerical solutions
of r(t). The exact solution is shown with a dashed 025} p
line.
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5 Some discussions

In the previous section, in Example 1, the man-made noise in the measured output data
is added to show the stability of the numerical method. From Figures 3, 4 and 5 it can be
seen that the results are quite stable for small noise in the input data. Also in Example 2, a
discontinuous source function is given to show the efficiency of the present method. From
Figure 6 it can be seen that the agreement between the numerical and exact solutions for

r(t) is excellent.

6 Conclusion

The aim of this study was to investigate the distinguishability properties of the input-
output mappings ®[-] : K — C[0,T] and ¥[.] : K — C[0, T], which are determined by
the measured output data at x = 0 and x = 1, respectively. In this study, we conclude that
the distinguishability of the input-output mappings holds, which implies the injectivity of
the inverse mappings ®~! and W™!. The measured output data f(¢) and k(¢) are obtained
analytically by a series representation, which leads to the explicit form of the input-output
mappings ®[-] and W[-]. This work advances our understanding of the use of the Fourier
method of separation of variables and the input-output mapping in the investigation of
inverse problems for fractional parabolic equations. The author plans to consider various
fractional inverse problems in future studies since the method discussed has a wide range

of applications.
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