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Abstract
In this article, we study the existence and uniqueness of monotone positive solutions
for an elastic beam equation with nonlinear boundary conditions, and some sufficient
conditions which guarantee the existence of unique monotone positive solution are
established. The methods employed are two fixed point theorems for mixed
monotone operators with perturbation. Our results can not only guarantee the
existence of unique monotone positive solution, but also be applied to construct an
iterative scheme for approximating it. Two examples are given to illustrate our main
results.
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1 Introduction
In this article, we are concerned with the existence and uniqueness of monotone positive
solutions for the following nonlinear fourth-order two-point boundary value problem for
elastic beam equation:

⎧
⎪⎨

⎪⎩

u()(t) = f (t, u(t), u′(t)),  < t < ,
u() = u′() = ,
u′′() = , u()() = g(u()),

(.)

where f ∈ C([, ] × R × R) and g ∈ C(R) are real functions. Here, monotone positive
solutions mean increasing positive solutions. As we know, problem (.) models an elas-
tic beam of length  subject to a nonlinear foundation given by the function f . The first
boundary condition u() = u′() =  means that the left end of the beam is fixed. The sec-
ond boundary condition u′′() = , u′′′() = g(u()) means that the right end of the beam is
attached to a bearing device, given by the function g . Owing to the importance in engineer-
ing, physics and material mechanics, boundary value problems for elastic beam equations
have attracted much attention. For a small sample of such work, we refer the reader to
the works [–] and the references therein. In these papers, most of the authors have in-
vestigated the existence of solutions or positive solutions. On the other hand, the unique-
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ness of positive solutions for nonlinear fourth-order boundary value problems has been
studied by some authors, see [, , ] for example. In [], the authors utilized a fixed
point theorem of generalized concave operators to study problem (.) and established the
existence and uniqueness of monotone positive solutions. In [], by using a fixed point
theorem of cone expansion and a fixed point theorem of generalized concave operators,
the authors considered the existence, nonexistence, and uniqueness of convex monotone
positive solutions of an elastic beam equation with a parameter.

Motivated by the work [, ], we will discuss the existence and uniqueness of mono-
tone positive solutions for problem (.) by using two fixed point theorems for mixed
monotone operators with perturbation. As we know, there are still very few works to uti-
lize fixed point theorems of mixed monotone operators to study fourth-order boundary
value problems. So it is worthwhile to investigate problem (.) and the methods used here
are relatively new to the literature. The main features of this article are as follows. First,
we consider the monotone positive solutions for fourth-order boundary value problems.
Second, comparing with [, , ], we establish the existence and uniqueness of mono-
tone positive solutions via different methods. Third, our results can not only guarantee
the existence of a unique monotone positive solution, but also be applied to construct an
iterative scheme for approximating it. In addition, few papers can be found in the liter-
ature on the existence and uniqueness of monotone positive solutions for fourth-order
boundary value problems. Hence we improve the results of [] to some degree, and so
it is important to study the existence and uniqueness of monotone positive solutions for
problem (.).

2 Preliminaries
In the following, for completeness we list some basic concepts in ordered Banach spaces
and two fixed point theorems for mixed monotone operators which will be used later. For
the convenience of readers, we refer them to [–] for details.

Let (E,‖ · ‖) be a real Banach space which is partially ordered by a cone P ⊂ E, i.e., x ≤ y
if and only if y – x ∈ P. If x ≤ y and x �= y, then we denote x < y or y > x. By θ we denote the
zero element of E. A non-empty closed convex set P ⊂ E is a cone if it satisfies (i) x ∈ P,
λ ≥  ⇒ λx ∈ P; (ii) x ∈ P, –x ∈ P ⇒ x = θ .

P is called normal if there is a constant N >  such that, for all x, y ∈ E, θ ≤ x ≤ y implies
‖x‖ ≤ N‖y‖; in this case N is the infimum of such constants, it is called the normality
constant of P. If x, x ∈ E, the set [x, x] = {x ∈ E | x ≤ x ≤ x} is called the order interval
between x and x. We say that an operator A : E → E is increasing (decreasing) if x ≤ y
implies Ax ≤ Ay (Ax ≥ Ay).

For all x, y ∈ E, the notation x ∼ y means that there exist λ >  and μ >  such that
λx ≤ y ≤ μx. Clearly, ∼ is an equivalence relation. Given h > θ (i.e., h ≥ θ and h �= θ ), we
denote by Ph the set Ph = {x ∈ E | x ∼ h}. It is easy to see that Ph ⊂ P.

Definition . (See [, ]) A : P × P → P is said to be a mixed monotone operator if
A(x, y) is increasing in x and decreasing in y, i.e., ui, vi ∈ P, i = , , u ≤ u, v ≥ v imply
A(u, v) ≤ A(u, v). Element x ∈ P is called a fixed point of A if A(x, x) = x.

Definition . An operator A : P → P is said to be sub-homogeneous if it satisfies

A(tx) ≥ tA(x), ∀t ∈ (, ), x ∈ P.



Li and Zhai Boundary Value Problems  (2015) 2015:104 Page 3 of 12

Definition . Let α be a real number with  ≤ α < . An operator A : P → P is said to be
α-concave if it satisfies

A(tx) ≥ tαA(x), ∀t ∈ (, ), x ∈ P.

To prove our results, we need the following fixed point theorems for mixed monotone
operators, which were established in [].

Lemma . (See Theorem . in []) Let h > θ and α ∈ (, ). A : P × P → P is a mixed
monotone operator and satisfies

A
(
tx, t–y

) ≥ tαA(x, y), ∀t ∈ (, ), x, y ∈ P. (.)

B : P → P is an increasing sub-homogeneous operator. Suppose that
(i) there is h ∈ Ph such that A(h, h) ∈ Ph and Bh ∈ Ph;

(ii) there exists a constant δ >  such that A(x, y) ≥ δBx, ∀x, y ∈ P.
Then:

() A : Ph × Ph → Ph and B : Ph → Ph;
() there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ A(u, v) + Bu ≤ A(v, u) + Bv ≤ v;

() the operator equation A(x, x) + Bx = x has a unique solution x∗ in Ph;
() for any initial values x, y ∈ Ph, constructing successively the sequences

xn = A(xn–, yn–) + Bxn–, yn = A(yn–, xn–) + Byn–, n = , , . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

Lemma . (See Theorem . in []) Let h > θ and α ∈ (, ). A : P × P → P is a mixed
monotone operator and satisfies

A
(
tx, t–y

) ≥ tA(x, y), ∀t ∈ (, ), x, y ∈ P. (.)

B : P → P is an increasing α-concave operator. Suppose that
(i) there is h ∈ Ph such that A(h, h) ∈ Ph and Bh ∈ Ph;

(ii) there exists a constant δ >  such that A(x, y) ≤ δBx, ∀x, y ∈ P.
Then:

() A : Ph × Ph → Ph and B : Ph → Ph;
() there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ A(u, v) + Bu ≤ A(v, u) + Bv ≤ v;

() the operator equation A(x, x) + Bx = x has a unique solution x∗ in Ph;
() for any initial values x, y ∈ Ph, constructing successively the sequences

xn = A(xn–, yn–) + Bxn–, yn = A(yn–, xn–) + Byn–, n = , , . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.
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3 Main results
In this section, we use Lemmas ., . to study problem (.) and present two new re-
sults on the existence and uniqueness of monotone positive solutions. The main results
obtained here are relatively new in the literature.

In our considerations we shall consider the Banach space E = C[, ] equipped with
the norm ‖u‖ = max{max≤t≤ |u(t)|, max≤t≤ |u′(t)|}. In order to find monotone positive
solutions, we consider the closed convex cone of nonnegative increasing functions P =
{u ∈ E|u(t) ≥ , u′(t) ≥ ,∀t ∈ [, ]}. Note that this induces an order relation ≤̇ in E by
defining u≤̇v if and only if v – u ∈ P. Clearly, this cone is normal. That is, if u≤̇v, then
u(t) ≤ v(t), u′(t) ≤ v′(t), t ∈ [, ]. Therefore, ‖u‖ ≤ ‖v‖ and the normality constant is .

Let G(t, s) be the Green function of the linear problem u()(t) =  with the boundary
conditions in (.); from [] we know that

G(t, s) =



{
s(t – s),  ≤ s ≤ t ≤ ,
t(s – t),  ≤ t ≤ s ≤ .

(.)

Then problem (.) is equivalent to the integral equation

u(t) =
∫ 


G(t, s)f

(
s, u(s), u′(s)

)
ds – g

(
u()

)
φ(t), where φ(t) =




t –



t, t ∈ [, ].

From [], we give the following properties of the Green function G(t, s) and φ(t).

Lemma . For any t, s ∈ [, ], we have




st ≤ G(t, s) ≤ 


st,



t ≤ φ(t) ≤ 


t,




st ≤ ∂G(t, s)
∂t

≤ st,



t ≤ φ′(t) ≤ t.

Theorem . Assume that

(H) f (t, x, y) : [, ] × [, +∞) × [, +∞) → [, +∞) and g : [, +∞) → (–∞, ];
(H) f (t, x, y) is increasing in x ∈ [, +∞) for fixed t ∈ [, ] and y ∈ [, +∞), decreasing in

y ∈ [, +∞) for fixed t ∈ [, ] and x ∈ [, +∞), and g(x) is decreasing in x ∈ [, +∞);
(H) g(λx) ≤ λg(x) for λ ∈ (, ), x ∈ [, +∞), and there exists a constant α ∈ (, ) such that

f (t,λx,λ–y) ≥ λαf (t, x, y), ∀t ∈ [, ], λ ∈ (, ), x, y ∈ [, +∞);
(H) there exists a constant σ >  such that f (t, x, y) ≥ σ ≥ –g(x) > , t ∈ [, ], x, y ≥ .

Then:
() there exist u, v ∈ Ph and r ∈ (, ) such that rv≤̇u<̇v and

u(t) ≤
∫ 


G(t, s)f

(
s, u(s), v′

(s)
)

ds – g
(
u()

)
φ(t), t ∈ [, ],

u′
(t) ≤

∫ 


Gt(t, s)f

(
s, u(s), v′

(s)
)

ds – g
(
u()

)
φ′(t), t ∈ [, ],

v(t) ≥
∫ 


G(t, s)f

(
s, v(s), u′

(s)
)

ds – g
(
v()

)
φ(t), t ∈ [, ],
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v′
(t) ≥

∫ 


Gt(t, s)f

(
s, v(s), u′

(s)
)

ds – g
(
v()

)
φ′(t), t ∈ [, ],

where h(t) = t, t ∈ [, ] and G(t, s) is given as in (.);
() problem (.) has a unique monotone positive solution u∗ in Ph;
() for any x, y ∈ Ph, constructing successively the sequences

xn(t) =
∫ 


G(t, s)f

(
s, xn–(s), y′

n–(s)
)

ds – g
(
xn–()

)
φ(t), n = , , . . . ,

yn(t) =
∫ 


G(t, s)f

(
s, yn–(s), x′

n–(s)
)

ds – g
(
yn–()

)
φ′(t), n = , , . . . ,

we have ‖xn – u∗‖ →  and ‖yn – u∗‖ →  as n → ∞.

Proof Define two operators A : P × P → E and B : P → E by

A(u, v)(t) =
∫ 


G(t, s)f

(
s, u(s), v′(s)

)
ds, Bu(t) = –g

(
u()

)
φ(t), t ∈ [, ].

Then

(
A(u, v)

)′(t) =
∫ 


Gt(t, s)f

(
s, u(s), v′(s)

)
ds, (Bu)′(t) = –g

(
u()

)
φ′(t), t ∈ [, ].

Evidently, u is the solution of problem (.) if and only if u = A(u, u) + Bu. For u, v ∈ P,
we know that u(t), v(t) ≥ , u′(t), v′(t) ≥ , t ∈ [, ]. From (H) and Lemma ., we have
A(u, v)(t) ≥ , Bu(t) ≥ , (A(u, v))′(t) ≥ , (Bu)′(t) ≥ , t ∈ [, ]. Therefore, A(u, v) ∈ P,
Bu ∈ P. That is, A : P × P → P and B : P → P. In the sequel we check that A, B satisfy all
assumptions of Lemma ..

Firstly, we prove that A is a mixed monotone operator. In fact, for ui, vi ∈ P, i = ,  with
u≥̇u, v≤̇v, we know that u(t) ≥ u(t), v(t) ≤ v(t), u′

(t) ≥ u′
(t), v′

(t) ≤ v′
(t), t ∈ [, ]

and by (H) and Lemma ., we have

A(u, v)(t) =
∫ 


G(t, s)f

(
s, u(s), v′

(s)
)

ds

≥
∫ 


G(t, s)f

(
s, u(s), v′

(s)
)

ds

= A(u, v)(t),

(
A(u, v)

)′(t) =
∫ 


Gt(t, s)f

(
s, u(s), v′

(s)
)

ds

≥
∫ 


Gt(t, s)f

(
s, u(s), v′

(s)
)

ds

=
(
A(u, v)

)′(t).

That is, A(u, v)≥̇A(u, v).
Further, we show B is increasing. For any u, v ∈ P with u≤̇v, we know that u(t) ≤ v(t),

u′(t) ≤ v′(t), t ∈ [, ]. It follows from (H), (H) and Lemma . that Bu(t) ≤ Bv(t),
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(Bu)′(t) ≤ (Bv)′(t), t ∈ [, ]. That is, Bu≤̇Bv. Next we show that operator A satisfies the
condition (.). For any λ ∈ (, ) and u, v ∈ P, by (H) we have

A
(
λu,λ–v

)
(t) =

∫ 


G(t, s)f

(
s,λu(s),λ–v′(s)

)
ds

≥ λα

∫ 


G(t, s)f

(
s, u(s), v′(s)

)
ds

= λαA(u, v)(t),

(
A

(
λu,λ–v

))′(t) =
∫ 


Gt(t, s)f

(
s,λu(s),λ–v′(s)

)
ds

≥ λα

∫ 


Gt(t, s)f

(
s, u(s), v′(s)

)
ds

=
(
λαA(u, v)

)′(t).

That is, A(λu,λ–v)≥̇λαA(u, v) for λ ∈ (, ), u, v ∈ P. So operator A satisfies (.). Also, for
any λ ∈ (, ), u ∈ P, from (H) we know that

B(λu)(t) = –g
(
λu()

)
φ(t) ≥ λ

(
–g

(
u()

)
φ(t)

)
= λBu(t),

(
B(λu)

)′(t) = –g
(
λu()

)
φ′(t) ≥ λ

(
–g

(
u()

)
φ′(t)

)
= (λBu)′(t),

that is, B(λu)≥̇λBu for λ ∈ (, ), u ∈ P. That is, operator B is sub-homogeneous. Now we
show that A(h, h) ∈ Ph and Bh ∈ Ph. On the one hand, from (H), (H) and Lemma ., for
any t ∈ [, ], we have

A(h, h)(t) =
∫ 


G(t, s)f

(
s, h(s), h′(s)

)
ds

=
∫ 


G(t, s)f

(
s, s, s

)
ds

≤
∫ 






tsf
(
s, s, s

)
ds ≤ 



∫ 


sf (s, , ) ds · h(t),

A(h, h)(t) ≥
∫ 






tsf
(
s, s, s

)
ds ≥ 



∫ 


sf (s, , ) ds · h(t).

On the other hand, also from (H), (H) and Lemma ., for any t ∈ [, ], we obtain

(
A(h, h)

)′(t) =
∫ 


Gt(t, s)f

(
s, s, s

)
ds

≤
∫ 


stf (s, , ) ds =




∫ 


sf (s, , ) ds · h′(t),

(
A(h, h)

)′(t) ≥
∫ 






stf (s, , ) ds =



∫ 


sf (s, , ) ds · h′(t).

Let

c =



∫ 


sf (s, , ) ds, c =




∫ 


sf (s, , ) ds.
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From (H), (H), we have

c ≥ c ≥ 


∫ 


sσ ds =




σ > ,

and in consequence,

ch(t) ≤ A(h, h)(t) ≤ ch(t),

(ch)′(t) = ch′(t) ≤ (
A(h, h)

)′(t) ≤ ch′(t) = (ch)′(t), t ∈ [, ].

Thus, ch≤̇A(h, h)≤̇ch. That is, A(h, h) ∈ Ph. Similarly, from (H), (H) and Lemma .,
for any t ∈ [, ], we have

–



g()h(t) = –g()



t ≤ Bh(t) = –g
(
h()

)
φ(t) ≤ –g()




t = –



g()h(t),

–



g()h′(t) = –g()



t ≤ (Bh)′(t) = –g
(
h()

)
φ′(t) ≤ –g()t = –g()h′(t).

Let c = – 
 g(), c = –g(). Then, from (H), (H), we have c ≥ c >  and thus

ch(t) ≤ Bh(t) ≤ ch(t),

(ch)′(t) = ch′(t) ≤ (Bh)′(t) ≤ ch′(t) = (ch)′(t), t ∈ [, ].

Therefore, ch≤̇Bh≤̇ch. That is, Bh ∈ Ph. Hence the condition (i) of Lemma . is satisfied.
In the following we show the condition (ii) of Lemma . is satisfied. For u, v ∈ P and

any t ∈ [, ], from (H) and Lemma .,

A(u, v)(t) =
∫ 


G(t, s)f

(
s, u(s), v′(s)

)
ds

≥
∫ 






tsf
(
s, u(s), v′(s)

)
ds ≥ 


t

∫ 


sσ ds

=


σ t ≥ 


t[–g

(
u()

)]
=



[
–g

(
u()

)] 


t

≥ 

[
–g

(
u()

)]
φ(t) =




Bu(t),

(
A(u, v)

)′(t) =
∫ 


Gt(t, s)f

(
s, u(s), v′(s)

)
ds

≥
∫ 






tsf
(
s, u(s), v′(s)

)
ds ≥ 


t
∫ 


sσ ds

=



σ t ≥ 


t
[
–g

(
u()

)]
=




[
–g

(
u()

)]
t

≥ 


[
–g

(
u()

)]
φ′(t) =




(Bu)′(t).

Let δ = 
 . Then

A(u, v)(t) ≥ δBu(t),
(
A(u, v)

)′(t) ≥ δ(Bu)′(t), t ∈ [, ].
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Therefore, we get A(u, v)≥̇δBu for u, v ∈ P. Finally, an application of Lemma . implies:
there exist u, v ∈ Ph and r ∈ (, ) such that rv≤̇u<̇v, u≤̇A(u, v) + Bu≤̇A(v, u) +
Bv≤̇v; the operator equation A(u, u) + Bu = u has a unique solution u∗ in Ph; for any
initial values x, y ∈ Ph, constructing successively the sequences

xn = A(xn–, yn–) + Bxn–, yn = A(yn–, xn–) + Byn–, n = , , . . . ,

we have xn → u∗ and yn → u∗ as n → ∞. That is,

u(t) ≤
∫ 


G(t, s)f

(
s, u(s), v′

(s)
)

ds – g
(
u()

)
φ(t), t ∈ [, ],

u′
(t) ≤

∫ 


Gt(t, s)f

(
s, u(s), v′

(s)
)

ds – g
(
u()

)
φ′(t), t ∈ [, ],

v(t) ≥
∫ 


G(t, s)f

(
s, v(s), u′

(s)
)

ds – g
(
v()

)
φ(t), t ∈ [, ],

v′
(t) ≥

∫ 


Gt(t, s)f

(
s, v(s), u′

(s)
)

ds – g
(
v()

)
φ′(t), t ∈ [, ];

problem (.) has a unique positive solution u∗ in Ph and u∗(t) is monotone increasing; for
any x, y ∈ Ph, constructing successively the sequences

xn(t) =
∫ 


G(t, s)f

(
s, xn–(s), y′

n–(s)
)

ds – g
(
xn–()

)
φ(t), n = , , . . . ,

yn(t) =
∫ 


G(t, s)f

(
s, yn–(s), x′

n–(s)
)

ds – g
(
yn–()

)
φ′(t), n = , , . . . ,

we have ‖xn – u∗‖ →  and ‖yn – u∗‖ →  as n → ∞. �

Theorem . Assume (H), (H) and

(H) there exists a constant α ∈ (, ) such that g(λx) ≤ λαg(x), ∀λ ∈ (, ), x ∈ [, +∞), and
f (t,λx,λ–y) ≥ λf (t, x, y) for λ ∈ (, ), t ∈ [, ], x, y ∈ [, +∞);

(H) f (t, , ) �≡  for t ∈ [, ] and there exists a constant σ >  such that f (t, x, y) ≤ σ ≤
–g(x), t ∈ [, ], x, y ≥ .

Then:
() there exist u, v ∈ Ph and r ∈ (, ) such that rv≤̇u<̇v and

u(t) ≤
∫ 


G(t, s)f

(
s, u(s), v′

(s)
)

ds – g
(
u()

)
φ(t), t ∈ [, ],

u′
(t) ≤

∫ 


Gt(t, s)f

(
s, u(s), v′

(s)
)

ds – g
(
u()

)
φ′(t), t ∈ [, ],

v(t) ≥
∫ 


G(t, s)f

(
s, v(s), u′

(s)
)

ds – g
(
v()

)
φ(t), t ∈ [, ],

v′
(t) ≥

∫ 


Gt(t, s)f

(
s, v(s), u′

(s)
)

ds – g
(
v()

)
φ′(t), t ∈ [, ],

where h(t) = t, t ∈ [, ] and G(t, s) is given as in (.);
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() problem (.) has a unique monotone positive solution u∗ in Ph;
() for any x, y ∈ Ph, constructing successively the sequences

xn(t) =
∫ 


G(t, s)f

(
s, xn–(s), y′

n–(s)
)

ds – g
(
xn–()

)
φ(t), n = , , . . . ,

yn(t) =
∫ 


G(t, s)f

(
s, yn–(s), x′

n–(s)
)

ds – g
(
yn–()

)
φ′(t), n = , , . . . ,

we have ‖xn – u∗‖ →  and ‖yn – u∗‖ →  as n → ∞.

Sketch of the proof Consider two operators A, B defined in the proof of Theorem ..
Similarly, from (H), (H), we obtain that A : P ×P → P is a mixed monotone operator and
B : P → P is increasing. From (H), we have

A
(
λu,λ–v

)≥̇λA(u, v); B(λu)≥̇λαBu, for λ ∈ (, ), u, v ∈ P.

Since f (t, , ) �≡ , we get
∫ 

 sf (s, , ) ds > , and in sequence, c ≥ c > , here c, c are
defined in the proof of Theorem .. So we can easily prove that A(h, h) ∈ Ph. From (H),
we know that –g() > , and from the proof of Theorem . we get Bh ∈ Ph. For u, v ∈ P
and any t ∈ [, ], from (H),

A(u, v)(t) =
∫ 


G(t, s)f

(
s, u(s), v′(s)

)
ds

≤
∫ 






tsf
(
s, u(s), v′(s)

)
ds ≤ 


t

∫ 


sσ ds

=



σ t ≤ 


t[–g
(
u()

)]
=




[
–g

(
u()

)] 


t

≤ 


[
–g

(
u()

)]
φ(t) =




Bu(t),

(
A(u, v)

)′(t) =
∫ 


Gt(t, s)f

(
s, u(s), v′(s)

)
ds

≤
∫ 


tsf

(
s, u(s), v′(s)

)
ds ≤ t

∫ 


sσ ds

=


σ t ≤ 


t
[
–g

(
u()

)] ≤ [
–g

(
u()

)]
φ′(t) = (Bu)′(t).

Let δ = . Then

A(u, v)(t) ≤ δBu(t),
(
A(u, v)

)′(t) ≤ δ(Bu)′(t), t ∈ [, ].

Therefore, we get A(u, v)≤̇δBu for u, v ∈ P. Finally, an application of Lemma . implies:
there exist u, v ∈ Ph and r ∈ (, ) such that rv≤̇u<̇v, u≤̇A(u, v) + Bu≤̇A(v, u) +
Bv≤̇v; the operator equation A(u, u) + Bu = u has a unique solution u∗ in Ph; for any
initial values x, y ∈ Ph, constructing successively the sequences

xn = A(xn–, yn–) + Bxn–, yn = A(yn–, xn–) + Byn–, n = , , . . . ,
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we have xn → u∗ and yn → u∗ as n → ∞. That is,

u(t) ≤
∫ 


G(t, s)f

(
s, u(s), v′

(s)
)

ds – g
(
u()

)
φ(t), t ∈ [, ],

u′
(t) ≤

∫ 


Gt(t, s)f

(
s, u(s), v′

(s)
)

ds – g
(
u()

)
φ′(t), t ∈ [, ],

v(t) ≥
∫ 


G(t, s)f

(
s, v(s), u′

(s)
)

ds – g
(
v()

)
φ(t), t ∈ [, ],

v′
(t) ≥

∫ 


Gt(t, s)f

(
s, v(s), u′

(s)
)

ds – g
(
v()

)
φ′(t), t ∈ [, ];

problem (.) has a unique positive solution u∗ in Ph and u∗(t) is monotone increasing; for
any x, y ∈ Ph, constructing successively the sequences

xn(t) =
∫ 


G(t, s)f

(
s, xn–(s), y′

n–(s)
)

ds – g
(
xn–()

)
φ(t), n = , , . . . ,

yn(t) =
∫ 


G(t, s)f

(
s, yn–(s), x′

n–(s)
)

ds – g
(
yn–()

)
φ′(t), n = , , . . . ,

we have ‖xn – u∗‖ →  and ‖yn – u∗‖ →  as n → ∞.

Remark . Comparing Theorems .-. with the main results in [], we provide some
alternative approaches to study the same type of problems under different conditions. Our
results can guarantee the existence of a unique monotone positive solution and the exis-
tence of upper-lower solutions, which are seldom seen in the literature.

4 Examples
To illustrate how our main results can be used in practice we present two examples.

Example . Consider the following fourth-order boundary value problem:

⎧
⎪⎨

⎪⎩

u()(t) = u 
 (t) + [u′(t) + ]– 

 + ,  < t < ,
u() = u′() = ,
u′′() = , u()() = – u()

+u() – .
(.)

Obviously, problem (.) fits the framework of problem (.). In this example, let

f (t, x, y) = x

 + (y + )– 

 + , g(x) = –
x

 + x
– , α =




, σ = .

Obviously, f : [, ] × [, +∞) × [, +∞) → [, +∞) is continuous and g : [, +∞) →
(–∞, ] is continuous. And f (t, x, y) is increasing in x ∈ [, +∞) for fixed t ∈ [, ] and
y ∈ [, +∞), decreasing in y ∈ [, +∞) for fixed t ∈ [, ] and x ∈ [, +∞), and g(x) is de-
creasing in x ∈ [, +∞). Besides, for λ ∈ (, ), t ∈ [, ], x, y ∈ [, +∞), we have

g(λx) = –
λx

 + λx
–  ≤ –

λx
 + x

– λ = λg(x),

f
(
t,λx,λ–y

)
= λ


 x


 + λ


 (y + λ)– 

 +  ≥ λ


[
x


 + (y + )– 

 + 
]

= λαf (t, x, y).
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Moreover,

f (t, x, y) = x

 + (y + )– 

 +  ≥ σ =  ≥ x
 + x

+  = –g(x) > .

Hence all the conditions of Theorem . are satisfied. An application of Theorem . im-
plies that problem (.) has a unique monotone positive solution in Ph, where Ph is the
same set in Section  and h(t) = t, t ∈ [, ].

Example . Consider the following fourth-order boundary value problem:

⎧
⎪⎨

⎪⎩

u()(t) = cos t + u(t)
+u(t) + 

+u′(t) ,  < t < ,
u() = u′() = ,
u′′() = , u()() = –[u()] 

 – .
(.)

Obviously, problem (.) fits the framework of problem (.). In this example, let

f (t, x, y) = cos t +
x

 + x
+


 + y

, g(x) = –x

 – , α =




, σ = .

Obviously, f : [, ] × [, +∞) × [, +∞) → [, +∞) is continuous and g : [, +∞) →
(–∞, ] is continuous. And f (t, x, y) is increasing in x ∈ [, +∞) for fixed t ∈ [, ] and
y ∈ [, +∞), decreasing in y ∈ [, +∞) for fixed t ∈ [, ] and x ∈ [, +∞), and g(x) is de-
creasing in x ∈ [, +∞). Besides, for λ ∈ (, ), t ∈ [, ], x, y ∈ [, +∞), we have

g(λx) = –λ

 x


 –  ≤ λ



(
–x


 – 

)
= λαg(x),

f
(
t,λx,λ–y

)
= cos t +

λx
 + λx

+


 + λ–y
≥ cos t +

λx
 + x

+
λ

 + y
≥ λf (t, x, y).

Moreover,

f (t, x, y) = cos t +
x

 + x
+


 + y

≤ σ =  ≤ x

 +  = –g(x).

Hence all the conditions of Theorem . are satisfied. An application of Theorem . im-
plies that problem (.) has a unique monotone positive solution in Ph, where Ph is the
same set in Section  and h(t) = t, t ∈ [, ].

Remark . Examples ., . imply that there are many functions that satisfy the condi-
tions of Theorems ., .. So the conditions of our results are easy to check.
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