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Abstract
In this paper, the existence of the solutions of the fractional differential equation with
p-Laplacian operator and integral conditions is discussed. By Green’s functions and
the fixed point theorems, we state and prove the existence and uniqueness results of
the problem. Two examples are given to illustrate the results.
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1 Introduction
Differential equations are useful in modern physics, engineering, and in various fields of
science. In these days, the theory on existence and uniqueness of boundary value problems
of linear and/or nonlinear fractional equations has attracted the attention of many authors.
There are comprehensive studies in this area. At the same time, it is known that the p-
Laplacian operator is also used in analyzing mechanics, physics and dynamic systems,
and the related fields of mathematical modeling. However, there are few studies of the
existence and uniqueness of boundary conditions of fractional differential equations with
the p-Laplacian operator, see [–] and the references therein.

Zhang et al. [] studied the eigenvalue problem for a class of singular p-Laplacian frac-
tional differential equations involving a Riemann-Stieltjes integral boundary condition:

–Dβ
t
(
φp

(
Dα

t x
))

(t) = λf
(
t, x(t)

)
, t ∈ (, ),

x() = , Dα
t x() = ,

x() =
∫ 


x(s) dA(s),

where Dβ
t and Dα

t are standard Riemann-Liouville derivatives with  < α ≤ ,  < β ≤ ,
A is a function of the bounded variation, and

∫ 
 x(s) dA(s) is the standard Riemann-Stieltjes

integral. In their study, the results are based on upper and lower solution methods and the
Schauder fixed point theorem.

In [], Su et al. studied the existence criteria of non-negative solutions of nonlinear
p-Laplacian fractional differential equations with first order derivative,
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕp(cDαu(t)) = ϕp(λ)f (t, u(t), u′(t)), for t ∈ (, ),
ku() – ku() = ,
mu() – mu() = ,
x(r)() = , r = , , . . . , [α],

where ϕp is p-Laplacian operator, i.e. ϕp(s) = |s|p–s, p > , and ϕ–
p = ϕq, 

p + 
q = , cDα is

the Caputo derivative and we have the function f (t, u, u′) : [, ] × [,∞) × (–∞, +∞) →
[,∞) which satisfies the Carathéodory type conditions. Moreover, the nonlinear alterna-
tive of Leray-Schauder type and Banach fixed point theorems are used.

Han et al. [] studied nonlinear fractional differential equations with p-Laplacian oper-
ator and boundary value conditions,

Dα
+

(
ϕp

(
Dα

+u(t)
))

+ a(t)f (u) = , for  < t < ,

u() = γ u(ξ ) + λ,

ϕp
(
Dα

+u()
)

=
(
ϕp

(
Dα

+u()
))′ =

(
ϕp

(
Dα

+u()
))

,

where  < α ≤ ,  < β ≤ , and Dα
+, Dβ

+ are Caputo fractional derivatives, ϕp(s) = |s|p–s,
p > , and ϕ–

p = ϕq, 
p + 

q = , and the parameters are  ≤ γ < ,  ≤ ξ ≤ , λ > . The
continuous functions a : (, ) → [,∞) and f : [,∞) → [,∞) are given. The Green’s
function properties and the Schauder fixed point theorem are used.

In [], Liu et al. studied the solvability of the Caputo fractional differential equation
with boundary value conditions involving the p-Laplacian operator. The existence and
uniqueness of the problem is found by the Banach fixed point theorem. The problem is
given in the following:

(
ϕp

(
Dα

+x(t)
))′ = f

(
t, x(t)

)
, for t ∈ (, ),

with boundary value conditions

x() = rx(),

x′() = rx′(),

x(j)() = ,

where i = , , . . . , [α] – . Here, ϕp is the p-Laplacian operator and Dα
+ is the Caputo frac-

tional derivative,  < α ∈ R, and the nonlinear function f ∈ C([, ] × R, R) is given.
In [], Lu et al. studied the existence of nonnegative solutions of a nonlinear fractional

boundary value problem with the p-Laplacian operator:

Dβ
+

(
ϕp

(
Dα

+u(t)
))

= f
(
t, u(t)

)
, for  < t < ,

u() = u′() = u′() = ,

Dα
+u() = Dα

+u() = ,

where  < α ≤ ,  < β ≤ , and Dα
+, Dβ

+ are the standard Riemann-Liouville fractional
derivatives. Green’s functions, the Guo-Krasnoselskii theorem, and the Leggett-Williams
fixed point theorems are used.
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In [], Wang and Xiang used upper and lower solutions method to find the existence
results of at least one non-negative solution of the p-Laplacian fractional boundary value
problem, which is given in the following:

Dγ
+

(
φp

(
Dα

+u(t)
))

= f
(
t, u(t)

)
, for  < t < ,

u() = , u′() = au(ξ ),

Dα
+u() = , Dα

+u() = bDα
+u(η),

where  < α,γ ≤ ,  ≤ a, b ≤ ,  < ξ ,η < , and also Dα
+, Dγ

+ are Riemann-Liouville
fractional operators.

In this paper, we focus on the existence of solutions of the fractional differential equation

Dβ
+φp

(
Dα

+u(t)
)

= f
(
t, u(t), Dγ

+u(t)
)
, ()

with the p-Laplacian operator and integral boundary conditions,

u() + μu() = σ

∫ 


g
(
s, u(s)

)
ds, ()

u′() + μu′() = σ

∫ 


h
(
s, u(s)

)
ds,

Dα
+u() = ,

Dα
+u() = υDα

+u(η),

where Dα
+, Dβ

+ are for the Caputo fractional differential equation with  < α ≤ ,  < β ≤ ,
ν , μi, σi (i = , ) are non-negative parameters. f , g , h are continuous functions. By the
Green’s functions and fixed point theorems, we state and prove the existence and unique-
ness results of the solutions. Two examples are given to illustrate the results.

2 Preliminaries
The basic definitions are given in the following.

Definition  The Riemann-Liouville fractional integral of order α >  for a function f :
(, +∞) → R is defined as

Iα
+f (t) =


(α)

∫ t


(t – s)α–f (s) ds,

provided that the right hand side of the integral is pointwise defined on (, +∞) and  is
the gamma function.

Definition  The Caputo derivative of order α >  for a function f : (, +∞) → R is writ-
ten as

Dα
+f (t) =


(n – α)

∫ t


(t – s)n–α–f (n)(s) ds,

where n = [α] + , [α] is the integral part of α.
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Lemma  Let u ∈ C(, )∩L(, ) with the fractional derivative of order α >  that belongs
to C(, ) ∩ L(, ). Then

Iα
+Dα

+u(t) = u(t) + ctα– + ctα– + · · · + cntα–n,

for ci ∈ R (i = , , . . . , n), where n is the smallest integer greater than or equal to α.

Lemma  Let α > . Then the differential equation Dα
+f (t) =  has solutions

f (t) = k + kt + kt + · · · + kn–tn–

and

Iα
+Dα

+f (t) = f (t) + k + kt + kt + · · · + kn–tn–,

where ki ∈ R and i = , , . . . , n = [α] + .

The Caputo fractional derivative of order n –  < α < n for tγ is given by

Dα
+tγ =

{
(γ +)

(γ –α+) tγ –α , γ ∈ N and γ ≥ n or γ /∈ N and γ > n – ,
, γ ∈ {, , . . . , n – }. ()

Also, for brevity, we set

ω =
σ

 + μ
–

σμ

( + μ)( + μ)
, ω =

σ

 + μ
,

c(η) =
υp–ηβ–

( – υp–η)(β + )
, L = ctβ–c(η).

We use the following properties of the p-Laplacian operator: φp(u) = |u|p–u, p > , and
φ–

p = φq, 
p + 

q = .
(L) If  < p < , uv > , |u|, |v| ≥ r > , then

∣
∣φp(u) – φp(v)

∣
∣ ≤ (p – )rp–|u – v|.

(L) If p > , |u|, |v| ≤ R then

∣
∣φp(u) – φp(v)

∣
∣ ≤ (p – )Rp–|u – v|.

We define two Green’s functions G(t, s) and H(t, s),

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(t–τ )α–

(α) – ( μ(+μ)+tμ(+μ)
(+μ)(+μ) ) (–τ )α–

(α)

+ μμ(–τ )α–

(+μ)(+μ)(α–) , t ≥ τ ,

–( μ(+μ)+tμ(+μ)
(+μ)(+μ) ) (–τ )α–

(α)

+ μμ(–τ )α–

(+μ)(+μ)(α–) , t ≤ τ ,
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and

H(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[(t–s)]β–

(β) – t(–s)β–

(–υp–η)(β) ,  ≤ s ≤ t ≤ ,η ≤ s,
[(t–s)]β–

(β) – t(–s)β–

(–υp–η)(β) + tυp–(η–s)β–

(–υp–η)(β) ,  ≤ s ≤ t ≤ ,η ≥ s,
–t(–s)β–

(–υp–η)(β) ,  ≤ t ≤ s ≤ ,η ≤ s,
–t(–s)β–

(–υp–η)(β) + tυp–(η–s)β–

(–υp–η)(β) ,  ≤ t ≤ s ≤ ,η ≥ s.

Lemma  Let f , g, h ∈ C(, ), and with  < α ≤  we have the following fractional boundary
value problem:

Dβ
+φp

(
Dα

+u(t)
)

= f (t), ()
{

u() + μu() = σ
∫ 

 g(s) ds,
u′() + μu′() = σ

∫ 
 h(s) ds,

()

Dα
+u() = ,

Dα
+u() = νDα

+u(η),
()

it has a unique solution which is given by

(T u)(t) =
∫ t


G(t, s)φq

(∫ 


H(t, τ )f (τ ) dτ

)
ds + ω + ωt,

with

ω =
σ

 + μ
–

σμ

( + μ)( + μ)
and ω =

σ

 + μ
.

Proof By applying Iβ
+ to both sides of (), we get

φp
(
Dα

+u(t)
)

=
∫ t



(t – s)β–

(β)
f (s) ds – b – bt, b, b ∈ R,

Dα
+u(t) = φq

(∫ t



(t – s)β–

(β)
f (s) ds – b – bt

)
.

Using the boundary conditions Dα
+u() =  and Dα

+u() = νDα
+u(η), we have

φq(–b) =  	⇒ b = ,

and secondly,

φq

(∫ 



( – s)β–

(β)
f (s) ds – b

)
= νφq

(∫ η



(η – s)β–

(β)
f (s) ds – bη

)

= φq

(
ν


q–

(∫ η



(η – s)β–

(β)
f (s) ds – bη

))
.

Moreover, since φp is one-to-one,

Iβ
+f () – b = νp–(Iβ

+f (η) – bη
)

= νp–Iβ
+f (η) – νp–bη,
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Iβ
+f () – νp–Iβ

+f (η) =
(
 – νp–η

)
b.

Then

b =


( – νp–η)
Iβ

+f () –
νp–

( – νp–η)
Iβ

+f (η)

=


( – νp–η)

∫ 



( – s)β–

(β)
f (s) ds –

νp–

( – νp–η)

∫ η



(η – s)β–

(β)
f (s) ds.

Since φp(Dα
+u(t)) = Iβ

+f (t) – b – bt,

φp
(
Dα

+u(t)
)

=
∫ t



(t – s)β–

(β)
f
(
s, u(s)

)
ds –

t
( – νp–η)

∫ 



( – s)β–

(β)
f
(
s, u(s)

)
ds

+
tνp–

( – νp–η)

∫ η



(η – s)β–

(β)
f
(
s, u(s)

)
ds

=
∫ 


H(t, s)f (s) ds,

Dα
+u(t) = φq

(∫ 


H(t, s)f (s) ds

)
,

u(t) =
∫ t



(t – τ )α–

(α)
φq

(∫ 


H(t, s)f (s) ds

)
dτ – c – ct. ()

By the boundary conditions (), we get

–c + μ

(∫ 



( – τ )α–

(α)
φp

(∫ 


H(τ , s)f (s) ds

)
dτ – c – c

)
= σ

∫ 


g(s) ds,

μ

∫ 



( – τ )α–

(α)
φp

(∫ 


H(τ , s)f (s) ds

)
dτ – cμ – σ

∫ 


g(s) ds = c( + μ),

c =
μ

( + μ)

∫ 



( – τ )α–

(α)
φp

(∫ 


H(τ , s)f (s) ds

)
dτ – c

μ

( + μ)

–
σ

( + μ)

∫ 


g(s) ds, ()

c =
μ

( + μ)

∫ 



( – τ )α–

(α – )
φp

(∫ 


H(τ , s)f (s) ds

)
dτ –

σ

( + μ)

∫ 


h(s) ds.

Inserting c into (), we get the values of c, and inserting c and c into (), we have

u(t) =
∫ t



(t – τ )α–

(α)
φp

(∫ 


H(t, s)f

(
s, u(s)

)
ds

)
dτ

–
(

μ( + μ) + tμ( + μ)
( + μ)( + μ)

)∫ 



( – τ )α–

(α)
φp

(∫ 


H(τ , s)f

(
s, u(s)

)
ds

)
dτ

+
μμ

( + μ)( + μ)

∫ 



( – τ )α–

(α – )
φp

(∫ 


H(τ , s)f

(
s, u(s)

)
ds

)
dτ

+
σ

 + μ

∫ 


g
(
s, u(s)

)
ds –

(
σμ – tσ( + μ)

( + μ)( + μ)

)∫ 


h
(
s, u(s)

)
ds. �
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Lemma  The functions G(t, s) and H(t, s) are continuous on [, ] × [, ] and H(t, s) sat-
isfies the following properties:

() H(t, s) ≤ , for t, s ∈ [, ],
() H(t, s) ≥ H(s, s), for t, s ∈ [, ],
() the Green’s function H(t, s) satisfies the following condition:

 ≤
∫ 



∣
∣H(t, s)

∣
∣ds ≤ B(β ,β)

( – υp–η)(β)
,

where B is the Beta function.

Proof The proofs of properties ()-() are given in []. Thus we will prove property () for
any t, s ∈ [, ]. The Green’s function H(t, s) is negative. Therefore,

 ≤
∫ 



∣∣H(t, s)
∣∣ds ≤

∫ 



∣∣H(s, s)
∣∣ds ≤ B(β ,β)

( – υp–η)(β)
. �

3 Existence and uniqueness results
In this section, we state and prove existence and uniqueness results of the fractional BVP
()-() by using the Banach fixed point theorem. Our study concerns the space

Cγ

(
[, ], R

)
=

{
u ∈ C

(
[, ], R

)
, Dγ

+u ∈ C
(
[, ], R

)}
,

which is shown in the form

‖u‖γ = ‖u‖c +
∥
∥Dγ

+u
∥
∥

c,

where ‖ · ‖c is the sup norm in C([, ], R).
The following notations will be used throughout this paper:

� =


(α + )

[
 +

|μ|| + μ| + |μ|| + μ|
| + μ|| + μ|

]
+


(α)

[ |μ||μ|
| + μ|| + μ|

]
,

� =


(α – γ + )

[
 +

|μ|
( – γ )| + μ|

]
,

�g =
|σ|

| + μ| ,

�h =
|σ||μ + | + μ||
| + μ|| + μ| , �h =

|σ|
( – γ )| + μ| .

To state and prove our first result, we pose the following conditions:
(A) The function f : [, ] × R × R → R is jointly continuous.
(A) There exists a function lf ∈ L 

τ ([, ], R+) such that

∣∣f (t, u, u) – f (t, v, v)
∣∣ ≤ lf (t)

(|u – v| + |u – v|
)
,

for all (t, u, u), (t, v, v) ∈ [, ] × R × R.
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(A) The functions g and h are jointly continuous and there exists lg , lh ∈ L([, ], R+)
such that

∣∣g(t, u) – g(t, v)
∣∣ ≤ lg(t)|u – v|

and

∣∣h(t, u) – h(t, v)
∣∣ ≤ lh(t)|u – v|,

for each (t, u), (t, v) ∈ [, ] × R.
Next, we define an operator, T which is T : C[, ] → C[, ] as follows:

Tx(t) = φq

(∫ 


H(t, s)f

(
s, x(s), Dγ

+x(s)
)

ds
)

.

Lemma  Assume (A)-(A) hold and q > . There exists a constant lT >  such that

∣
∣Tu(t) – Tv(t)

∣
∣ ≤ lT‖u – v‖γ ,

for all u, v ∈ Br . We have

lT = (q – )Lq–
H ‖lf ‖∞

∫ 



∣∣H(s, s)
∣∣ds ≤ (q – )Lq–

H ‖lf ‖∞
B(β ,β)

( – υp–η)(β)
.

Proof If p >  and t >  we have the following estimation:

∣∣
∣∣

∫ 


H(t, s)f

(
s, u(s), Dγ

+u(s)
)

ds
∣∣
∣∣ ≤

∫ 



∣
∣H(t, s)

∣
∣
∣
∣f

(
s, u(s), Dγ

+u(s)
)∣∣ds

≤
∫ 



∣∣H(t, s)
∣∣lf (s)

(∣∣u(s)
∣∣ +

∣∣Dγ
+u(s)

∣∣ +
∣∣f (s, , )

∣∣)ds

≤ (‖lf ‖∞‖u‖γ + M
) ∫ 



∣
∣H(s, s)

∣
∣ds

≤ (‖lf ‖∞r + M
) ∫ 



∣∣H(s, s)
∣∣ds

= LH ,

where M = maxs∈[,] |f (s, , )|. Now using the property (L), we get the desired inequality,

∣
∣(Tu)(t) – (Tv)(t)

∣
∣

=
∣∣
∣∣φq

(∫ 


H(t, s)f

(
s, u(s), Dγ

+u(s)
)

ds
)

– φq

(∫ 


H(t, s)f

(
s, v(s), Dγ

+v(s)
)

ds
)∣∣

∣∣

≤ (q – )Lq–
H

∣
∣∣
∣

∫ 


H(t, s)

(
f
(
s, u(s), Dγ

+u(s)
)

– f
(
s, v(s), Dγ

+v(s)
))

ds
∣
∣∣
∣

≤ (q – )Lq–
H ‖lf ‖∞‖u – v‖γ

∫ 



∣
∣H(s, s)

∣
∣ds
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≤ (q – )Lq–
H ‖lf ‖∞

B(β ,β)
( – υp–η)(β)

‖u – v‖γ

= lT‖u – v‖γ . �

Theorem  Assume (A)-(A) hold. If

{

lT

( ∑

i=

�i

)

+ �g‖lg‖ +
( ∑

i=

�hi

)
‖lh‖

}

< , ()

then our BVP ()-() has a unique solution on [, ].

Proof Let us define the operator T : Cγ ([, ], R) → Cγ ([, ], R) to transform our BVP ()-
() into a fixed point problem,

(T u)(t)

=
∫ t



(t – s)α–

(α)
T

(
f
(
s, u(s), Dγ

+u(s)
))

ds

–
μ

( + μ)

∫ 



( – s)α–

(α)
T

(
f
(
s, u(s), Dγ

+u(s)
))

ds

+
μμ

( + μ)( + μ)

∫ 



( – s)α–

(α – )
T

(
f
(
s, u(s), Dγ

+u(s)
))

ds

–
μt

( + μ)

∫ 



( – s)α–

(α)
T

(
f
(
s, u(s), Dγ

+u(s)
))

ds

+
σ

( + μ)

∫ 


g
(
s, u(s)

)
ds –

σ(μ – ( + μ)t)
( + μ)( + μ)

∫ 


h
(
s, u(s)

)
ds. ()

Taking the γ th fractional derivative, we get

Dγ
+(T u)(t)

=
∫ t



(t – s)α–γ –

(α – γ )
T

(
f
(
s, u(s), Dγ

+u(s)
))

ds

–
μ

( + μ)
t–γ

( – γ )

∫ 



( – s)α–γ –

(α – γ )
T

(
f
(
s, u(s), Dγ

+u(s)
))

ds

+
σ

( + μ)
t–γ

( – γ )

∫ 


h
(
s, u(s)

)
ds ()

for t ∈ [, ]. Since f , g , h are continuous, the expression () and () are well defined.
Clearly, the fixed point of the operator T is the solution of the problem ()-(). To show
the existence and uniqueness of the solution, the Banach fixed point theorem is used and
then we show T is contraction. We have

∣
∣(T u)(t) – (T v)(t)

∣
∣

≤
∫ t



(t – s)α–

(α)
lT‖u – v‖γ ds

+
|μ|

| + μ|
∫ 



( – s)α–

(α)
lT‖u – v‖γ ds
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+
|μ||μ|

| + μ|| + μ|
∫ 



( – s)α–

(α – )
lT‖u – v‖γ ds

+
|μ|

| + μ|
∫ 



( – s)α–

(α)
lT‖u – v‖γ ds

+
|σ|

| + μ|
∫ 


lg(s)

(∣∣u(s) – v(s)
∣
∣ +

∣
∣Dγ

+u(s) – Dγ
+v(s)

∣
∣)ds

+
|σ||μ + | + μ||
| + μ|| + μ|

∫ 


lh(s)

(∣∣u(s) – v(s)
∣∣ +

∣∣Dγ
+u(s) – Dγ

+v(s)
∣∣)ds

≤
{

lT

(∫ t



(t – s)α–

(α)
ds +

|μ|| + μ| + |μ|| + μ|
| + μ|| + μ|

∫ 



( – s)α–

(α)
ds

+
|μ||μ|

| + μ|| + μ|
∫ 



( – s)α–

(α – )
ds

)

+
|σ|

| + μ|
∫ 


lg(s) ds +

|σ||μ + | + μ||
| + μ|| + μ|

∫ 


lh(s) ds

}
‖u – v‖γ

≤
{

lT

(


(α + )
+

|μ|| + μ| + |μ|| + μ|
(α + )| + μ|| + μ| +

|μ||μ|
(α)| + μ|| + μ|

)

+
|σ|

| + μ| ‖lg‖ +
|σ||μ + | + μ||
| + μ|| + μ| ‖lh‖

}
‖u – v‖γ . ()

By using the Hölder inequality, we get

∣∣T u(t) – T v(t)
∣∣ ≤ {

lT� + �g‖lg‖ + �h‖lh‖
}‖u – v‖γ , ()

∣∣Dγ
+(T u)(t) – Dγ

+(T v)(t)
∣∣

≤
∫ t



(t – s)α–γ –

(α – γ )
lT‖u – v‖γ ds

+
|μ|

| + μ|
t–γ

( – γ )

∫ 



( – s)α–γ –

(α – γ )
lT‖u – v‖γ ds

+
|σ|

| + μ|
t–γ

( – γ )

∫ 


lh(s)

(∣∣u(s) – v(s)
∣∣ +

∣∣Dγ
+u(s) – Dγ

+v(s)
∣∣)ds

≤
{

lT

(α – γ )

∫ t


(t – s)α–γ – ds

+
lT t–γ |μ|

(α – γ )( – γ )| + μ|
∫ 


( – s)α–γ – ds

+
|σ|t–γ

| + μ|( – γ )

∫ 


lh(s) ds

}
‖u – v‖γ

≤
{

lT

(


(α – γ + )
+

|μ|
(α – γ + )( – γ )| + μ|

)

+
|σ|

| + μ|( – γ )

∫ 


lh(s) ds

}
‖u – v‖γ

≤
{

lT

(α – γ + )

(
 +

|μ|
( – γ )| + μ|

)

+
|σ|

| + μ|( – γ )
‖lh‖

}
‖u – v‖γ . ()
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Similarly,

∣
∣Dγ

+
(
T u(t)

)
– Dγ

+
(
T v(t)

)∣∣ ≤ {
lT� + �h‖lh‖

}‖u – v‖γ . ()

With the help of ()-(), we find that

‖Tu – Tv‖γ

≤ {
lT (� + �) + �g‖lg‖ + (�h + �h )‖lh‖

}‖u – v‖γ

=

{

lT

( ∑

i=

�i

)

+ �g‖lg‖ +

( ∑

i=

�hi

)

‖lh‖

}

‖u – v‖γ .

Thus T is a contraction mapping by condition (). By the Banach fixed point theorem,
T has a fixed point which is the solution of the BVP. �

4 Existence results
Theorem  Assume:

(iv) There exist non-decreasing functions ϕ : [,∞) × [,∞) → [,∞) and ψi : [,∞) →
[,∞), i = , , and the functions lf ∈ L 

τ ([, ], R+) and lg , lh ∈ L([, ], R+) such that

∣∣f (t, u, v)
∣∣ ≤ lf (t)ϕ

(|u| + |v|),
∣∣g(t, u)

∣∣ ≤ lg(t)ψ
(|u|),

∣∣h(t, u)
∣∣ ≤ lh(t)ψ

(|u|),

for all t ∈ [, ] and u, v ∈ R.
(v) There exists a constant N >  such that

[ N
ϕ(‖u‖γ )lT

∑
i= �i + ψ(‖u‖γ )‖lg‖�g + ψ(‖u‖γ )‖lh‖

∑
i= �hi

]
> . ()

Thus problem ()-() has at least one solution on [, ].

Proof Let Br = {u ∈ Cγ ([, ], R) : ‖u‖γ ≤ r}.
Step : Let the operator T : Cγ ([, ], R) → Cγ ([, ], R) be given in () which defines Br

to be a bounded set. For all u ∈ Br , we get

∣∣(T u)(t)
∣∣

≤ ϕ(r)
(α)

lT

∫ t


(t – s)α– ds

+
|μ|| + μ| + |μ|| + μ|

| + μ|| + μ|
ϕ(r)
(α)

lT

∫ 


( – s)α– ds

+
|μ||μ|

| + μ|| + μ|
ϕ(r)

(α – )
lT

∫ 


( – s)α– ds

+
|σ|

| + μ|ψ(r)
∫ 



∣∣lg(s)
∣∣ds +

|σ||μ + | + μ||
| + μ|| + μ| ψ(r)

∫ 



∣∣lh(s)
∣∣ds
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and

∣
∣Dγ

+(T u)(t)
∣
∣

≤ ϕ(r)
(α – γ )

lT

∫ t


(t – s)α–γ – ds

+
|μ|

| + μ|
t–γ

( – γ )
ϕ(r)

(α – γ )
lT

∫ 


( – s)α–γ – ds

+
|σ|

| + μ|
t–γ

( – γ )
ψ(r)

∫ 



∣∣lh(s)
∣∣ds.

By the Hölder inequality,

∣
∣(T u)(t)

∣
∣

≤ ϕ(r)lT

(α + )
+

(|μ|| + μ| + |μ|| + μ|)ϕ(r)lT

| + μ|| + μ|(α + )
+

|μ||μ|ϕ(r)lT

| + μ|| + μ|(α)

+
|σ|ψ(r)‖lg‖

| + μ| +
|σ||μ + | + μ||ψ(r)‖lh‖

| + μ|| + μ|
≤ ϕ(r)lT� + �gψ(r)‖lg‖ + �hψ(r)‖lh‖,

∣∣Dγ
+(T u)(t)

∣∣

≤ ϕ(r)lT

(α – γ + )
+

|μ|ϕ(r)lT

| + μ|( – γ )(α – γ + )
+

|σ|ψ(r)‖lh‖

| + μ|( – γ )

≤ ϕ(r)lT� + �hψ(r)‖lh‖.

Therefore,

∥
∥(T u)

∥
∥

γ
≤ ϕ(r)lT (� + �) + �gψ(r)‖lg‖ + (�h + �h )ψ(r)‖lh‖.

Step : The families {(T u) : u ∈ Br} and {Dγ
+(T u) : u ∈ Br} are equicontinuous. For

t < t, we get

∣∣(T u)(t) – (T u)(t)
∣∣

≤ ϕ(r)lT

(α)

[∫ t



(
(t – s)α– + (t – s)α–)ds –

∫ t

t

(t – s)α– ds
]

+
|μ||t – t|

| + μ|
ϕ(r)lT

(α)

∫ t


( – s)α– ds

+
|σ|| + μ||t – t|ψ(r)

|μ|| + μ|
∫ 



∣∣lh(s)
∣∣ds →  as t → t.

Similarly,

∣
∣Dγ

+(T u)(t) – Dγ
+(T u)(t)

∣
∣

≤ ϕ(r)lT

(α – γ )

[∫ t



(
(t – s)α–γ – + (t – s)α–γ –)ds –

∫ t

t

(t – s)α–γ – ds
]
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+
ϕ(r)lT |μ||t–γ

 – t–γ
 |

(α – γ )| + μ|( – γ )

∫ 


( – s)α–γ – ds

+
|σ||t–γ

 – t–γ
 |ψ(r)

| + μ|( – γ )

∫ 



∣∣lh(s)
∣∣ds →  as t → t.

Thus {(T u) : u ∈ Br} and {Dγ
+(T u) : u ∈ Br} are equicontinuous and relatively compact in

C([, ], R) by the Arzela-Ascoli theorem. Therefore T (Br) is a relatively compact subset
of Cγ ([, ], R) and the operator T is compact.

Step : Let u = λ(T u) and u = λ(Dγ
+(T u)) for  < λ < . For each t ∈ [, ], define M =

{‖u‖γ ∈ Cγ ([, ], R),‖u‖γ < N }. Then we get

‖u‖c =
∥
∥λ(T u)

∥
∥

c

≤ ϕ
(‖u‖γ

)
lT� + �gψ

(‖u‖γ

)‖lg‖ + �hψ
(‖u‖γ

)‖lh‖,

‖u‖c =
∥∥λ

(
Dγ

+(T u)
)∥∥

c

≤ ϕ
(‖u‖γ

)
lT� + �hψ

(‖u‖γ

)‖lh‖.

Thus

‖u‖γ ≤ ϕ
(‖u‖γ

)
lT

∑

i=

�i + ψ
(‖u‖γ

)‖lg‖�g + ψ
(‖u‖γ

)‖lh‖

∑

i=

�hi .

That means

‖u‖γ

ϕ(‖u‖γ )lT

∑
i= �i + ψ(‖u‖γ )‖lg‖�g + ψ(‖u‖γ )‖lh‖

∑
i= �hi

≤ .

For a non-negative N and ‖u‖γ < N , the operator T which is defined in M to be
Cγ ([, ], R) is continuous and compact. Therefore T has a fixed point in M. �

5 Examples
Example  Consider the following boundary value problem of a fractional differential
equation:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D


+(φpD



+u)(t) = lf ( |u(t)|

|u(t)|+ + |D


+u(t)|

|D


+u(t)|+

),

u() + .u() = .
∫ 


u(s)

(+s) ds,
u′() + .u′() = .

∫ 
 ( esu(s)

+es + 
 ) ds.

()

Here

α,β = ., μ,μ = ., σ,σ = .,

υ,η = ., τ = ., γ = .,

and

f (t, u, v) =
|u|

|u| + 
+

|v|
|v| + 

,
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g(t, u) =
u

( + s) , h(t, u) =
esu

( + es)
+




.

Since . < (.) < ., () = , (.) = , we find

� = ., � = ., �g = .,

�h = ., �h = ., lg = lh = ,

with simple calculations. Therefore

{
lT (� + �) + �g‖lg‖ + (�h + �h )‖lh‖

}

< .lT + .

< .

Then we can choose

lT < ..

Thus all assumptions of Theorem  satisfied. Therefore the problem has a unique solution
on [, ].

Example  Consider the following boundary value problem of fractional differential
equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D


+(φpD



+u)(t) = |u(t)|

(|u(t)|+) + | sin D


+u(t)|

(sin D


+u(t)+)

+ 
 ,

u() + .u() = , 
∫ 


u(s)

(+s) ds,
u′() + .u′() = , 

∫ 


esu(s)
(+es) ds,

D


+u() = ,

D


+u() = , D



+u(, ),

()

where f is given by

f (t, u, v) =
|u|

(|u| + )
+

| sin v|
(sin v + )

+



.

We have

∣∣f (t, u, v)
∣∣ ≤ |u|

(|u| + )
+

| sin v|
(sin v + )

+



, u ∈ R.

Here

α,β = ., μ,μ = ., σ,σ = .,

υ,η = ., τ = ., γ = .,

� = ., � = ., �g = .,
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�h = ., �h = ., lg = lh = .,

and g(t, u) = u(s)
(+s) , h(t, u) = esu(s)

(+es) , ϕ(N ) = ψ (N ) = ψ(N ) = N . If

N
ϕ(N )(.)(. + .) + ψ(N )(.)(.) + ψ(N )(.)(. + .)

> ,

N
N (.) + N (.) + N (.)

> ,

N
.N >,

. > ,

then () is satisfied. Then there exists at least one solution of the BVP on [, ].
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