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Abstract
This paper investigates magnetohydrodynamic (MHD) boundary layer flow and
convective heat transfer of a fluid with variable viscosity through a porous medium
towards a stretching sheet by considering the effects of viscous dissipation in
presence of heat source/sink. The fluid viscosity is assumed to be a linear function of
the temperature. The application of scaling group of transformations on the
generalized stretching surface with injection velocity leads to two possible surface
conditions. The governing equations with two types of boundary conditions are
solved numerically using Bvp4c with MATLAB, respectively. Furthermore, more
attention is paid to the effects of some physical parameters on the velocity and the
temperature distribution with considering the permeability and the heat sink or the
heat source.

Keywords: Lie group analysis; stretching porous surface; convective heat transfer;
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1 Introduction
The interest in MHD fluid flows stems from the fact that liquid metals that occur in nature
and industry are electrically conducting, which is attractive both from a mathematical and
a physical standpoint. This type of flow has received much attention of many researchers
due to its applications in technological and engineering problems such as MHD genera-
tors, plasma studies, nuclear reactors, geothermal energy extractions. By the application of
a magnetic field, hydromagnetic techniques are used for the purification of molten metals
from non-metallic inclusions. Then the type of problem that we are dealing with is very
useful to polymer technology and metallurgy [–]. In addition, some theoretical work
also has been done. For example, Rasmussen [] numerically studied the problem of the
steady viscous symmetric flow between two parallel porous coaxial disks. Hayat et al. []
studied the MHD flow of an upper-convected Maxwell fluid over a porous stretching plate
with the homotopy analysis method. Noor [] presented an analysis of the MHD flow of a
Maxwell fluid past a vertical stretching sheet in the presence of thermophoresis and chem-
ical reactions. Hayat et al. [] constructed an analytic solution for unsteady MHD flow in
a rotating Maxwell fluid through a porous medium. Ibrahim and Shankar [] investigated
MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching
sheet with slip boundary conditions.
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Lie group analysis, also called symmetry analysis, was developed by Sophus Lie to find
point transformations which map a given differential equation to itself. This method has
been used by many researchers to solve some nonlinear problems in fluid mechanics
[–]. Furthermore, the scaling group techniques, a special form of Lie group trans-
formations, have been applied by many researchers [–] to study different flow phe-
nomena over different nonlinear dynamical systems, aerodynamics, and some other en-
gineering branches. For example, Kanadasamy and Muhaimin [] discussed steady two-
dimensional flow of incompressible fluid over a vertical stretching sheet by scaling group
of transformations. Hamad [] used this method to study the effect of a magnetic field
on the free convection flow of a nanofluid over a linear stretching. Das [] analyzed the
MHD boundary layer flow of an electrically conducting nanofluid past a vertical convec-
tively heated permeable stretching surface with variable stream conditions in presence of
chemical reaction.

Motivated by the above works, the aim of this paper is to investigate the MHD effects
on the convectively heated stretching porous surface with the heat source/sink. With the
assistance of scaling group of transformations, two types of boundary conditions satisfying
the similarity transformations are obtained, and then the coupled differential equations are
deduced according to different boundary conditions, respectively. The effects of different
parameters on the velocity and temperature distribution for these two cases are plotted in
graphs and discussed in detail.

2 Preliminaries
Consider a steady two-dimensional forced convection flow of a viscous incompressible
laminar dissipating fluid past a convectively heated stretching sheet immersed in a porous
medium in the region y > . Keeping the origin fixed, a force is applied along the x-axis
which results stretching of the sheet. All body forces except by magnetic field are neglected
etc. and the uniform magnetic field of strength B is assumed to be perpendicular to the
x-axis. We assume the temperature of the sheet to be different from that of the ambient
medium and the fluid viscosity to vary with temperature, while the other fluid properties
are assumed to be constants. u and v are the components of velocity in x and y directions
and T is the temperature of the fluid, respectively.

The continuity, momentum, and energy governing equations are written as []

∂u
∂x

+
∂v
∂y

= , (.)

u
∂u
∂x

+ v
∂u
∂y

=

ρ

∂

∂y

(
μ

∂u
∂y

)
–

σB


ρ
u –

μ

ρk
u, (.)

u
∂T
∂x

+ v
∂T
∂y

=
κ

ρcp

∂T
∂y +

μ

ρcp

(
∂u
∂y

)

+
Q

ρcp
(T – T∞), (.)

where κ is the effective thermal conductivity of the fluid, Q is the dimensional heat gen-
eration (Q > ) or absorption (Q < ) coefficient, cp is the specific heat, ρ is the fluid
density, μ is the coefficient of fluid viscosity (dependent on temperature), and k is the
permeability of the porous medium.
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The boundary conditions can be written as

u = U(x), v = V (x), –κ
∂T
∂y

= hf (Tw – T) at y = ,

u → , T → T∞ as y → ∞.
(.)

We assume the bottom surface of the plate is heated by convection from a hot fluid with
temperature Tw, which provides a heat transfer coefficient hf .

The temperature dependent fluid viscosity is given by Batchelor []

μ = μ∗[a + b(Tw – T)
]
, (.)

where μ∗ is the constant value of the coefficient of viscosity far away from the sheet and
a, b >  are constants.

Therefore, (.) becomes

u
∂u
∂x

+ v
∂u
∂y

=

ρ

∂μ

∂T
∂T
∂y

∂u
∂y

+
μ

ρ

∂u
∂y –

σB


ρ
u –

μ

ρk
u. (.)

We introduce the streamwise function � and the dimensionless temperature � as fol-
lows:

u =
∂�

∂y
, v = –

∂�

∂x
, � =

T – T∞
Tw – T∞

. (.)

Substituting relations (.) into (.)-(.), we obtain

∂�

∂y
∂�

∂x ∂y
–

∂�

∂x
∂�

∂y

= –Aν∗ ∂�

∂y
∂�

∂y + ν∗[a + A( – �)
]∂�

∂y –
ν∗

k
[
a + A( – �)

]∂�

∂y
–

σB


ρ

∂�

∂y
, (.)

∂�

∂y
∂�

∂x
–

∂�

∂x
∂�

∂y

=
κ

ρcp

∂�

∂y +
Q

ρcp
� +

ν∗

cp(Tw – T∞)
[
a + A( – �)

](∂�

∂y

)

, (.)

where A = b(Tw – T∞), ν∗ = μ∗
ρ

.
The boundary conditions become

∂�

∂y
= U(x),

∂�

∂x
= –V (x), –κ

∂�

∂y
= hf ( – �) at y = ,

∂�

∂y
→ , � →  as y → ∞.

(.)

3 Application of group transformations
The scaling group of transformations presented by Mukhopadhyay et al. [] is

	 : x∗ = xeεα , y∗ = yeεα , �∗ = �eεα ,

u∗ = ueεα , v∗ = veεα�∗ = �eεα .
(.)
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The above equation may be considered as a point transformation which transforms the
coordinates (x, y,� , u, v,�,�) to (x∗, y∗,�∗, u∗, v∗,�∗,�∗).

Substituting (.) into (.) and (.), one can obtain

eε(α+α–α)
(

∂�∗

∂y∗
∂�∗

∂x∗ ∂y∗ –
∂�∗

∂x∗
∂�∗

∂y∗

)

= –Aν∗eε(α–α–α) ∂�∗

∂y∗
∂�∗

∂y∗

+ (a + A)ν∗eε(α–α) ∂
�∗

∂y∗ – Aν∗eε(α–α–α)�∗ ∂�∗

∂y∗

–
ν∗

k
(a + A)eε(α–α) ∂�∗

∂y∗ +
ν∗

k
Aeε(α–α–α)�∗ ∂�∗

∂y∗ –
σB


ρ

eε(α–α) ∂�∗

∂y∗ , (.)

eε(α+α–α–α)
(

∂�∗

∂y∗
∂�∗

∂x∗ –
∂�∗

∂x∗
∂�∗

∂y∗

)

=
κ

ρcp
eε(α–α) ∂

�∗

∂y∗ +
Q

ρcp
e–εα�∗ +

ν∗

cp(Tw – T∞)
(a + A)eε(α–α)

(
∂�∗

∂y∗

)

–
ν∗

cp(Tw – T∞)
Aeε(α–α–α)�∗

(
∂�∗

∂y∗

)

, (.)

then the following relationship among the exponents can be obtained:

α + α – α = α – α – α = α – α = α – α = α – α – α,

α + α – α – α = α – α = –α = α – α = α – α – α.
(.)

Two results are presented subject to the two different boundary conditions in the fol-
lowing section.

3.1 Case 1: equations with the first type of boundary conditions
For case , the stretching velocity and the suction/injection velocity are assumed to be

U(x) = cxm, V (x) = –Vx
m–

 , (.)

where c >  and the power-law exponent m both are constants. In this study we take c = .
The corresponding boundary conditions (.) become

∂�

∂y
= xm,

∂�

∂x
= Vx

(m–)
 , –κ

∂�

∂y
= hf ( – �) at y = ,

∂�

∂y
→ , � →  as y → ∞.

(.)

The relation α – α = α – α can result in α = . Hence, α + α – α = α – α – α

gives α = , α = 
α = 

α. Also the boundary conditions yield α = mα = 
α, α =

m–
 α = – 

α, and then m = 
 .
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Hence, the boundary conditions (.) are written as

∂�∗

∂y∗ = x∗ 
 ,

∂�∗

∂x∗ = Vx∗– 
 , –κ

∂�∗

∂y∗ = hf
(
 – �∗) at y∗ = ,

∂�∗

∂y∗ → , �∗ →  as y∗ → ∞.
(.)

Thus the set of transformations 	 reduces to a one parameter group of transformations
as follows:

	 : x∗ = xeεα , y∗ = yeε
α
 , �∗ = �eε

α
 ,

u∗ = ueε
α
 , v∗ = ve–ε

α
 , �∗ = �.

(.)

Expanding by Taylor’s method in powers of ε and keeping terms up to ε, one gets

x∗ – x = xεα, y∗ – y = yε
α


, �∗ – � = �ε

α


,

u∗ – u = uε
α


, v∗ – v = –vε

α


, �∗ = �.

(.)

The characteristic equations are

dx
αx

=
dy


αy

=
d�


α�

=
du


αu

=
dv

– 
αv

=
d�


. (.)

Solving (.), we get

y∗x∗– 
 = η∗, �∗ = x∗– 

 F
(
η∗), �∗ = �

(
η∗), (.)

where η∗ is an invariable.
Substituting (.) into (.) and (.) yields

(a + A)ν∗F ′′′ – Aν∗�F ′′′ – Aν∗�′F ′′ +



FF ′′ – λ(a + A)F ′

– MF ′ + λA�F ′ –


(
F ′) = , (.)

Ec(a + A)ν∗(F ′′) – EcAν∗�
(
F ′′) +




�′F + Q� +
κ

ρcp
�′′ = , (.)

where λ = ν∗U
k is the permeability parameter, M = σB

U
ρ

is the Hartmann number, Ec =
U

cp(Tw–T∞) is the Eckert number, and Q = QU
ρcp

is the heat source/sink parameter.
The boundary conditions are transformed as

F =



V, F ′ = , �′ =
hf

κ
x


 (� – ) at η∗ = ,

F ′ → , � → , as η∗ → ∞.
(.)
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In order to remove ν∗ in (.) and (.), the following transformations for η∗, F , and
� are introduced:

η∗ = ν∗ 
 η, F = ν∗ 

 f , � = θ , (.)

then (.) and (.) become

(a + A)f ′′′ – Aθ f ′′′ – Aθ ′f ′′ +



ff ′′ – λ(a + A)f ′ – Mf ′ + λAθ f ′ –


(
f ′) = , (.)

Ec(a + A)
(
f ′′) – EcAθ

(
f ′′) +




θ ′f + Qθ +


Pr
θ ′′ = , (.)

where Pr = ν∗ρcp
κ

is the Prandtl number, and ′ denotes the derivative with respect to η.
The boundary conditions are

f = S, f ′ = , θ ′ = B(θ – ) at η = ,

f ′ → , θ → , as η → ∞,
(.)

where S = 
 Vν

∗– 
 is the suction/injection parameter and B = hf

κ
ν∗ 

 x 
 is the convection

heat transfer parameter. Following the definition of Kundu et al. [], we also assume hf =
cx– 

 where c is a constant.

3.2 Case 2: equations with the second type of boundary conditions
For case , we assume the streamwise velocity and the suction/injection velocity at the
sheet are taken as

U(x) = hx + C
∂u
∂y

+ C
∂u
∂y , V (x) = –V, (.)

where h is a constant and C, C are two independent coefficients named the slip coeffi-
cients.

Substituting the (.) into the boundary conditions (.) yields

∂�

∂y
= hx + C

∂�

∂y + C
∂�

∂y ,
∂�

∂x
= V,

–κ
∂�

∂y
= hf ( – �) at y = ,

∂�

∂y
→ , � →  as y → ∞.

(.)

From (.) and the boundary conditions (.), we get α = α = α and α = α = α = .
The characteristic equations are

dx
αx

=
dy


=
d�

α�
=

du
αu

=
dv


=
d�


. (.)

Thus from (.) we obtain

y∗ = η∗, �∗ = xF
(
η∗), �∗ = �

(
η∗), (.)

where η∗ still is an invariable.
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Figure 1 Variation of velocity f ′(η) for different values of viscosity parameter A.

Figure 2 Variation of temperature θ (η) for different values of viscosity parameter A.

Using (.), (.) and (.) become

(a + A)ν∗F ′′′ – Aν∗�F ′′′ – Aν∗�′F ′′ + FF ′′ –
ν∗

k
(a + A)F ′

–
σB


ρ

F ′ +
ν∗

k
A�F ′ –

(
F ′) = , (.)

x

cp(Tw – T∞)
(a + A)ν∗(F ′′) –

x

cp(Tw – T∞)
Aν∗�

(
F ′′)

+ �′F +
Q

ρcp
� +

κ

ρcp
�′′ = . (.)
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Figure 3 Variation of velocity f ′(η) for different values of Eckert number Ec.

Figure 4 Variation of temperature θ (η) for different values of Eckert number Ec.

The boundary conditions are transformed as

F = V, F ′ = h + CF ′′ + CF ′′′, �′ =
hf

κ
(� – ) at η∗ = ,

F ′ → , � → , as η∗ → ∞.
(.)

Again, in order to remove ν∗, the following transformations for η∗, F , and � in (.)
and (.) are introduced:

η∗ = ν∗ 
 h– 

 η, F = ν∗ 
 h


 f , � = θ . (.)

Equations (.) and (.) finally take the following form:

(a + A)f ′′′ – Aθ f ′′′ – Aθ ′f ′′ + ff ′′ – λ(a + A)f ′

– Mf ′ + λAθ f ′ –
(
f ′) = , (.)
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Figure 5 Variation of velocity f ′(η) for different values of permeability parameter λ.

Figure 6 Variation of velocity f ′(η) for different values of Hartmann number M.

Ec(a + A)
(
f ′′) – EcAθ

(
f ′′) + θ ′f + Qθ +


Pr

θ ′′ = , (.)

where ′ denotes the derivative with respect to η, λ = ν∗
kh is the permeability parameter,

M = σB


ρh is the Hartmann number, Ec = hx

cp(Tw–T∞) is the Eckert number, Q = Q
ρcph is the

heat source/sink parameter, and Pr = ν∗ρcp
κ

is the Prandtl number.
The boundary conditions (.) become

f = S, f ′ =  + kf ′′ + kf ′′′, θ ′ = B(θ – ) at η = ,

f ′ → , θ → , as η → ∞,
(.)

where S = ν∗– 
 h– 

 V is the suction/injection parameter, k = Cν
∗– 

 h 
 , k = Cν

∗–h are
the wall slip parameters, and B = hf

κ
ν∗ 

 h– 
 is the convection heat transfer parameter.
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Figure 7 Variation of velocity f ′(η) for different values of suction/injection parameter S.

Figure 8 Variation of temperature θ (η) for different values of convection heat transfer parameter B.

4 Numerical solutions and discussion
Since (.)-(.) and (.)-(.) are coupled nonlinear boundary value problems, these
equations are solved numerically by Bvpc with MATLAB, which is a collocation method
equivalent to the fourth order mono-implicit Runge-Kutta method. Since the velocity
changes sharply in the boundary layer near the plate, this region with a sharp change makes
this boundary value problem a relatively difficult one. In order to resolve better the bound-
ary layer and obtain a more accurate solution, the relative error tolerance on the residuals
is defined to be – (i.e. RelTol = –) during the process of numerical computation. The
results are presented graphically and in tables.

The effects of different physical parameters, such as the viscosity parameter, the perme-
ability parameter, the Hartmann number and the Eckert number etc., on the velocity and
temperature distribution are investigated for these two types of boundary conditions. To
begin with, we study the case subject to the first type of boundary conditions. Figures 
and  illustrate the effects of viscosity parameter A on the velocity f ′(η) and temperature
distribution θ (η), respectively, as the other physical parameters are fixed. The viscosity
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Figure 9 Variation of temperature θ (η) for different values of Prandtl number Pr.

Figure 10 Variation of temperature θ (η) for different values of heat source/sink parameter Q.

Table 1 Comparison of –f ′′(0) for Pr = 10, Le = 1, and Nb = 0.1

λ Present results Dessie and Kishan [27] Cortell [29] Mukhopadhyay et al. [30]

–f ′′(0) –f ′′(0) –f ′′(0) –f ′′(0)

1 1.414214 1.414214 1.414213 1.414213
2 1.732051 1.732051 1.732051 1.732051

parameter A is proportional to the difference of temperature. It is observed that there is
little influence on the velocity distribution near the sheet. However, the influence becomes
obvious as the velocity is far away from the sheet, which is an increasing function of the
viscosity parameter. When we consider the effects of viscosity parameter on the tempera-
ture distribution, it becomes significant. The temperature is an increasing function of the
viscosity parameter.

Figures  and  show the effects of the Eckert number on the velocity and temperature
distribution. We can find that the velocity is the decreasing function and the temperature
is an increasing function of the increasing Eckert number. In addition, at the sheet, the
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Table 2 Computed values of skin friction coefficient –f ′′(0) for various values of M, S, and k1

M2 S k1 Ibrahim and Shankar [9] Present result

1 0 0 1.4142 1.414214
1 0.2 0 1.5177 1.517745
1 0.2 1 0.5656 0.565566
1 0.2 1.2 0.5055 0.505457
1.5 0.5 0 1.8508 1.850781
2 0.5 0 2.0000 2.000000

Figure 11 Variation of velocity f ′(η) for different values of viscosity parameter A.

Figure 12 Variation of temperature θ (η) for different values of viscosity parameter A.

temperature also is different because of the existence of convection heat. As the variable
η trends from zero to infinity, the temperature becomes zero. This also reflects that the
heat caused by friction can be neglected when the distance is far away from the sheet.

Figure  illustrates the effects of the permeability parameter on the velocity. The velocity
decreases with the increasing value of the permeability parameter, which shows that the
porous medium also has important effects on the velocity. Figure  shows the variation
of velocity f ′(η) for different values of the Hartmann number M. The velocity decreases
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Figure 13 Variation of velocity f ′(η) for different values of slip parameter k1.

Figure 14 Variation of velocity f ′(η) for different values of slip parameter k2.

with the increase of M, which clearly indicates that the transverse magnetic field opposes
the transport phenomena. The reason is that the variation of the Hartmann number leads
to the variation of the Lorentz force due to magnetic field and the Lorentz force produces
more resistance to transport phenomena. Since the suction velocity can restrain the in-
crease of the velocity near the sheet, the velocity near the sheet is smaller than the case of
injection velocity, which can be seen in Figure .

The convection heat transfer parameter B also has important influence on the temper-
ature distribution. The temperature is an increasing function of the parameter B, which is
shown in Figure . The stronger convection results in a higher surface temperature, which
causes the thermal effect to penetrate deeper into the quiescent fluid. Furthermore, since
the convection heat transfer happens near the sheet, the influence on the temperature
near the sheet is obvious, and when it is far away the sheet, the influence becomes smaller.
Figure  exhibits the temperature distribution for variable values of Prandtl number. The
temperature distribution is a decreasing function of the Prandtl number. Furthermore, the
thermal boundary layer becomes thinner with the increasing Prandtl number, which also



Cao et al. Boundary Value Problems  (2015) 2015:63 Page 14 of 18

Figure 15 Variation of velocity f ′(η) for different values of permeability parameter λ.

Figure 16 Variation of velocity f ′(η) for different values of Hartmann number M.

shows that the increasing Prandtl number reflects a higher capability of heat transfer. The
effects of the source (Q > ) and the sink (Q < ) on the temperature θ (η) are shown in
Figure . It is noticed that the temperature increases if there exists a heat source, and a
decrease in temperature is noticed in the case of a sink.

In addition, the effects for the second type of boundary condition are discussed in the
following section. For the verification of accuracy of the applied numerical scheme, a com-
parison of the present results corresponding to –f ′′() with the ones obtained by Dessie
and Kishan [], Cortell [], and Mukhopadhyay et al. [] is presented in Table , which
shows a favorable agreement. Table  presents the numerical values of skin friction coef-
ficient –f ′′() for various values of M, S, and k.

Figures  and  show that the velocity at the sheet is different since there exists slip
velocity. In addition, it is a decreasing function of the viscosity parameter and the temper-
ature is an increasing function of viscosity parameter. The effects of slip coefficients on the
velocity are shown in Figures  and . It is observed that the velocity decreases with the
first slip coefficient k but increases with the second slip coefficient k. The effects of the
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Figure 17 Variation of velocity f ′(η) for different values of suction/injection parameter S.

Figure 18 Variation of temperature θ (η) for different values of convection heat transfer parameter B.

permeability parameter, the Hartmann number, the suction parameter, the Prandtl num-
ber and the Eckert number, and the heat sink/source on the velocity and the temperature
distribution are similar to the case corresponding to the first type of boundary conditions.
However, there also exists a significant difference, which is the velocity at the sheet. Here
the velocity at the sheet is different because of the existence of the slip velocity. All of these
are shown in Figures -.

5 Conclusion
In this paper, we have considered the similarity solutions of MHD boundary layer flow
and convective heat transfer of a fluid with variable viscosity through a porous medium
towards a stretching sheet. By determining the transformation group under which the
given partial differential equation and its boundary conditions are invariant, we obtain
the invariants and the symmetries of this equation. In turn, with the help of these in-
variants and symmetries, we determine the similarity variables that reduce the number
of independent variables. With the two different boundary conditions, the scaling group
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Figure 19 Variation of temperature θ (η) for different values of Eckert number Ec.

Figure 20 Variation of temperature θ (η) for different values of Prandtl number Pr.

of transformations transformed the governing partial differential equations into two dif-
ferent kinds of boundary value problems, which are solved numerically using MATLAB
package and the results are plotted. The influence of different physical parameter on the
velocity or temperature distribution are analyzed. The main findings can be summarized
as follows:

• The two types of boundary conditions satisfying the similarity solution can be
obtained with the assistance of scaling group of transformations.

• As there exists a slip parameter, the influence of various physical parameters, such as
the viscosity parameter, the Eckert number, the Prandtl number, the permeability
parameter, and the Hartmann number on the velocity and temperature distribution is
significantly different from the case of no slip velocity.

• Because of the existence of the slip parameter, the velocity at the plate have different
values influenced by Hartmann number, permeability parameter, and viscosity
parameter.
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Figure 21 Variation of temperature θ (η) for different values of heat source/sink parameter Q.

• Whether there exists slip parameter or not, the temperature distribution is an
increasing function of the Eckert number, the convection heat transfer parameter, and
the heat source/sink parameter, respectively. However, it is the decreasing function of
increasing Prandtl number.
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