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Abstract
In this study we investigate heat and mass transfer in magnetohydrodynamic mixed
convection flow of a nanofluid over an unsteady stretching/shrinking sheet. The flow
is subject to a heat source, viscous dissipation and Soret and Dufour effects are
assumed to be significant. We have further assumed that the nanoparticle volume
fraction at the wall may be actively controlled. The physical problem is modeled using
systems of nonlinear differential equations which we have solved numerically using
the recent spectral relaxation method. In addition to the discussion on physical heat
and mass transfer processes, we also show that the spectral relaxation technique is an
accurate technique for solving nonlinear boundary value problems.
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1 Introduction
Nanofluids are suspensions of metallic, non-metallic or polymeric nano-sized powders in
a base liquid which are used to increase the heat transfer rate in various applications. In
recent years, the concept of nanofluid has been proposed as a route for increasing the per-
formance of heat transfer liquids. Due to the increasing importance of nanofluids, there
is a large amount of literature on convective heat transport in nanofluids and problems
linked to a stretching surface. An excellent collection of articles on this topic can be found
in [–]. The majority of the previous studies have been restricted to boundary layer flow
and heat transfer in nanofluids. Following the early work by Crane [], Khan and Pop []
were among the first researchers to study nanofluid flow due to a stretching sheet. Other
researchers studied various aspects of flow and heat transfer in a fluid of infinite extent;
see, for instance, Chen [] and Abo-Eldahab and Abd El-Aziz []. A mathematical analysis
of momentum and heat transfer characteristics of the boundary layer flow of an incom-
pressible and electrically conducting viscoelastic fluid over a linear stretching sheet was
carried out by Abd El-Aziz []. In addition, radiation effects on viscous flow of a nanofluid
and heat transfer over a nonlinearly stretching sheet were studied by Hady et al. []. Theo-
retical studies include, for example, modeling unsteady boundary layer flow of a nanofluid
over a permeable stretching/shrinking sheet by Bachok et al. []. Rohni et al. [] devel-
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oped a numerical solution for the unsteady flow over a continuously shrinking surface
with wall mass suction using the nanofluid model proposed by Buongiorno [].

The effect of an applied magnetic field on nanofluids has substantial applications in
chemistry, physics and engineering. These include cooling of continuous filaments, in the
process of drawing, annealing and thinning of copper wire. Drawing such strips through
an electrically conducting fluid subject to a magnetic field can control the rate of cooling
and stretching, thereby furthering the desired characteristics of the final product. Such
an application of a linearly stretching sheet of incompressible viscous flow of MHD was
discussed by Pavlov []. In other work, Jafar et al. [] studied the effects of magneto-
hydrodynamic (MHD) flow and heat transfer due to a stretching/shrinking sheet with an
external magnetic field, viscous dissipation and Joule effects.

A model for magnetohydrodynamic flow over a uniformly stretched vertical permeable
surface subject to a chemical reaction was suggested by Chamkha []. An analysis of
the effects of a chemical reaction on heat and mass transfer on a magnetohydrodynamic
boundary layer flow over a wedge with ohmic heating and viscous dissipation in a porous
medium was done by Kandasamy and Palanimani []. Rashidi and Erfani [] studied
the steady MHD convective and slip flow due to a rotating disk with viscous dissipation
and ohmic heating. Rashidi et al. [] found approximate analytic solutions for an MHD
boundary-layer viscoelastic fluid flow over a continuously moving stretching surface using
the homotopy analysis method. Rashidi and Keimanesh [] used the differential trans-
form method and Padé approximants to solve the equations that model MHD flow in a
laminar liquid film from a horizontal stretching surface. The effect of a transverse mag-
netic field on the flow and heat transfer over a stretching surface were examined by Anjali-
Devi and Thiyagarajan []. The influence of a chemical reaction on heat and mass trans-
fer due to natural convection from vertical surfaces in porous media subject to Soret and
Dufour effects was also studied by Postelnicu [].

Despite all this previous work, there is still a lot that is unknown about the flow and
heat and mass transfer properties of different nanofluids. For instance, the composition
and make of the nanoparticles may have an impact on the performance of the nanofluid
as a heat transfer medium. In this paper we investigate unsteady MHD mixed convec-
tion boundary layer with suction/injection subject to a number of source terms including
Dufour and Soret effects, heat generation, an applied magnetic field and viscous dissipa-
tion. Various numerical and or semi-numerical methods can and have been used to solve
the equations that model this type of boundary layer flow. These equations are non-similar
and coupled. In this paper we use the spectral relaxation method (SRM) that was recently
proposed by Motsa []. This spectral relaxation method promises fast convergence with
good accuracy, has been successfully used in a limited number of boundary layer flow
and heat transfer problems (see [, ]). In this paper we discuss the fluid flow and heat
transfer as well as highlight the strengths of the solution method.

2 Governing equations
Consider the two-dimensional unsteady laminar MHD mixed convective flow of a
nanofluid due to a stretching sheet situated at y =  with stretching velocity u = ax, where
a is a constant. The temperature and nanoparticle volume fraction at the stretching sur-
face are Tw and Cw, respectively, and those of the ambient nanofluid are T∞ and C∞,
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respectively. The x and y directions are in the plane of and perpendicular to the sheet, re-
spectively. The continuity, momentum, energy and concentration equations of unsteady,
incompressible nanofluid boundary layer flow are as follows (see Yang []):

∂u
∂x

+
∂v
∂y

= , (.)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= –


ρnf

∂p
∂x

+
μnf

ρnf

∂u
∂y + gβT (T – T∞) + gβC(C – C∞) –

σB


ρnf
u, (.)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= αnf
∂T
∂y +

Q
(ρcp)nf

(T – T∞) +
ρf DmKT

Cs(ρcp)nf

∂C
∂y

, (.)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= Dm
∂C
∂y +

DmKm

Tm

∂T
∂y – R(C – C∞), (.)

where t, u and v are the time, the fluid velocity and the normal velocity components in the
x and y orientations, respectively; νnf , p, ρnf , σ , B, μnf , g are the nanofluid kinematic vis-
cosity, the pressure, nanofluid density, electrical conductivity, the uniform magnetic field
in the y direction, the effective dynamic viscosity of the nanofluid and gravitational accel-
eration, respectively; βT , βC , T , C, αnf , (ρcp)nf , Q are the volumetric thermal expansion
coefficient, the solutal expansion coefficient, the temperature of the fluid in the boundary
layer, fluid solutal concentration, the thermal diffusivity of the nanofluid, the nanofluid
heat capacitance and the volumetric rate of heat generation, respectively; ρf , Dm, KT , Cs,
(cp)nf , Tm, R are the density of the base fluid, the mass diffusivity of concentration, thermal
diffusion ratio, concentration susceptibility, specific heat of the fluid at constant pressure,
mean fluid temperature and the chemical reaction parameter, respectively.

The boundary conditions are as follows:

t ≥ : u = Uw(x) = ax, v = vw, T = Tw, C = Cw at y = ,

t ≥ : u = U∞(x) = a∞x, v = , T = T∞, C = C∞ as y → ∞,
(.)

and the initial conditions are

t < : u(x, y, t) = , v(x, y, t) = ,

T(x, y, t) = Tw, C(x, y, t) = Cw, ∀x, y,
(.)

where a∞ (> ) is the stagnation flow rate parameter, a <  for a shrinking surface and
a >  for a stretching surface. Here vw is prescribed suction velocity (vw < ) or blowing
velocity (vw > ).

In the free stream the momentum equation (.) becomes

U∞
dU∞

dx
= –


ρnf

∂p
∂x

–
σB


ρnf

U∞. (.)

Substituting (.) in (.) the momentum equation is written as

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= νnf
∂u
∂y + U∞

dU∞
dx

+ (U∞ – u)
σB


ρnf

+ gβT (T – T∞) + gβC(C – C∞). (.)
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The effective dynamic viscosity of the nanofluid was given by Brinkman [] as

μnf =
μf

( – φ). , (.)

where φ is the solid volume fraction of nanoparticles, μf is the dynamic viscosity of the
base fluid. In equations (.)-(.),

(ρcp)nf = ( – φ)(ρcp)f + φ(ρcp)s,

ρnf = ( – φ)ρf + φρs, νnf =
μnf

ρnf
, (.)

αnf =
knf

(ρcp)nf
,

knf

kf
=

(ks + kf ) – φ(kf – ks)
(ks + kf ) + φ(kf – ks)

,

where knf is the thermal conductivity of the nanofluid, kf and ks are the thermal conductiv-
ities of the fluid and of solid fractions, respectively, and ρs is the density of solid fractions,
(ρcp)f and (ρcp)s are the heat capacity of the base fluid and the effective heat capacity of a
nanoparticle, respectively, knf is the thermal conductivity of the nanofluid.

The continuity equation (.) is satisfied by introducing a stream function ψ(x, y) such
that

u =
∂ψ

∂y
, v = –

∂ψ

∂x
. (.)

We introduce the following non-dimensional variables (see Liao []):

η =
[

a∞
νf ξ

] 


y, ξ =  – exp(–τ ), τ = a∞t, ψ = [a∞νf ξ ]

 xf (ξ ,η),

θ (ξ ,η) =
T – T∞
Tw – T∞

, Φ(ξ ,η) =
C – C∞

Cw – C∞
,

(.)

where f (ξ ,η) is a dimensionless stream function, θ (ξ ,η) is the dimensionless temperature
and φ(ξ ,η) is the dimensionless solute concentration. By using (.) and (.), the gov-
erning equations (.), (.) and (.) along with the boundary conditions (.) are reduced
to the following two-point boundary value problem:

f ′′′ + φ

[
η


( – ξ )f ′′ + ξ

(
ff ′′ – f ′ +  + Ha( – f ′) + Grtθ + GrcΦ

)]

= φξ ( – ξ )
∂f ′

∂ξ
, (.)

θ ′′ +
kf

knf
Prφ

[
η


( – ξ )θ ′ + ξ

(
f θ ′ + δθ

)
+

Df

φ
Φ ′′

]
=

kf

knf
Prφξ ( – ξ )

∂θ

∂ξ
, (.)

Φ ′′ + Sc
[

η


( – ξ )Φ ′ + ξ

(
f Φ ′ – γΦ

)
+ Srθ ′′

]
= Scξ ( – ξ )

∂Φ

∂ξ
. (.)

The boundary conditions are as follows:

f (ξ , ) = fw, f ′(ξ , ) = λ, θ (ξ , ) = , Φ(ξ , ) =  at η = , ξ ≥ ,

f ′(ξ ,∞) = , θ (ξ ,∞) = , Φ(ξ ,∞) =  as η → ∞, ξ ≥ ,
(.)
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where primes denote differentiation with respect to η, αf = kf /(ρcp)f and νf = μf /ρf are
the thermal diffusivity and kinetic viscosity of the base fluid, respectively. Other non-
dimensional parameters appearing in equations (.) to (.) are Ha, Grt , Grc, Grc, Pr,
δ, Df , Sc, γ and Sr, and they denote the Hartmann number, the local temperature Grashof
number, the local concentration Grashof number, the Prandtl number, the dimensionless
heat generation parameter, the Dufour number, the Schmidt number, the scaled chemi-
cal reaction parameter and the Soret number, respectively. These parameters are defined
mathematically as

Ha =
σB


a∞ρnf

, Grt =
gβT (Tw – T∞)

a∞x
,

Grc =
gβC(Cw – C∞)

a∞x
, Pr =

νf

αf
, δ =

Q
a∞(ρcp)nf

,

Df =
DmKT (Cw – C∞)

Cs(Cp)f νf (Tw – T∞)
, Sc =

νf

Dm
,

γ =
R

a∞
, Sr =

DmKT

Tm

(Tw – T∞)
νf (Cw – C∞)

.

(.)

The boundary conditions are as follows:

f (ξ , ) = fw, f ′(ξ , ) = λ, θ (ξ , ) = , Φ(ξ , ) =  at η = , ξ ≥ ,

f ′(ξ ,∞) = , θ (ξ ,∞) = , Φ(ξ ,∞) =  as η → ∞, ξ ≥ .
(.)

The nanoparticle volume fractions φ and φ are defined as

φ = ( – φ).
[

 – φ + φ

(
ρs

ρf

)]
, φ =

[
 – φ + φ

(ρc)s

(ρc)f

]
. (.)

In equations (.), fw = –vw/
√

a∞νf ξ represents suction (fw > ) or injection (fw < ) and
λ (= a/a∞) is the stretching/shrinking parameter.

3 Skin friction, heat and mass transfer coefficients
The skin friction coefficient Cf , the local Nusselt number Nux and the local Sherwood
number Shx characterize the surface drag, wall heat and mass transfer rates, respectively.

The shearing stress at the surface of the wall τw is defined as

τw = –μnf

(
∂u
∂y

)
y=

= –
U∞μf

( – φ).x

√
U∞x
νf ξ

f ′′(, ξ ), (.)

where μnf is the coefficient of viscosity.
The skin friction coefficient is obtained as

Cfx =
τw

ρf U∞
, (.)

and using equation (.) in (.) we obtain




( – φ).Cfx = –ξ– 
 Re– 


x f ′′(, ξ ). (.)
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The heat transfer rate at the surface flux at the wall is defined as

qw = –knf

(
∂T
∂y

)
y=

= –knf
(Tw – T∞)

x

√
U∞x
νf ξ

θ ′(, ξ ), (.)

where knf is the thermal conductivity of the nanofluid. The local Nusselt number is defined
as

Nux =
xqw

kf (Tw – T∞)
. (.)

Using equation (.) in equation (.), the dimensionless wall heat transfer rate is obtained
as

(
kf

knf

)
Nux = –ξ– 

 Re


x θ ′(, ξ ). (.)

The mass flux at the wall surface is defined as

qm = –D
(

∂C
∂y

)
y=

= –D
(Cw – C∞)

x

√
U∞x
νf ξ

Φ ′(, ξ ), (.)

and the local Sherwood number (mass transfer coefficient) is obtained as

Shx =
xqm

D(Cw – C∞)
. (.)

The dimensionless wall mass transfer rate is obtained as

Shx = –ξ– 
 Re



x Φ ′(, ξ ), (.)

where Rex represents the local Reynolds number and is defined as

Rex =
xu∞
νf

. (.)

4 Cases of special interest
In this section we highlight two particular cases where equations (.) to (.) reduce to
ordinary differential equations.

4.1 Initial steady flow
For steady flow and a regular fluid, if we assume that ξ → , where  < ξ ≤ , then t ≈ .
Thus f (η, ξ ) ≈ f (η), θ (η, ξ ) ≈ θ (η) and Φ(η, ξ ) ≈ Φ(η). In this case equations (.) to (.)
reduce to

f ′′′ +


φηf ′′ = , (.)

θ ′′ +



kf

knf
Prφηθ ′ +

kf

knf
PrDf Φ

′′ = , (.)

Φ ′′ +



ScηΦ ′ + ScSrθ ′′ = , (.)
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subject to the appropriately modified boundary conditions (.). The exact solutions of
these equations cannot be easily obtained. The numerical solutions were obtained using
the spectral relaxation method (SRM).

4.2 Final steady state flow
In this case, we have ξ =  when t → ∞, corresponding to f (η, ) = f (η), θ (η, ) = θ (η) and
Φ(η, ) = Φ(η). Equations (.) to (.) reduce to the following forms:

f ′′′ + ff ′′ – f ′ +  + Ha( – f ′) + GRtθ + GrcΦ = , (.)

θ ′′ +
kf

knf
Prφ

(
f θ ′ + δθ

)
+

kf

knf
PrDf Φ

′′ = , (.)

Φ ′′ + Sc
(
f Φ ′ – γΦ + Srθ ′′) = , (.)

subject to the boundary conditions (.). Equations (.) to (.) were solved using the
SRM, Motsa [].

The spectral relaxation method (SRM) is an iterative procedure that employs the Gauss-
Seidel type of relaxation approach to linearize and decouple the system of differential
equations. Further details of the rules of the SRM can be found in [, ]. The linear
terms in each equation are evaluated at the current iteration level (denoted by r + ) and
the non-linear terms are assumed to be known from the previous iteration level (denoted
by r). The linearized form of (.)-(.) is

f ′′′
r+ + a,rf ′′

r+ + a,rf ′
r+ – φξ ( – ξ )

∂f ′

∂ξ
= R,r , (.)

θ ′′
r+ + b,rθ

′
r+ + b,rθr+ –

kf

knf
Prφξ ( – ξ )

∂θ

∂ξ
= R,r , (.)

φ′′
r+ + cr,φ

′
r+ + c,rφr+ – Scξ ( – ξ )

∂φ

∂ξ
= R,r , (.)

where

a,r = φ

[
η


( – ξ ) + ξ fr

]
, a = –φξHa,

R,r = –φ
[
ξ
(
 – f ′

r
)

+ Ha + Grtθr + Grcφr
]
,

b,r =
kf

knf
Prφ

[
η


( – ξ ) + ξ fr+

]
, b,r =

kf

knf
Prφξ ,

R,r = –
kf

knf
PrDf Φr ,

c,r =
η


( – ξ )Sc + ξ fr+, c,r = –Scξγ ,

R,r = –ScSrθ ′′
r+.

Equations (.)-(.) are now linear and decoupled. The equations can be solved sequen-
tially to obtain approximate solutions for f (η, ξ ), θ (η, ξ ) and φ(η, ξ ). In this study, the
Chebyshev spectral collocation method was used to discretize in η and finite differences
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used to discretize in ξ directions. Starting from initial guesses for f , θ and φ, equations
(.)-(.) were solved iteratively until the approximate solutions converged within a cer-
tain prescribed tolerance level. The accuracy of the results was validated against results
from the literature for some special cases of the governing equations.

5 Results and discussion
The system of partial differential equations (.) to (.) subject to boundary conditions
(.) were solved numerically using the spectral relaxation method (SRM) for Cu-water
and Ag-water nanofluids. The thermophysical properties of the nanofluids used in the
numerical simulations are given in Table .

To determine the accuracy of our numerical results, the skin friction coefficient is com-
pared with the published results of Jafar et al. [], Wang [] and Suali et al. [] in Ta-
bles -. Here we have varied the stretching parameter while keeping other physical pa-
rameters fixed. Table  gives a comparison of the SRM results with those obtained by Jafar
et al. [] and Wang [] when Ha = Grt = Grc = δ = Df = Sc = Sr = γ = φ = , Pr =  and
ξ =  for different values of the stretching/shrinking parameter. It is observed that for in-
creasing λ, the present results are in good agreement with results in the literature.

Table  gives the skin friction coefficient for selected stretching λ parameter values. Here
we note that as the stretching rate decreases, the skin friction coefficient increases. These
results are in good agreement with those obtained by Suali et al. [].

The effects of the nanoparticle volume fraction on the fluid velocity, temperature, con-
centration profiles as well as skin friction, local Nusselt and Sherwood numbers are given

Table 1 Thermophysical properties of the base fluid and the nanoparticles [29] and [30]

Physical properties Base fluid (Water) Copper (Cu) Silver (Ag)

Cp (J/kgK) 4,179 385 235
ρ (Kg/m3) 997.1 8,933 10,500
k (W/mK) 0.613 401 429
α × 107 (m2/s) 1.47 1,163.1 1,738.6
β × 105 (K–1) 21 1.67 1.89

Table 2 Comparison of the SRM result with Wang [31] and Jafar et al. [15] for the skin friction
coefficient f ′′(0, 1) for different stretching rates

λ Wang [31] Jafar et al. [15] Present result (SRM)

f ′′(0, 1) f ′′(0, 1) f ′′(0, 1)

0 1.232588 1.2326 1.23258
0.1 1.14656 1.1466 1.14655
0.2 1.05113 1.0511 1.05112
0.5 0.71330 0.7133 0.71328
1 0.00000 0.00000 0.00000
2 –1.88731 –1.8873 –1.88690
5 –10.26475 –10.2648 –10.24531

Table 3 Comparison of the SRM results with Wang [31] and Jafar et al. [15] for the skin friction
coefficient f ′′(0, 1) for different stretching rates

λ –0.25 –0.5 –0.75 –1

Wang [31] 1.40224 1.49576 1.48930 1.32882
Jafar et al. [15] 1.4022 1.4957 1.4893 1.32880
SRM result 1.40224 1.49565 1.48913 1.32795
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Table 4 Comparison of the SRM result with Suali et al. [32] for the skin friction coefficient for
different stretching/shrinking sheet rates

λ Suali et al. [32] SRM result

f ′′(0, 1) f ′′(0, 1)

4 –7.086378 –7.086378
3 –4.276545 –4.276542
0.2 1.051130 1.051130
0.1 1.146561 1.146561

–0.2 1.373886 1.373886
–0.5 1.495672 1.495670

Figure 1 Effect of nanoparticle value fraction φ
on velocity for Df = 0.01, λ = 0.5, Grt = 0.01,
Grc = 0.01, Pr = 7, Ha = 2, δ = 0.1, Sc = 1, Sr = 1,
fw = 1, γ = 0.1 and ξ = 0.5.

Figure 2 Effect of various nanoparticle value fractions φ on (a) temperature profiles and
(b) concentration profiles when Df = 0.01, λ = 0.5, Grt = 0.01, Grc = 0.01, Pr = 7, Ha = 2, δ = 0.1, Sc = 1,
Sr = 1, fw = 1, γ = 0.1 and ξ = 0.5.

in Figures -. It is evident that the solute concentration, skin friction and the local Nusselt
number decrease with increasing nanoparticle volume fraction while the velocity, tem-
perature, and the local Sherwood number increase. This is because with an increase in
nanoparticles volume fraction, the thermal conductivity of the nanofluid increases, which
reduces the thermal boundary layer thickness and the temperature gradient at the wall.

The axial velocity in the case of an Ag-water nanofluid is comparatively higher than
that in the case of a Cu-water nanofluid. The temperature distribution in an Ag-water
nanofluid is higher than that in a Cu-water nanofluid and this is explained by the observa-
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Figure 3 Effect of various nanoparticle value
fractions φ on the skin friction coefficient for
Df = 0.01, λ = 0.5, Grt = 0.01, Grc = 0.01, Pr = 7,
Ha = 2, δ = 0.1, Sc = 1, Sr = 1, fw = 1 and γ = 0.1.

Figure 4 Effect of nanoparticle volume fraction φ on (a) the heat transfer coefficient and (b) the mass
transfer coefficient when Df = 0.01, λ = 0.5, Grt = 0.01, Grc = 0.01, Pr = 7, Ha = 2, δ = 0.1, Sc = 1, Sr = 1,
fw = 1 and γ = 0.1.

tion that the thermal conductivity of silver is higher than that of copper. The concentration
boundary layer thickness is higher for the case of a Cu-water than that for the case of an
Ag-water nanofluid.

Figure  shows that the skin friction coefficient decreases monotonically with increas-
ing ξ . The result is true for both types of fluids. The maximum value of the skin fric-
tion in the case of a Cu-water nanofluid is achieved at a smaller value of ξ in compari-
son with an Ag-water nanofluid. Furthermore, in this paper it is found that the Ag-water
nanofluid shows less drag as compared to the Cu-water nanofluid. The dimensionless wall
heat transfer rate and the dimensionless wall mass transfer rate are shown as functions of
ξ in Figure (a) and (b), respectively. We observe that the wall heat transfer rate decreases
while the opposite is true in case of the wall mass transfer rate. The Cu-water nanofluid
exhibits higher wall heat transfer rate as compared to the Ag-water nanofluid, while the
Cu-water nanofluid exhibits less than the Ag-water nanofluid. The presence of nanopar-
ticle tends to increase the wall heat transfer rate and to reduce the wall mass transfer rates
with increasing the values of ξ .

Figures - show the influence of the Hartmann number on the velocity, temperature,
skin friction, the local Nusselt number and the local Sherwood number. The effect of the
Hartmann number Ha is to increase the nanofluid velocity and the wall heat transfer rate,
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Figure 5 Effect of the Hartmann number Ha on velocity profiles for Df = 0.01, φ = 0.2, Grt = 0.01,
Grc = 0.01, Pr = 7, fw = 1, δ = 0.1, Sc = 1, Sr = 1, λ = –1.15, γ = 3 and ξ = 0.5.

Figure 6 Effect of the Hartmann number Ha on
the skin friction coefficient for Df = 0.01, φ = 0.2,
Grt = 0.01, Grc = 0.01, Pr = 7, fw = 1, δ = 0.1,
Sc = 1, Sr = 1, λ = –1.15 and γ = 3.

Figure 7 Effect of various values of the Hartmann number Ha on (a) the heat transfer coefficient and
(b) the mass transfer coefficient when Df = 0.01, φ = 0.2, Grt = 0.01, Grc = 0.01, Pr = 7, fw = 1, δ = 0.1,
Sc = 1, Sr = 1, λ = –1.15 and γ = 3.
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whereas it reduced the skin friction coefficient and the wall mass transfer rate. A simi-
lar observation was made by Jafar et al. []. The momentum boundary layer thickness
increases with increase in the Hartmann number.

Figure  shows the skin friction coefficient as a function of ξ . It is clear that for Ag-water
and Cu-water nanofluids, the skin friction reduces when ξ increases. We note that the Cu-
water nanofluid exhibits higher drag to the flow as compared to the Ag-water nanofluid.
Figure  shows the wall heat and mass transfer rates for a different Hartmann number Ha,
it is clear that the value of wall heat transfer rate increases as ξ increases, in the case of
an Ag-water nanofluid it is less than in the case of a Cu-water nanofluid. Further, the wall
mass transfer rate increases up to the value of ξ before reducing.

Figures - show the velocity, temperature, concentration of nanofluid with skin fric-
tion, the wall heat and mass transfer rates for various values of the suction/injection pa-
rameter. We observe that the velocity boundary layer thickness decreases with increasing
values of the suction parameter. This is because due to suction, the fluid is removed from
the system which reduces the momentum boundary layer thickness. Similarly, the bound-

Figure 8 Effect of suction/injection on velocity profiles when Df = 0.01, φ = 0.2, Grt = 0.01, Grc = 0.01,
Pr = 7, Ha = 2, δ = 0.2, Sc = 1, Sr = 1, λ = 0.5, γ = 3 and ξ = 0.5.

Figure 9 Effect of suction/injection on (a) temperature profiles and (b) concentration profiles for
Df = 0.01, φ = 0.2, Grt = 0.01, Grc = 0.01, Pr = 7, Ha = 2, δ = 0.2, Sc = 1, Sr = 1, λ = 0.5, γ = 3 and ξ = 0.5.
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Figure 10 Effect of the suction/injection
parameter on the skin friction coefficient for
Df = 0.01, φ = 0.2, Grt = 0.01, Grc = 0.01, Pr = 7,
Ha = 2, δ = 0.2, Sc = 1, Sr = 1, λ = 0.5 and γ = 3.

Figure 11 Effect of the suction/injection parameter on (a) the heat transfer coefficient and (b) the
mass transfer coefficient when Df = 0.01, φ = 0.2, Grt = 0.01, Grc = 0.01, Pr = 7, Ha = 2, δ = 0.2, Sc = 1,
Sr = 1, λ = 0.5 and γ = 3.

ary layer thickness increases with increase of the injection parameter as injection allows
the fluid to enter the system. The thermal boundary layer thickness decreases due to in-
jection, while it increases with suction. The effect of the suction/injection parameter is
to increase the concentration profile at the surface. Beyond this critical value, the con-
centration profile decreases with increasing suction/injection. The solute concentration
boundary layer thickness is larger for the case of a Cu-water nanofluid than that for the
case of an Ag-water nanofluid (see Figure ). The skin friction coefficient decreases with
increasing the values of ξ . It is obvious that the skin friction for the case of an Ag-water
nanofluid is relatively less than that for the case of a Cu-water nanofluid (see Figure ).

The axial distributions of the wall heat and mass transfer rates are shown in Figure (a)
and (b), respectively. The wall heat transfer rate increased with ξ , and we observe that the
heat transfer rate is higher for a Cu-water nanofluid than for an Ag-water nanofluid. It is
interesting to note that with suction (fw = –), the heat transfer rate is less for an Ag-water
nanofluid than for a Cu-water nanofluid up to a certain value of ξ . Beyond this point, the
heat transfer rate is higher for an Ag-water nanofluid as compared to a Cu-water nanofluid,
while the wall mass transfer rate increases monotonically with ξ to a maximum values
before reducing. It is shown that the mass transfer rate is higher for a Cu-water nanofluid
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Figure 12 Effect of stretching/shrinking parameter values λ on velocity profiles for Df = 0.01, φ = 0.2,
Grt = 0.01, Grc = 0.01, Pr = 7, Ha = 2, δ = 0.1, Sc = 1, Sr = 1, fw = 1, γ = 0.1 and ξ = 0.5.

Figure 13 Effect of various stretching/shrinking parameter values λ on (a) temperature profiles and
(b) concentration profiles for Df = 0.01, φ = 0.2, Grt = 0.01, Grc = 0.01, Pr = 7, Ha = 2, δ = 0.1, Sc = 1,
Sr = 1, fw = 1, γ = 0.1 and ξ = 0.5.

than for an Ag-water nanofluid. The opposite behavior is observed in the case of suction
when fw = –. The mass transfer rate for an Ag-water nanofluid is higher than that for
a Cu-water nanofluid up to a certain value of ξ , and beyond this critical value, the mass
transfer in an Ag-water nanofluid is less than that in a Cu-water nanofluid, Figure (b).

The influence of stretching/shrinking on velocity, temperature, solutal concentration
profiles, the skin friction coefficient, wall heat and mass transfer rates are shown in Fig-
ures -. Figure  shows that the momentum boundary layer thickness increases with
the stretching/shrinking rate. This may be attributed to the fact than an increase in the
stretching parameter enhances the velocity of the nanofluid which in turn enhances the
momentum boundary layer thickness.

Figure  shows that the thermal and concentration boundary layer thicknesses decrease
as the stretching rate increases. For the shrinking case, when λ = –, the momentum
boundary layer for an Ag-water nanofluid is greater than that for a Cu-water nanofluid,
while the opposite is observed for the stretching case when λ = . The Ag-water nanofluid
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Figure 14 Effect of stretching/shrinking
parameter values λ on the skin friction
coefficient for Df = 0.01, φ = 0.2, Grt = 0.01,
Grc = 0.01, Pr = 7, Ha = 2, δ = 0.1, Sc = 1, Sr = 1,
fw = 1 and γ = 0.1.

Figure 15 Effect of various stretching/shrinking parameter values λ on (a) the heat transfer
coefficient and (b) the mass transfer coefficient for Df = 0.01, φ = 0.2, Grt = 0.01, Grc = 0.01, Pr = 7,
Ha = 2, δ = 0.1, Sc = 1, Sr = 1, fw = 1 and γ = 0.1.

thermal boundary is higher than that of a Cu-water nanofluid (see Figure (a)). The solu-
tal concentration increases up to a critical η, and beyond this critical value the concentra-
tion profile decreases (see Figure (b)). We observe that solute concentration profiles are
larger for the case of a Cu-water than those for the case of an Ag-water nanofluid for the
shrinking sheet with λ = –, while the opposite is true for the stretching sheet with λ = .

Figure  shows the effect of stretching/shrinking on the shear stress, while Figure 
shows the effect of the stretching rate on the wall heat and mass transfer rates. From Fig-
ure  we note that the shear stress increases with the stretching/shrinking parameter.
The shear stress decreases with ξ . Figure (a) shows that the heat transfer rate increases
with increasing λ. The mass transfer at the wall decreases with the increase in λ. The heat
transfer rate is larger for the case of an Ag-water nanofluid compared to that of a Cu-water
nanofluid, while the opposite is true for the mass transfer rate (see Figure ).

6 Conclusions
We have investigated heat and mass transfer in unsteady MHD mixed convection in a
nanofluid due to a stretching/shrinking sheet with heat generation and viscous dissipation.
Other parameters of interest in this study included the Soret and Dufour effects. In this
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paper we considered Cu-water and Ag-water nanofluids and assumed that the nanoparti-
cle volume fraction can be actively controlled at the boundary surface. We have solved the
model equations using the spectral relaxation method, and to benchmark our solutions,
we compared our results with some limiting cases from the literature. These results were
found to be in good agreement.

The numerical simulations show, inter alia, that the skin friction factor increases with
both an increase in the nanoparticle volume fraction and the stretching rate and that an
increase in the nanoparticle volume fraction leads to a reduction in the wall mass transfer
rate.
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