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Abstract
We discuss a non-local boundary value problem of second-order, where the involved
nonlinearity depends on the derivative and may be singular. The boundary conditions
are given by Riemann-Stieltjes integrals. We establish sufficient conditions for the
existence of positive solutions of the considered problem. Our approach is based on
the Krasnoselskii-Guo fixed point theorem on cone expansion and compression.
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1 Introduction
In the paper we are interested in the existence of positive solutions for the following sin-
gular non-local boundary value problem (BVP):

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) + f (t,u(t),u′(t)) = , t ∈ [, ],

au() – bu′() = α[u],

u′() = β[u].

()

Throughout the paper we assume that:
(H) a >  and b > ,
(H) f is continuous and nonnegative on [, ]× (,∞)× (,∞),

and we consider f to be singular at the value  of its space variables, that is, f may be
singular in its second and third variable. The boundary conditions (BCs) involve linear
functionals given by Riemann-Stieltjes integrals

α[u] =
∫ 


u(s)dA(s) and β[u] =

∫ 


u(s)dB(s),

such that:
(H) A and B are of bounded variation, and dA and dB are positivemeasures.
Many interesting results on the existence of solutions for the BVPs singular in the inde-

pendent and/or the dependent variables can be found in the monographs [] and [] and
in the recent papers; see for example [–] and []. Some of the techniques applied to
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the singular BVPs are based on the fixed point theorems in cones (see [–] and []). For
othermethods, including Leray-Schauder alternative and a priori bounds, see for example
[, , , , ] and the references therein.
We point out that both regular and singular BVPs under the BCs involving Riemann-

Stieltjes integrals are extensively discussed objects. We refer the reader to [, , , ]
and [] for some recent results on this topic.
A direct inspiration for studying () in the present paper were the problems considered

in [] and []. In [], Yan, O’Regan and Agarwal dealt with the following local singular
BVP:

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) + f (t,u(t),u′(t)) = , t ∈ (, ),

au() – bu′() = ,

u′() = .

()

They established the existence of multiple positive solutions using the fixed point index
technique combined with the approximation of the singular BVP () by an appropriate
sequence of regular BVPs. The nonlinearity f in () allowed to be singular in its second
and third variable. In [], Infante studied the following non-local singular BVP:

⎧
⎪⎪⎨

⎪⎪⎩

–u′′(t) = g(t)f (t,u(t)), t ∈ (, ),

u′() + α[u] = ,

σu′() + u(η) = β[u], η ∈ [, ],

with f singular in its space variable. This time the fixed point index technique was em-
ployed together with the truncation method, that is, the singular nonlinear term f was
extended to all of [, ]× [,∞) (see also [, ]).
The aim of our paper is to establish sufficient conditions for the existence of positive

solutions for (), that is, for the singular BVPwith the derivative dependence and non-local
boundary conditions. The main idea of our method is to restrict the singular nonlinear
term f to an appropriately chosen subset [, ] × [ρ,∞) × [ρ,∞) of [, ] × (,∞) ×
(,∞). Then, following to some extent the approach developed by Webb and Infante in
[], we study the existence of fixed points of a perturbed Hammerstein integral operator
of the form

Fu(t) = α[u]γ (t) + β[u]δ(t) +
∫ 


G(t, s)f

(
s,u(s),u′(s)

)
ds, ()

where G(t, s) is the Green’s function of the problem

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) = , t ∈ [, ],

au() – bu′() = ,

u′() = ,

()
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and γ and δ are the unique solutions of

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) = , t ∈ [, ],

au() – bu′() = ,

u′() = ,

and

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) = , t ∈ [, ],

au() – bu′() = ,

u′() = ,

respectively. Clearly, γ (t) = 
a and δ(t) = t + b

a . Throughout the paper we work under as-
sumption (see for example [])
(H) ( – α[γ ])( – β[δ]) – α[δ]β[γ ] �= .

This implies that () is non-resonant, that is, the following BVP:

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) = , t ∈ [, ],

au() – bu′() = α[u],

u′() = β[u],

has only the trivial solution. In order to prove the existence of a fixed point of () we make
use of theKrasnoselskii-Guo fixed point theoremon cone expansion and compression (see
[]). It is well known that the key step when one applies the Krasnoselskii-Guo result is
to find a suitable cone. We would like to point out here that in our case the choice of
a cone is determined not only by the properties of the Green’s function of () as it can
be frequently found in the literature. The technique we use essentially takes into account
the upper bound of the term f on [, ] × [ρ,R] × [ρ,R] with R being a suitable chosen
positive constant. In this way we can deal with f singular in both its space variables.

2 Preliminaries
Let ρ,ρ > . Denote by f̃ the restriction of f to [, ] × [ρ,∞) × [ρ,∞). Clearly, f̃ is
continuous and nonnegative on [, ]× [ρ,∞)× [ρ,∞) and if u is a positive solution of
the following regular BVP:

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) + f̃ (t,u(t),u′(t)) = , t ∈ [, ],

au() – bu′() = α[u],

u′() = β[u],

()

then u(t) ≥ ρ >  and u′
(t) ≥ ρ > , so u is a positive solution of ().

In what follows we will employ the Green’s function G of the homogeneous BVP ()
corresponding to (). It is easy to check that, under (H),G is given by the formula (see [])

G(t, s) =

a

⎧
⎨

⎩

at + b,  ≤ t ≤ s ≤ ,

as + b,  ≤ s ≤ t ≤ .

Then

Gt(t, s) =

⎧
⎨

⎩

,  ≤ t < s ≤ ,

,  ≤ s < t ≤ ,
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and

G(s, s)≥ G(t, s)≥ b
a + b

G(s, s) >  ()

for t, s ∈ [, ]. Now we recall some standard facts on cone theory in Banach spaces.

Definition  A nonempty subset P, P �= {}, of a real Banach space E is called a cone if P
is closed, convex and

(i) λu ∈ P for all u ∈ P and λ ≥ ,
(ii) if u, –u ∈ P, then u = .

Our existence result on positive solutions for () is based on the following Krasnoselskii-
Guo fixed point theorem on cone expansion and compression.

Theorem  [] Let P be a cone in a Banach space E and let 
, 
 be open bounded
subsets of E with  ∈ 
 and 
 ⊂ 
. If F : P ∩ (
 \ 
) → P is a completely continuous
operator such that either

◦ ‖Fu‖ ≤ ‖u‖ for every u ∈ P ∩ ∂
 and ‖Fu‖ ≥ ‖u‖ for every u ∈ P ∩ ∂
 or
◦ ‖Fu‖ ≤ ‖u‖ for every u ∈ P ∩ ∂
 and ‖Fu‖ ≥ ‖u‖ for every u ∈ P ∩ ∂
,

then F has a fixed point in P ∩ (
 \ 
).

3 Existence result for the regular BVP
In this section we state a result for the existence of a positive solution of (). For positive
numbers r and R we set

MR := max
{
f̃ (t,u, v) : (t,u, v) ∈ [, ]× [ρ,R]× [ρ,R]

}
()

and

c :=
b

a+b min{, ba }r
∫ 
 dB(s)


aR

∫ 
 dA(s) + (  +

b
a )MR + b

a min{, ba }r
∫ 
 dB(s)

. ()

Observe that (H), (H), and (H) imply

 < c <
a

a + b
. ()

In addition to (H)-(H), we make the following assumptions on the function f̃ , the
functionals α and β , and the coefficients a and b that appear in ().
We assume there exist  < r < R andM,m >  such that:
(H) b

a+b min{, ba }r ≥ ρ and cmin{, ba }r ≥ ρ.
(H) f̃ (t,u, v)≤ RM for (t,u, v) ∈ [, ]× [R b

a+b ,R]× [Rcmin{, ba },R].
(H) 

a
∫ 
 dA(s) + ( + b

a )
∫ 
 dB(s) +Mmax{ 

 +
b
a , } ≤ .

(H) f̃ (t,u, v) ≥ rm for (t,u, v) ∈ [, ]× [r b
a+b , r]× [rcmin{, ba }, r].

(H) b
a+b min{, ba }[ a

∫ 
 dA(s) + ( + b

a )
∫ 
 dB(s)] +


m ≥ .
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Theorem  Under the assumptions (H)-(H), the regular BVP () has a solution u, posi-
tive on [, ], with

b
a + b

min

{

,
b
a

}

r ≤ u(t) ≤ R

and

cmin

{

,
b
a

}

r ≤ u′(t)≤ R.

Proof Let C[, ] denote a Banach space of continuously differentiable functions with the
norm

‖u‖ = max
{‖u‖∞,

∥
∥u′∥∥∞

}
,

where

‖u‖∞ = max
{∣
∣u(t)

∣
∣ : t ∈ [, ]

}
.

Let

P =
{

u ∈ C[, ] : u(t) ≥ b
a + b

‖u‖∞,u() ≥ b
a
∥
∥u′∥∥∞, and u′(t) ≥ c‖u‖∞ on [, ]

}

.

Then P is a cone in C[, ]. Observe that the constant c that appears in P involves the
maximum MR of f̃ on the set [, ]× [ρ,R]× [ρ,R] (see () and ()). Moreover, if u ∈ P,
then u is increasing on [, ] and

u(t) ≥ b
a + b

‖u‖∞ ≥ b
a + b

u() ≥ b

a(a + b)
∥
∥u′∥∥∞.

Hence

u(t) ≥ max

{
b

a + b
‖u‖∞,

b

a(a + b)
∥
∥u′∥∥∞

}

≥ b
a + b

min

{

,
b
a

}

max
{‖u‖∞,

∥
∥u′∥∥∞

}

=
b

a + b
min

{

,
b
a

}

‖u‖. ()

We also have

u′(t)≥ c‖u‖∞ ≥ c
b
a
∥
∥u′∥∥∞.

Hence

u′(t)≥ cmax

{

‖u‖∞,
b
a
∥
∥u′∥∥∞

}

≥ cmin

{

,
b
a

}

‖u‖. ()

Let


 =
{
u ∈ C[, ] : ‖u‖ < r

}
and 
 =

{
u ∈ C[, ] : ‖u‖ < R

}
.
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For u ∈ P ∩ (
 \ 
) consider the operator ()

Fu(t) = α[u]γ (t) + β[u]δ(t) +
∫ 


G(t, s)f

(
s,u(s),u′(s)

)
ds,

that is,

Fu(t) = α[u]

a
+ β[u]

(

t +
b
a

)

+
∫ 


G(t, s)̃f

(
s,u(s),u′(s)

)
ds.

It is clear that every fixed point of F is a solution of () (see for example [] and []). We
will show that F fulfills the assumptions of Theorem . First we prove that F : P ∩ (
 \

) → P. If u ∈ P ∩ (
 \ 
) then Fu ∈ C[, ] and by () we have

b
a + b

‖Fu‖∞ ≤ b
a + b

(

α[u]

a
+ β[u]

(

 +
b
a

)

+
∫ 


G(s, s)̃f

(
s,u(s),u′(s)

)
ds

)

≤ α[u]

a
+ β[u]

(

t +
b
a

)

+
b

a + b

∫ 


G(s, s)̃f

(
s,u(s),u′(s)

)
ds

≤ α[u]

a
+ β[u]

(

t +
b
a

)

+
∫ 


G(t, s)̃f

(
s,u(s),u′(s)

)
ds = Fu(t).

Since

(Fu)′(t) = β[u] +
∫ 

t
f̃
(
s,u(s),u′(s)

)
ds≤ β[u] +

∫ 


f̃
(
s,u(s),u′(s)

)
ds,

we get

Fu() = α[u]

a
+ β[u]

b
a
+
b
a

∫ 


f̃
(
s,u(s),u′(s)

)
ds

≥ b
a

(

β[u] +
∫ 


f̃
(
s,u(s),u′(s)

)
ds

)

≥ b
a
∥
∥(Fu)′

∥
∥∞.

To show that (Fu)′(t)≥ c‖Fu‖∞, we observe first that for t ∈ [, ] we have

(Fu)′(t) = β[u] +
∫ 

t
f̃
(
s,u(s),u′(s)

)
ds≥ β[u].

On the other hand, () and () give

‖Fu‖∞ ≤ α[u]

a
+ β[u]

(

 +
b
a

)

+
∫ 


G(s, s)̃f

(
s,u(s),u′(s)

)
ds

≤ α[u]

a
+ β[u]

(

 +
b
a

)

+MR

∫ 


G(s, s)ds

= α[u]

a
+ β[u]

(

 +
b
a

)

+
(


+
b
a

)

MR.
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By (H) and () we obtain

β[u] =
∫ 


u(s)dB(s)≥ b

a + b
min

{

,
b
a

}

‖u‖
∫ 


dB(s)

≥ b
a + b

min

{

,
b
a

}

r
∫ 


dB(s), ()

and

α[u] =
∫ 


u(s)dA(s) ≤ R

∫ 


dA(s). ()

Moreover, we can rewrite () as

(

 – c
(

 +
b
a

))
b

a + b
min

{

,
b
a

}

r
∫ 


dB(s) = c

(

a
R

∫ 


dA(s) +

(


+
b
a

)

MR

)

. ()

Then () combined with (), (), and () implies

(

 – c
(

 +
b
a

))

β[u] ≥ c
(

α[u]

a
+

(


+
b
a

)

MR

)

,

and therefore

β[u] ≥ c
(

α[u]

a
+ β[u]

(

 +
b
a

)

+
(


+
b
a

)

MR

)

,

which gives (Fu)′(t) ≥ c‖Fu‖∞. Thus F maps P ∩ (
 \ 
) to P. By standard arguments
we can show that F is completely continuous on P ∩ (
 \ 
). Let u ∈ P ∩ ∂
. Then,
in particular, ‖u‖ = R, R b

a+b ≤ u(t) ≤ R and Rcmin{, ba } ≤ u′(t) ≤ R. Since dA and dB are
positive measures, we get by (H)

‖Fu‖∞ = (Fu)() = α[u]

a
+ β[u]

(

 +
b
a

)

+
∫ 


G(s, s)̃f

(
s,u(s),u′(s)

)
ds

≤ 
a
‖u‖∞

∫ 


dA(s) +

(

 +
b
a

)

‖u‖∞
∫ 


dB(s) +


a
RM

∫ 


(as + b)ds

≤
[

a

∫ 


dA(s) +

(

 +
b
a

)∫ 


dB(s) +


a
M

(
a

+ b

)]

R ()

and

∥
∥(Fu)′

∥
∥∞ ≤ ‖u‖∞

∫ 


dB(s) +

∫ 


f̃
(
s,u(s),u′(s)

)
ds≤

(∫ 


dB(s) +M

)

R. ()

Thus, (H), (), and () imply

‖Fu‖ = max
{‖Fu‖∞,

∥
∥(Fu)′

∥
∥∞

}

≤
[

a

∫ 


dA(s) +

(

 +
b
a

)∫ 


dB(s) +Mmax

{

,


+
b
a

}]

R ≤ R = ‖u‖.

http://www.boundaryvalueproblems.com/content/2014/1/200


Zima Boundary Value Problems 2014, 2014:200 Page 8 of 9
http://www.boundaryvalueproblems.com/content/2014/1/200

For u ∈ P ∩ ∂
 we have ‖u‖ = r, r b
a+b ≤ u(t) ≤ r and rcmin{, ba } ≤ u′(t)≤ r. Hence, from

(H) and (H), we obtain

‖Fu‖ ≥ ‖Fu‖∞ = Fu() = α[u]

a
+ β[u]

(

 +
b
a

)

+
∫ 


G(s, s)̃f

(
s,u(s),u′(s)

)
ds

≥ b
a(a + b)

min

{

,
b
a

}

r
∫ 


dA(s)

+
(

 +
b
a

)
b

a + b
min

{

,
b
a

}

r
∫ 


dB(s) + rm

∫ 


G(s, s)ds

=
[

b
a(a + b)

min

{

,
b
a

}∫ 


dA(s)

+
(

 +
b
a

)
b

a + b
min

{

,
b
a

}∫ 


dB(s) +



m

]

r ≥ r = ‖u‖.

Application of Theorem  yields the result. �

Remark  In [] the authors used the cone

P =
{

u ∈ C[, ] : u(t) ≥ b
a + b

‖u‖∞ on [, ],u()≥ b
a
∥
∥u′∥∥∞

}

.

The cone we consider in the proof of Theorem  is of the form

P =
{

u ∈ C[, ] : u(t) ≥ b
a + b

‖u‖∞,u() ≥ b
a
∥
∥u′∥∥∞, and u′(t) ≥ c‖u‖∞ on [, ]

}

,

which provides the lower bound not only for u(t) but for u′(t) as well (see () and ()).
Since it is sufficient for our method to work that F defined in () maps P ∩ (
 \ 
) to P,
we would like to emphasize here that we do not need F to be positive on P.

Remark  Observe that Theorem  implies the existence of a positive solution of ().
Indeed, by (H), a solution u of () evidently satisfies u(t) ≥ b

a+b min{, ba }r ≥ ρ and u′(t) ≥
cmin{, ba }r ≥ ρ on [, ].

We conclude this section with one numerical example illustrating Theorem . Some
calculations have been made here with MAPLE.

Example  Consider the following four-point boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) + h(t)( .
u(t) +

.
u′(t) ) = , t ∈ [, ],

u() – u′() = 
u(


 ),

u′() = 
u(


 ),

()

where the function h is continuous on [, ] and  ≤ h(t) ≤  on [, ]. In this case,
f (t,u, v) = h(t)( .u + .

v ), a = b = , α[u] = 
u(


 ) and β[u] = 

u(

 ). Fix ρ = . and

ρ = .. For r = 
 and R =  we have MR =  and c = 

 ≈ . and we can take
M = 

 and m = . By Theorem , the BVP () has a solution u such that 
 ≤ ‖u‖ ≤ ,


 ≤ u(t) ≤  and 

 ≤ u′(t)≤  on [, ].
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2. Rachůnková, I, Staněk, S, Tvrdý, M: Solvability of Nonlinear Singular Problems for Ordinary Differential Equations.

Hindawi, New York (2008)
3. Liu, Z, Ume, JS, Anderson, DR, Kang, SM: Twin monotone positive solutions to a singular nonlinear third-order

differential equation. J. Math. Anal. Appl. 334, 299-313 (2007)
4. Yan, B, O’Regan, D, Agarwal, RP: Multiple positive solutions of singular second order boundary value problems with

derivative dependence. Aequ. Math. 74, 62-89 (2007)
5. Infante, G: Positive solutions of nonlocal boundary value problems with singularities. Discrete Contin. Dyn. Syst.

suppl., 377-384 (2009)
6. Suna, Y, Liu, L, Zhanga, J, Agarwal, RP: Positive solutions of singular three-point boundary value problems for

second-order differential equations. J. Comput. Appl. Math. 230, 738-750 (2009)
7. Chu, J, Fan, N, Torres, PJ: Periodic solutions for second order singular damped differential equations. J. Math. Anal.

Appl. 388, 665-675 (2012)
8. Fewster-Young, N, Tisdell, CC: The existence of solutions to second-order singular boundary value problems.

Nonlinear Anal. 75, 4798-4806 (2012)
9. Webb, JRL: Existence of positive solutions for a thermostat model. Nonlinear Anal., Real World Appl. 13, 923-938

(2012)
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