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1 Statement of the problem and formulation of the results
In the present paper, we consider the system of nonlinear impulsive equations with a finite
number of impulse points

dx
dt

= f (t,x) almost everywhere on [a,b] \ {τ, . . . , τm}, (.)

x(τl+) – x(τl–) = Il
(
x(τl)

)
(l = , . . . ,m) (.)

with the general boundary value condition

h(x) = , (.)

where a < τ < · · · < τm < b (we will assume τ = a and τm+ = b, if necessary), –∞ <
a < b < +∞, m is a natural number, f belongs to Carathéodory class Car([a,b]×R

n,Rn),
Il :Rn →R

n (l = , . . . ,m) are continuous operators, and h : Cs([a,b],Rn; τ, . . . , τm ) →R
n

is a continuous, vector functional, nonlinear, in general.
In the paper sufficient conditions (among themeffective sufficient) are given for solvabil-

ity and unique solvability of the general nonlinear impulsive boundary value problem (.),
(.); (.). We established the Conti-Opial type theorems for the solvability and unique
solvability of this problem. Analogous problems are investigated in [–] (see also the ref-
erences therein) for the general nonlinear boundary value problems for ordinary differen-
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tial and functional-differential systems, and in [–] (see also the references therein) for
generalized ordinary differential systems.
Some results obtained in the paper are more general than known results even for the

ordinary differential case.
Quite a number of issues of the theory of systems of differential equations with impul-

sive effect (both linear and nonlinear) have been studied sufficiently well (for a survey of
the results on impulsive systems, see, e.g., [–] and references therein). But the above-
mentioned works, as is well known, do not contain the results obtained in the present
paper.
Throughout the paper the following notation and definitions will be used.
R = ]–∞, +∞[, R+ = [,+∞[; [a,b] (a,b ∈R) is a closed segment;
R

n×m is the space of all real n×mmatrices X = (xij)n,mi,j= with the norm

‖X‖ = max
j=,...,m

n∑

i=

|xij|;

|X| = (|xij|
)n,m
i,j=, [X]+ =

|X| +X


;

R
n×m
+ =

{
(xij)n,mi,j= : xij ≥  (i = , . . . ,n; j = , . . . ,m)

}
;

R
(n×n)×m =R

n×n × · · · ×R
n×n (m times);

R
n =R

n× is the space of all real column n-vectors x = (xi)ni=; Rn
+ =R

n×
+ ;

if X ∈ R
n×n, then X–, detX and r(X) are, respectively, the matrix inverse to X, the de-

terminant of X, and the spectral radius of X; In×n is the identity n× nmatrix;
∨b

a(X) is the variation of thematrix functionX : [a,b]→ R
n×m, i.e., the sumof variations

of the latter’s components;V (X)(t) = (v(xij)(t))n,mi,j=, where v(xij)(a) = , v(xij)(t) =
∨t

a(xij) for
a < t ≤ b;
X(t–) and X(t+) are the left and the right limits of the matrix function X : [a,b]→R

n×m

at the point t (we will assume X(t) = X(a) for t ≤ a and X(t) = X(b) for t ≥ b, if necessary);

‖X‖s = sup
{∥∥X(t)

∥∥ : t ∈ [a,b]
}
;

BV([a,b],Rn×m) is the set of all matrix functions of bounded variationX : [a,b]→R
n×m

(i.e., such that
∨b

a(X) < +∞);
C([a,b],D), whereD ⊂R

n×m, is the set of all continuousmatrix functionsX : [a,b]→D;
C([a,b],D; τ, . . . , τm ) is the set of all matrix functions X : [a,b] → D, having the one

sided limits X(τl–) (l = , . . . ,m) and X(τl+) (l = , . . . ,m), whose restrictions to an arbi-
trary closed interval [c,d] from [a,b] \ {τ, . . . , τm} belong to C([c,d],D);
Cs([a,b],Rn×m; τ, . . . , τm ) is the Banach space of all matrix functions X ∈ C([a,b],

R
n×m; τ, . . . , τm ) with the norm ‖X‖s;
C̃([a,b],D), where D ⊂ R

n×m, is the set of all absolutely continuous matrix functions
X : [a,b]→D;
C̃([a,b],D; τ, . . . , τm ) is the set of all matrix functions X : [a,b] → D, having the one

sided limits X(τl–) (l = , . . . ,m) and X(τl+) (l = , . . . ,m), whose restrictions to an arbi-
trary closed interval [c,d] from [a,b] \ {τk}m

k= belong to C̃([c,d],D).
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If B and B are normed spaces, then an operator g : B → B (nonlinear, in general) is
positive homogeneous if g(λx) = λg(x) for every λ ∈R+ and x ∈ B.
The inequalities between the matrices are understood componentwise.
An operator ϕ : C([a,b],Rn×m; τ, . . . , τm ) → R

n is called nondecreasing if for every
x, y ∈ C([a,b],Rn×m; τ, . . . , τm ) such that x(t)≤ y(t) for t ∈ [a,b] the inequality ϕ(x)≤ ϕ(y)
holds.
A matrix function is said to be continuous, nondecreasing, integrable, etc., if each of its

components is.
L([a,b],D), whereD ⊂R

n×m, is the set of all measurable and integrablematrix functions
X : [a,b]→D.
If D ⊂ R

n and D ⊂ R
n×m, then Car([a,b] × D,D) is the Carathéodory class, i.e., the

set of all mappings F = (fkj)n,mk,j= : [a,b]×D → D such that:
(a) the function fkj(·,x) : [a,b]→ D is measurable for every x ∈ D;
(b) the function fkj(t, ·) :D → D is continuous for almost all t ∈ [a,b], and

sup
{∣∣fkj(·,x)

∣∣ : x ∈D
} ∈ L

(
[a,b],R

)

for every compact D ⊂D (k = , . . . ,n; j = , . . . ,m).

Car([a,b] × D,D) is the set of all mappings F = (fkj)n,mk,j= : [a,b] × D → D such that
the functions fkj(·,x(·)) (k = , . . . ,n; j = , . . . ,m) are measurable for every vector function
x : [a,b]→R

n with bounded variation.
By a solution of the impulsive system (.), (.) we understand a vector function x ∈

C̃([a,b],Rn; τ, . . . , τm ), continuous from the left, satisfying both the system (.) a.e. on
[a,b] \ {τ, . . . , τm} and the relation (.) for every k ∈ {, . . . ,m}.

Definition . Let � : Cs([a,b],Rn; τ, . . . , τm ) → R
n be a linear continuous operator, and

let � : Cs([a,b],Rn; τ, . . . , τm ) → R
n
+ be a positive homogeneous operator. We say that

a pair (P, {Jl}m
l=), consisting of a matrix function P ∈ Car([a,b] × R

n,Rn×n) and a finite
sequence of continuous operators Jl = (Jli)ni= : Rn → R

n (l = , . . . ,m), satisfy the Opial
condition with respect to the pair (�,�) if:
(a) there exist a matrix function � ∈ L([a,b],Rn×n

+ ) and constant matrices �l ∈ R
n×n

(l = , . . . ,m) such that

∣∣P(t,x)
∣∣ ≤ �(t) a.e. on [a,b],x ∈ R

n (.)

and

∣∣Jl(x)
∣∣ ≤ �l for x ∈R

n (l = , . . . ,m); (.)

(b)

det(In×n +Gl) 	=  (l = , . . . ,m) (.)

and the problem

dx
dt

= A(t)x a.e. on [a,b] \ {τ, . . . , τm}, (.)

http://www.boundaryvalueproblems.com/content/2014/1/157
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x(τl+) – x(τl–) =Glx(τl) (l = , . . . ,m); (.)
∣
∣�(x)

∣
∣ ≤ �(x) (.)

has only the trivial solution for every matrix function A ∈ L([a,b],Rn×n) and constant
matrices Gl (l = , . . . ,m) for which there exists a sequence yk ∈ C̃([a,b],Rn; τ, . . . , τm )
(k = , , . . . ) such that

lim
k→+∞

∫ t

a
P
(
τ , yk(τ )

)
dτ =

∫ t

a
A(τ )dτ uniformly on [a,b] (.)

and

lim
k→+∞

Jl
(
yk(τl)

)
=Gl (l = , . . . ,m). (.)

Remark . Note that, due to the condition (.), the condition (.) holds if

‖�l‖ <  (l = , . . . ,m).

Below, we will assume that f = (fi)ni= ∈ Car([a,b] × R
n,Rn) and, in addition, f (τl,x) can

be arbitrary for x ∈R
n and l = , . . . ,m.

Theorem . Let the conditions

∥
∥f (t,x) – P(t,x)x

∥
∥ ≤ α

(
t,‖x‖) a.e. on [a,b] \ {τ, . . . , τm},x ∈R

n, (.)
∥∥Il(x) – Jl(x)x

∥∥ ≤ βl
(‖x‖) for x ∈ R

n (l = , . . . ,m) (.)

and

∣
∣h(x) – �(x)

∣
∣ ≤ �(x) + �

(‖x‖s
)

for x ∈ Cs
(
[a,b],Rn; τ, . . . , τm

)
(.)

hold, where � : Cs([a,b],Rn; τ, . . . , τm ) → R
n and � : Cs([a,b],Rn; τ, . . . , τm ) → R

n
+ are,

respectively, linear continuous and positive homogeneous continuous operators, the pair
(P, {Jl}m

l=) satisfies the Opial condition with respect to the pair (�,�); α ∈ Car([a,b] ×
R+,R+) is a function nondecreasing in the second variable, and βl ∈ C(R+,R+) (l =
, . . . ,m) and � ∈ C(R+,Rn

+) are nondecreasing, respectively, functions and vector func-
tions such that

lim
ρ→+∞


ρ

(
∥∥�(ρ)

∥∥ +
∫ b

a
α(t,ρ)dt +

m∑

l=

βl(ρ)

)

= . (.)

Then the problem (.), (.); (.) is solvable.

Theorem . Let the conditions (.)-(.),

P(t) ≤ P(t,x) ≤ P(t) a.e. on [a,b] \ {τ, . . . , τm},x ∈R
n (.)

http://www.boundaryvalueproblems.com/content/2014/1/157
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and

Jl ≤ Jl(x) ≤ Jl for x ∈ R
n (l = , . . . ,m) (.)

hold, where P ∈ Car([a,b] × R
n,Rn×n), Pi ∈ L([a,b],Rn×n) (i = , ), Jil ∈ R

n×n (i =
, ; l = , . . . ,m), � : Cs([a,b],Rn; τ, . . . , τm ) → R

n and � : Cs([a,b],Rn; τ, . . . , τm ) →
R

n
+ are, respectively, linear continuous and positive homogeneous continuous operators;

α ∈ Car([a,b] × R+,R+) is a function nondecreasing in the second variable, and βl ∈
C([a,b],R+) (l = , . . . ,m) and � ∈ C(R+,Rn

+) are nondecreasing, respectively, functions
and vector function such that the condition (.) holds. Let, moreover, the condition (.)
hold and the problem (.), (.); (.) have only the trivial solution for every matrix func-
tion A ∈ L([a,b],Rn×n) and constant matrices Gl ∈R

n×n (l = , . . . ,m) such that

P(t) ≤ A(t)≤ P(t) a.e. on [a,b] \ {τ, . . . , τm},x ∈R
n (.)

and

Jl ≤ Gl ≤ Jl for x ∈ R
n (l = , . . . ,m). (.)

Then the problem (.), (.); (.) is solvable.

Remark . Theorem . is interesting only in the case when P /∈ Car([a,b] ×R
n,Rn×n),

because the theorem immediately follows from Theorem . in the case when P ∈
Car([a,b]×R

n,Rn×n).

Theorem . Let the conditions (.),

∣∣f (t,x) – P(t)x
∣∣ ≤ Q(t)|x| + q

(
t,‖x‖) a.e. on [a,b] \ {τ, . . . , τm},x ∈R

n (.)

and

∣∣Il(x) – Jlx
∣∣ ≤ Hl|x| + hl

(‖x‖) for x ∈R
n (l = , . . . ,m) (.)

hold, where P ∈ L([a,b],Rn×n), Q ∈ L([a,b],Rn×n
+ ), Jl and Hl ∈ R

n×n (l = , . . . ,m) are
constant matrices, � : Cs([a,b],Rn; τ, . . . , τm ) → R

n and � : Cs([a,b],Rn; τ, . . . , τm ) →
R

n
+ are, respectively, linear continuous and positive homogeneous continuous operators;

q ∈ Car([a,b]×R+,Rn
+) is a vector function nondecreasing in the second variable, and hl ∈

C(R+,Rn
+) (l = , . . . ,m) and � ∈ C(R+,Rn

+) are nondecreasing vector functions such that

lim
ρ→+∞


ρ

(
∥∥�(ρ)

∥∥ +
∫ b

a

∥∥q(t,ρ)
∥∥dt +

m∑

l=

∥∥hl(ρ)
∥∥
)

= .

Let,moreover, the conditions

det(In×n + Jl) 	=  (l = , . . . ,m) (.)
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and

‖Hl‖ · ∥∥(In×n + Jl)–
∥
∥ <  (l = , . . . ,m) (.)

hold and the system of impulsive inequalities

∣
∣∣
∣
dx
dt

– P(t)x
∣
∣∣
∣ ≤ Q(t)|x| a.e. on [a,b] \ {τ, . . . , τm}, (.)

∣∣x(τl+) – x(τl–) – Jlx(τl)
∣∣ ≤ Hl

∣∣x(τl)
∣∣ (l = , . . . ,m) (.)

have only the trivial solution under the condition (.). Then the problem (.), (.); (.)
is solvable.

Corollary . Let the conditions

∥
∥f (t,x) – P(t)x

∥
∥ ≤ α

(
t,‖x‖) a.e. on [a,b] \ {τ, . . . , τm},x ∈R

n, (.)
∥∥Il(x) – Jlx

∥∥ ≤ βl
(‖x‖) for x ∈R

n (l = , . . . ,m) (.)

and

∥∥h(x) – �(x)
∥∥ ≤ γ

(‖x‖s
)

for x ∈ Cs
(
[a,b],Rn; τ, . . . , τm

)
(.)

hold, where P ∈ L([a,b],Rn×n), Jl ∈ R
n×n (l = , . . . ,m) are constant matrices, � : Cs([a,b],

R
n; τ, . . . , τm ) →R

n is a linear continuous operator, α ∈ Car([a,b]×R+,R+) is a function
nondecreasing in the second variable, and βl ∈ C(R+,R+) (l = , . . . ,m) and γ ∈ C(R+,R+)
are nondecreasing functions such that

lim
ρ→+∞


ρ

(

γ (ρ) +
∫ b

a
α(t,ρ)dt +

m∑

l=

βl(ρ)

)

= . (.)

Let,moreover,

det(In×n + Jl) 	=  (l = , . . . ,m) (.)

and the impulsive system

dx
dt

= P(t)x a.e. on [a,b] \ {τ, . . . , τm}, (.)

x(τl+) – x(τl–) = Jlx(τl) (l = , . . . ,m) (.)

have only the trivial solution under the condition

�(x) = .

Then the problem (.), (.); (.) is solvable.
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For every matrix function X ∈ L([a,b],Rn×n) and a sequence of constant matrices Yk ∈
R

n×n (k = , . . . ,m) we introduce the operators

[
(X,Y, . . . ,Ym )(t)

]
 = In for a ≤ t ≤ b,

[
(X,Y, . . . ,Ym )(a)

]
i =On×n (i = , , . . . ),

[
(X,Y, . . . ,Ym )(t)

]
i+

=
∫ t

a
X(τ )

[
(X,Y, . . . ,Ym )(τ )

]
i dτ +

∑

a≤τl<t
Yl

[
(X,Y, . . . ,Ym )(τl)

]
i

for a < t ≤ b (i = , , . . . ).

(.)

Corollary . Let the conditions (.)-(.) hold, where

�(x)≡
∫ b

a
dL(t) · x(t),

P ∈ L([a,b],Rn×n), Jl ∈R
n×n (l = , . . . ,m) are constant matrices,L ∈ BV([a,b],Rn×n), α ∈

Car([a,b]×R+,R+) is a function nondecreasing in the second variable, and βl ∈ C(R+,R+)
(l = , . . . ,m) and γ ∈ C(R+,R+) are nondecreasing functions. Let, moreover, there exist
natural numbers k and m such that the matrix

Mk = –
k–∑

i=

∫ b

a
dL(t) · [(P, Jl, . . . , Jm )(t)

]
i

is nonsingular and

r(Mk,m) < , (.)

where the operators [(P, J, . . . , Jm )(t)]i (i = , , . . . ) are defined by (.), and

Mk,m =
[(|P|, |J|, . . . , |Jm |

)
(b)

]
m +

m–∑

i=

[(|P|, |J|, . . . , |Jm |
)
(b)

]
i

×
∫ b

a
dV

(
M–

k L
)
(t) · [(|P|, |J|, . . . , |Jm |

)
(t)

]
k .

Then the problem (.), (.); (.) is solvable.

Corollary . Let the conditions (.)-(.) hold, where

�(x)≡
n∑

j=

Ljx(tj), (.)

P ∈ L([a,b],Rn×n), Jl ∈ R
n×n (l = , . . . ,m) are constant matrices, tj ∈ [a,b] and Lj ∈ R

n×n

(j = , . . . ,n), α ∈ Car([a,b] × R+,R+) is a function nondecreasing in the second variable,
and βl ∈ C(R+,R+) (l = , . . . ,m) and γ ∈ C(R+,R+) are nondecreasing functions. Let,

http://www.boundaryvalueproblems.com/content/2014/1/157
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moreover, the constantmatrices Jl (l = , . . . ,m) be pairwise permutable, and let thematrix
function P satisfy the Lappo-Danilevskiῐ condition, i.e.

P(t)
∫ t

a
P(τ )dτ =

∫ t

a
P(τ )dτ · P(t) for t ∈ [a,b],

and

P(t)Jl = JlP(t) a.e. on [a,b] (l = , . . . ,m).

Then the condition

det

( n∑

j=

Lj exp
(
P(tj)

) ·
∏

a≤τl<tj

(In×n + Jl)

)

	= 

guarantees the solvability of the problem (.), (.); (.).

Corollary . Let the conditions (.)-(.) and (.) hold, where P ∈ L([a,b],Rn×n),
Jl ∈ R

n×n (l = , . . . ,m) are constant matrices, tj ∈ [a,b] and Lj ∈ R
n×n (j = , . . . ,n), α ∈

Car([a,b]×R+,R+) is a function nondecreasing in the second variable, and βl ∈ C(R+,R+)
(l = , . . . ,m) and γ ∈ C(R+,R+) are nondecreasing functions. Let, moreover, there exist
natural numbers k and m such that the matrix

Mk =
n∑

j=

k–∑

i=

Lj
[
(P, Jl, . . . , Jm )(tj)

]
i

is nonsingular and the inequality (.) holds, where

Mk,m =
[(|P|, |Jl|, . . . , |Jm |

)
(b)

]
m +

(m–∑

i=

[(|P|, |Jl|, . . . , |Jm |
)
(b)

]
i

)

×
n∑

j=

∣∣M–
k Lj

∣∣ · [(|P|, |Jl|, . . . , |Jm |
)
(tj)

]
k .

Then the problem (.), (.); (.) is solvable.

Corollary . Let the conditions (.)-(.) and (.) hold, where P ∈ L([a,b],Rn×n),
Jl ∈ R

n×n (l = , . . . ,m) are constant matrices, tj ∈ [a,b] and Lj ∈ R
n×n (j = , . . . ,n), α ∈

Car([a,b]×R+,R+) is a function nondecreasing in the second variable, and βl ∈ C(R+,R+)
(l = , . . . ,m) and γ ∈ C(R+,R+) are nondecreasing functions. Let,moreover,

det

( n∑

j=

Lj

)

	= 

hold and

r
(
L ·V (A)(b)

)
< ,

http://www.boundaryvalueproblems.com/content/2014/1/157
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where

L = In×n +

∣
∣∣
∣∣

( n∑

j=

Lj

)–∣∣∣
∣∣
·

n∑

j=

|Lj| and A =
∫ b

a

∣
∣P(t)

∣
∣dt +

m∑

l=

|Jl|.

Then the problem (.), (.); (.) is solvable.

Theorem . Let the conditions (.), (.),

∣
∣f (t,x) – f (t, y) – P(t)(x – y)

∣
∣ ≤ Q(t)|x – y|

a.e. on [a,b] \ {τ, . . . , τm},x, y ∈R
n, (.)

∣∣Il(x) – Il(y) – Jl(x – y)
∣∣ ≤ Hl|x – y| for x, y ∈ R

n (l = , . . . ,m) (.)

and

∣
∣h(x) – h(y) – �(x – y)

∣
∣ ≤ �(x – y) for x, y ∈ BV

(
[a,b],Rn) (.)

hold, where P ∈ L([a,b],Rn×n), Q ∈ L([a,b],Rn×n
+ ), Jl and Hl ∈ R

n×n (l = , . . . ,m) are
constant matrices, � : Cs([a,b],Rn; τ, . . . , τm ) → R

n and � : Cs([a,b],Rn; τ, . . . , τm ) →
R

n
+ are, respectively, linear continuous and positive homogeneous continuous operators.Let,

moreover, the system of impulsive inequalities (.), (.) have only the trivial solution
under the condition (.). Then the problem (.), (.); (.) is uniquely solvable.

2 Auxiliary propositions
Lemma . Let Y ,Yk ∈ BV([a,b],Rn×m) (k = , , . . . ) be such that

lim
k→+∞

Yk(t) = Y (t) for t ∈ [a,b]

and

∥∥Yk(t) – Yk(s)
∥∥ ≤ lk +

∥∥g(t) – g(s)
∥∥ for a≤ s ≤ t ≤ b (k = , , . . . ),

where lk ≥ , lk →  as k → +∞, and g : [a,b] → R
n is a nondecreasing vector function.

Then

lim
k→+∞

‖Yk – Y‖s = .

The proof of Lemma . is given in [].

Lemma . (Lemma on a priori estimates) Let the subsets S ⊂ L([a,b],Rn×n) and D ⊂
R

(n×n)×m , and a positive homogeneous continuous operator g : Cs([a,b],Rn; τ, . . . , τm ) →
R

n be such that:
(a) there exist amatrix function� ∈ L([a,b],Rn×n

+ ) and a constantmatrix� ∈ R
n×n
+ such

that

∣∣A(t)
∣∣ ≤ �(t) a.e. on [a,b],x ∈R

n

http://www.boundaryvalueproblems.com/content/2014/1/157
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for every A ∈ S , and

|Gl| ≤ � (l = , . . . ,m) for G = (Gl)m
l= ∈D;

(b) the condition (.) holds and the system (.), (.) has only the trivial solution under
the condition

g(x)≤  (.)

for every matrix function A ∈ S and constant matrices G, . . . ,Gm such that G =
(Gl)m

l= ∈D;
(c) if Ak ∈ S (k = , , . . . ), Gk = (Gkl)m

l= ∈ D (k = , , . . . ), A ∈ L([a,b],Rn×n) and G =
(Gl)m

l= are such that

lim
k→+∞

∫ t

a
Ak(τ )dτ =

∫ t

a
A(τ )dτ uniformly on [a,b]

and

lim
k→+∞

Gkl =Gl (l = , . . . ,m),

then A ∈ S and G = (Gl)m
l= ∈D. Then there exists a positive number ρ such that

‖x‖s ≤ ρ

[∥∥[
g(x)

]
+

∥∥

+ sup

{∥∥
∥∥x(t) – x(a) –

∫ t

a
A(τ )x(τ )dτ –

∑

τl∈[a,t[
Glx(τl)

∥∥
∥∥ : t ∈ [a,b]

}]

for x ∈ C̃
(
[a,b],Rn; τ, . . . , τm

)
,A ∈ S ,G = (Gl)m

l= ∈D.

Proof Let us assume that the statement of the lemma is not true. Then for every natural
k there exist a matrix function Ak ∈ S , a constant matrix Gk = (Gkl)m

l= ∈ D, and a vector
function xk ∈ C̃([a,b],Rn; τ, . . . , τm ) such that

‖xk‖s > k
[∥∥[

g(xk)
]
+

∥∥ + sup

{∥
∥∥
∥xk(t) – xk(a) –

∫ t

a
Ak(τ )xk(τ )dτ

–
∑

τl∈[a,t[
Gklxk(τl)

∥
∥∥
∥ : t ∈ [a,b]

}]
. (.)

Let

x̃k(t) =


‖xk‖s xk(t) for t ∈ [a,b] (k = , , . . . ),

qk(t) = x̃′
k(t) –Ak(t)̃xk(t) for a.a. t ∈ [a,b] \ {τ, . . . , τm} (k = , , . . . ),

and

hkl = x̃k(τl+) – x̃k(τl–) –Gkl̃xk(τl) (l = , . . . ,m,k = , , . . . ).

http://www.boundaryvalueproblems.com/content/2014/1/157
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Let, moreover,

Bk(t) =
∫ t

a
Ak(τ )dτ for t ∈ [a,b] (k = , , . . . ).

Then

‖̃xk‖s =  (k = , , . . . ), (.)
∥∥[
g (̃xk)

]
+

∥∥ <

k

(k = , , . . . ) (.)

and
∥∥
∥∥

∫ t

a
qk(τ )dτ +

∑

τl∈[a,t[
hkl

∥∥
∥∥ <


k

for t ∈ [a,b] (k = , , . . . ), and ‖hkl‖ < 
k
(l = , . . . ,m;k = , , . . . ). (.)

On the other hand, by the estimate (a) we have

∣∣Bk(t) – Bk(s)
∣∣ ≤

∫ t

s
�(τ )dτ for a ≤ s < t ≤ b (k = , , . . . ).

Therefore, by the Arzelá-Ascoli lemma we can assume without loss of generality that the
sequence Bk (k = , , . . . ) converges uniformly on [a,b], and the sequenceGkl (k = , , . . . )
converges for every l ∈ {, . . . ,m}.
Let

B(t) = lim
k→+∞

Bk(t) and lim
k→+∞

Gkl =Gl for t ∈ [a,b] (l = , . . . ,m). (.)

It is evident that the matrix function B is absolutely continuous. Therefore,

B(t) =
∫ t

a
A(τ )dτ for t ∈ [a,b],

where A ∈ L([a,b],Rn×n). From this and (.), by the condition (c) we have A ∈ S and
G = (Gl)m

l= ∈D.
According to (.) we can assume that the sequence x̃k(a) (k = , , . . . ) converges. It is

evident that the function x̃k is a solution of the system

dx
dt

= Ak(t)x + qk(t) a.e. on [a,b] \ {τ, . . . , τm},

x(τl+) – x(τl–) =Gklx(τl) + hkl (l = , . . . ,m)

for every natural k. Using now Theorem . of the paper [], from the conditions (a), (.),
and (.) it follows that

lim
k→+∞

‖̃xk – x‖s = , (.)

http://www.boundaryvalueproblems.com/content/2014/1/157
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where x is a solution of the system (.), (.) under the condition

x(a) = c,

and

c = lim
k→+∞

x̃k(a).

Take into account (.) and (.), we conclude g(x) ≤ . So that x is a solution of the
problem (.), (.); (.). Consequently, by the condition (b) we have x(t) ≡ . But this
contradicts the condition (.). The lemma is proved. �

3 Proof of themain results
Proof of Theorem . Let g(x) ≡ |�(x)|–�(x),S ⊂ L([a,b],Rn×n) andD ⊂R

(n×n)×m be, re-
spectively, the sets of all matrix functions A ∈ L([a,b],Rn×n) and constant matrix-vectors
G = (Gk)m

k=, satisfying the condition (.), such that the conditions (.) and (.) hold
for some sequence yl ∈ C̃([a,b],Rn; τ, . . . , τm ) (l = , , . . . ). By virtue of Definition . the
conditions (a), (b), (c) of Lemma . are fulfilled for the sets S and D.
Let ρ be the positive number appearing in the conclusion of Lemma .. According to

the condition (.) there exists a positive number ρ such that

ρ

(
∥∥�(ρ)

∥∥ +
∫ b

a
α(t,ρ)dt +

m∑

l=

βl(ρ)

)

< ρ for ρ ≥ ρ. (.)

Assume

q(t,x) = f (t,x) – P(t,x)x and Hl(x) = Il(x) – Jl(x)x

for t ∈ [a,b],x ∈R
n (l = , . . . ,m); (.)

χ (t) =

⎧
⎪⎨

⎪⎩

 for  ≤ t < ρ,
 – t

ρ
for ρ ≤ t < ρ,

 for t ≥ ρ;
(.)

�̃(x) = χ
(‖x‖s

)[
�(x) – h(x)

]
;

ρ = ρ + ρ sup
{∥∥�(y)

∥
∥ +

∥
∥�

(‖y‖s
)∥∥ : ‖y‖s ≤ ρ

}
; (.)

U =
{
y ∈ C

(
[a,b],Rn; τ, . . . , τm

)
: ‖y‖s ≤ ρ

}

and consider the auxiliary boundary value problem

dx
dt

= P
(
t, y(t)

)
x + q

(
t, y(t)

)
a.e. on [a,b] \ {τ, . . . , τm}, (.)

x(τl+) – x(τl–) = Jl
(
y(τl)

)
x(τl) +Hl

(
y(τl)

)
(l = , . . . ,m); (.)

�(x) = �̃(y) (.)

for every y ∈ U .

http://www.boundaryvalueproblems.com/content/2014/1/157
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According to the Opial condition the problem

dx
dt

= P
(
t, y(t)

)
x a.e. on [a,b] \ {τ, . . . , τm},

x(τl+) – x(τl–) = Jl
(
y(τl)

)
x(τl) (l = , . . . ,m);

�(x) = 

has only the trivial solution for every y ∈ U .
Therefore, in view of Theorem . from [] the problem (.), (.); (.) has a unique

solution x(t) ≡ ω(y)(t). In addition, by (.), (.), and (.), it follows from Lemma .
that

∥
∥ω(y)

∥
∥
s ≤ ρ

(
∥
∥�̃(y)

∥
∥ +

∫ b

a

∥
∥q

(
t, y(t)

)∥∥dt +
m∑

l=

∥
∥Hl

(
y(τl)

)∥∥
)

.

From this, due to (.), (.), and (.)-(.) we have

∥
∥ω(y)

∥
∥
s ≤ ρ

(
∥
∥�̃(y)

∥
∥ +

∫ b

a
α
(
t,‖y‖s

)
dt +

m∑

l=

βl
(‖y‖s

)
)

. (.)

On the other hand, taking into account the inequalities (.) and (.), the condition (.)
implies

∥∥ω(y)
∥∥
s ≤ ρ sup

{∥∥�(z)
∥∥ +

∥∥�
(‖z‖s

)∥∥ : ‖z‖s ≤ ρ
}

+ ρ

(∫ b

a
α
(
t,‖y‖s

)
dt +

m∑

l=

βl
(‖y‖s

)
)

< ρ for ‖y‖s ≤ ρ

and

∥
∥ω(y)

∥
∥
s ≤ ρ

(∫ b

a
α
(
t,‖y‖s

)
dt +

m∑

l=

βl
(‖y‖s

)
)

< ‖y‖s ≤ ρ for ρ < ‖y‖s ≤ ρ.

Thus ω(U ) ⊂ U . Further, due to Theorem  from [] we conclude that the operator ω :
U → U is continuous.
By (.), (.), (.), (.), and (.) we have

∥∥ω(y)(t) –ω(y)(s)
∥∥ ≤

∫ t

s
ϕ(τ )dτ +

∑

s≤τl<t
ψl for a ≤ s < t ≤ b

if y ∈ U , where ϕ(t) = α(t,ρ) + ρ‖�(t)‖ and ψl = βl(ρ) + ρ‖�l‖. So that, using the
Arzelá-Ascoli lemma on the every closed interval [τl–, τl] (l = , . . . ,m) we conclude that
the set U is precompact.
According to the Schauder principle there exists x ∈ U such that

x(t) = ω(x)(t) for a≤ t ≤ b.

http://www.boundaryvalueproblems.com/content/2014/1/157
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From this, by virtue of (.) and (.)-(.), it follows that the function x is a solution of
the system (.), (.) satisfying the conditions

�(x) = �̃(x) (.)

and

∣
∣�(x)

∣
∣ ≤ �(x) + �

(‖x‖s
)
. (.)

Due to Lemma . and inequalities (.), (.), (.), and (.) we have

‖x‖s ≤ ρ

(
∥∥�

(‖x‖s
)∥∥ +

∫ b

a
α
(
t,‖x‖s

)
dt +

m∑

l=

βl
(‖x‖s

)
)

and ‖x‖s < ρ. (.)

In fact, the first estimate immediately follows from Lemma . with regard to the condi-
tions (.), (.), and (.). Now, if we assume that ‖x‖s ≥ ρ then by (.), for ρ = ‖x‖s,
it will be

ρ

(
∥
∥�

(‖x‖s
)∥∥ +

∫ b

a
α
(
t,‖x‖s

)
dt +

m∑

l=

βl
(‖x‖s

)
)

< ‖x‖s.

The obtained inequality contradicts the first estimate of (.).
In view of the estimate (.) from (.) and (.) we have �̃(x) = �(x) – h(x). Conse-

quently, by (.) we conclude that the vector function x satisfies the condition (.). The
theorem is proved. �

Proof of Theorem . Let S be the set of all matrix functions A ∈ L([a,b];Rn×n) satisfying
the inequalities (.), and let D be the set all constant matrices G = (Gl)m

l= satisfying the
condition (.) and the inequalities (.). It is evident that the conditions of Lemma .
hold for these sets and the operator g(x) ≡ |�(x)| – �(x).
Let ρ be the number such that the conclusion of Lemma . is true. In view of (.)

there exists a positive number ρ such that the estimate (.) holds. Consider the impulsive
system

dx
dt

= P(t)x + χ
(‖x‖)[f (t,x) – P(t)x

]
a.e. on t ∈ [a,b] \ {τ, . . . , τm}, (.)

x(τl+) – x(τl–) = Jlx(τl) + χ
(∥∥x(τl)

∥
∥)[

Il
(
x(τl)

)
– Jlx(τl)

]
(l = , . . . ,m), (.)

where χ is the function defined by (.). According to Theorem . the problem (.),
(.); (.) is solvable since the pair (P, {Jl}m

l=) satisfies the Opial condition with respect
to the pair (�,�). Let x be an arbitrary solution of this problem. Then

x′(t) –A(t)x(t) = χ
(∥∥x(t)

∥∥)[
f
(
t,x(t)

)
– P

(
t,x(t)

)
x(t)

]
a.e. on t ∈ [a,b] \ {τ, . . . , τm},

x(τl+) – x(τl–) –Glx(τl) = χ
(∥∥x(τl)

∥
∥)[

Il
(
x(τl)

)
– Jl

(
x(τl)

)
x(τl)

]
(l = , . . . ,m),

where

A(t) ≡ P(t) + χ
(∥∥x(t)

∥∥)[
P
(
t,x(t)

)
– P(t)

]
,
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and

Gl = Jl + χ
(∥∥x(τl)

∥∥)[
Jl
(
x(τl)

)
– Jl

]
(l = , . . . ,m).

On the other hand, by (.), (.), and (.) the matrix function A and constant matrices
Gl (l = , . . . ,m) satisfy, respectively, the inequalities (.) and (.). Therefore we have
A ∈ S and G = (Gl)m

l= . Therefore, due to Lemma . and the inequalities (.)-(.) and
(.), the estimate (.) is valid. But by (.) every solution of the system (.), (.) sat-
isfying such an estimate is a solution of the system (.), (.), too. The theorem is proved.

�

Proof of Theorem . Let

x = (xi)ni=, f (t,x) =
(
fi(t,x)

)n
i=, q(t,ρ) =

(
qi(t,ρ)

)n
i=,

P(t) =
(
pij(t)

)n
i,j=, Q(t) =

(
qij(t)

)n
i,j=;

Il(x) =
(
ιli(x)

)n
i=, Jl = (γlij)ni,j=, Hl = (hlij)ni,j=,

hl(ρ) =
(
hli(ρ)

)n
i= (l = , . . . ,m).

Assuming

ηi(t,x) =

( n∑

j=

qij(t)|xj| + qi
(
t,‖x‖) + 

)–(

fi(t,x) –
n∑

j=

pij(t)xj

)

,

pij(t,x) = pij(t) + qij(t)ηi(t,x) sgnxj (i, j = , . . . ,n)

and

ξli(x) =

( n∑

j=

hlij(t)|xj| + hli
(‖x‖) + 

)–(

ιli(x) –
n∑

j=

γlijxj

)

,

γlij(x) = γlij + hlijξli(x) sgnxj (i, j = , . . . ,n; l = , . . . ,m),

in view of (.) and (.), respectively, we find

∣
∣ηi(t,x)

∣
∣ < ,

∣∣
∣∣
∣
fi(t,x) –

n∑

j=

pij(t,x)xj

∣∣
∣∣
∣
≤ qi

(
t,‖x‖) + ,

pij(t) – qij(t)≤ pij(t,x)≤ pij(t) + qij(t) (i, j = , . . . ,n)

and

∣
∣ξli(x)

∣
∣ < ,

∣
∣∣∣
∣
ιli(x) –

n∑

j=

γlij(x)xj

∣
∣∣∣
∣
≤ hli

(‖x‖) + ,

γlij – hlij ≤ γlij(x)≤ γlij + hlij (i, j = , . . . ,n; l = , . . . ,m);
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where

P(t,x) =
(
pij(t,x)

)n
i,j=, P(t) = P(t) –Q(t), P(t) = P(t) +Q(t),

Jl(x) =
(
γlij(x)

)n
i,j=, Jl = Jl –Hl, Jl = Jl +Hl (l = , . . . ,m),

and

α(t,ρ) =
∥
∥q(t,ρ)

∥
∥ + n and βl(ρ) =

∥
∥hl(ρ)

∥
∥ + n.

In addition, P ∈ Car([a,b] × R
n,Rn×n). On the other hand, the problem (.), (.); (.)

has only the trivial solution for every matrix function A ∈ L([a,b];Rn×n) and constant
matricesGl ∈R

n×n (l = , . . . ,m), satisfying, respectively, the inequalities (.) and (.),
since the problem (.), (.); (.) has only the trivial solution. Therefore, the theorem
follows from Theorem .. �

Corollary . immediately follows from Theorem . if we assume therein Q(t) ≡ On×n

and Hl =On×n (l = , . . . ,m).
To prove Corollaries .-. it is sufficient to show that the problem (.), (.) has only

the trivial solution under the condition �(x) = . But this fact is valid, respectively, due to
Theorem ., Theorem ., Theorem ., and Corollary . from [].

Proof of Theorem . The solvability of the problem (.), (.); (.) follows from Theo-
rem ., because its conditions are fulfilled for

q(t,ρ)≡ ∣∣f (t, )
∣∣, hl(ρ)≡

∣∣Il()
∣∣ (l = , . . . ,m) and l(ρ)≡

∣∣h()
∣∣.

Let now x and y be two solutions of the problem (.), (.); (.). Thenby (.)-(.) the
vector function z(t) ≡ x(t) – y(t) will be a solution of the problem (.), (.); (.). But
this problem has only the trivial solution. Therefore, x(t) ≡ y(t). The theorem is proved.

�
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