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1 Introduction and main motivations

According to Nash’s embedding theorem [21], every warped product can be immersed as
a Riemannian submanifold in some Euclidean space with a sufficiently high co-dimension.
Based on Nash’s theorem, geometric obstructions, so-called intrinsic and extrinsic in-
varaints, for warped products have been obtained in various ambient space forms [5,
9, 14]. Chen [11, 13] provided the optimizations for the second fundamental form as a
main intrinsic invariant and constant holomorphic sectional curvature and the Laplacian
of the warping function as a main extrinsic invariant for CR-warped products in com-
plex space form and complex projective spaces. He also completely classified the equality
case of these inequalities. Several excellent papers on warped product submanifolds were
devoted to different ambient space forms in [1, 16, 19], as well as Chen’s work [6, 14].
Some applications are also derived on a compact Riemannian submanifold considering
equality cases with empty boundaries. Chen [11] developed a novel technique to find the
relationship between extrinsic and intrinsic invariants for warped product submanifolds
of Kaehler manifolds and space forms using the Codazzi equation. There are not many
studies on the §-invariant for warped products other than Chen’s optimal inequality for
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CR-warped products in complex space [6]. The first Chen invariant for warped product
submanifolds in real space forms was derived, and minimality conditions for submani-
folds were recently discussed by Mustafa et al. [20]. Taking this into consideration, Gauss
equations were used instead of Codazzi equations [13]. The squared norm of the mean
curvature can be calculated using a warping function and the constant holomorphic sec-
tional curvature [1, 16] and in light of the historical development in the study of a warping
function of a warped product submanifold [12]. As the main objective of our study, we
present a novel method for establishing inequalities for §-invariant curvature inequalities
for warped product Legendrian submanifolds isometrically immersed in Kenmotsu space
forms. This has been discussed in [16, 20, 22]. We generalized a number of inequalities
for areas of hyperbolic spaces based on the main results discussed in this paper. These
products also include another important group of Riemannian products. Our first contri-
bution is to calculate a sharp estimate of the squared norm of the mean curvature using a

warping function and the constant holomorphic sectional curvature.

2 Preliminaries
A (2m +1)-dimensional manifold 72! endowed with almost contact structure (0,&,1,9)

is called an almost contact metric manifold when satisfies the following properties:

P’=-I+n®E&  nE)=1, &) =0, nog=0, (2.1)

gled, ©V2) =gV, Vo) —n(V)n(d2) and  n(Qh) =g, §), (2.2)

for any V1, € %(T]? 2m+1) the Lie algebra of vector fields on a manifold F2m+1 I this
case, ¢, g, & and 7 are called (1, 1)-tensor fields, a structure vector field and dual 1-form,
respectively. Furthermore, an almost contact metric manifold is known to be a Kenmotsu
manifold (cf. [4, 17]) if

(Vy, @) Vo = gV, 00)e —nO)ed1,  Vy € = V1 - nQh)g, (2.3)

for any vector fields )1, ), on F 2m+l where V denotes the Riemannian connection with
respect to g. An n-dimensional Riemannian submanifold F” of F2ml s referred to as
totally real if the standard almost contact structure ¢ of Famsl maps any tangent space of
F” into its corresponding normal space [1, 19, 22]. Now, let F” be an isometric immersed
submanifold of dimension 7 in F2*1, then F" is referred to as a Legendrian submanifold
if & is a normal vector field on F” (i.e., " is a C-totally real submanifold) and m = [1,
18, 19, 22]. Legendrian submanifolds play a substantial role in contact geometry. From the
Riemannian geometric perspective, studying the Legendrian submanifolds of Kenmotsu
manifolds was initiated in the 1970s [8].

Let IF be an n-dimensional Riemannian submanifold of an m-dimensional Riemannian
F2m+1 with induced metric g and if V and V+ are induced connections on the tangent
bundle 7T and normal bundle T-+F of F”, respectively. Then the Gauss and Weingarten

formulas are given by

D) VyVa=Vy, Vo + BOLYe), (i) VyN=-AyD + V3N, (2.4)
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for each V1,V € X(TF) and N € X(T+TF), where B and Ay are the second fundamental
form and shape operator (corresponding to the normal vector field N), respectively, for
the immersion of F” into F2*1, and they are related as:

2B, Y2),N) = g(An D1, Vo). (2.5)

Similarly, Gauss and Codazzi equations are given by

i) RO, V2, V3, Va)
=R, Y2 V3, Vi) + (B, Va), BV, V5)) —g(BOVL Vs), B2 V), (2.6)

() (RO II5)" = (Vy, BV, V5) = (Vy, BY D1, Vs), (2.7)

for all Y1, V5, V3, Vs € 3€(TA~/I), where R and R are the curvature tensor of F2*! and ",
respectively. The mean curvature H of the Riemannian submanifold F” is given by

H= % trace(B3). (2.8)

A submanifold F” of Riemannian manifold 72**! is said to be totally umbilical and totally
geodesic if B()1, Vs) = g(V1, Yi)H and B, )s) = 0, for any Vi, Vs € X(TM), respectively,
where H is the mean curvature vector of F”. Furthermore, if H = 0, then F” is minimal in
F2m+1, Moreover, the related null space or kernel of the second fundamental form of F” at
x is defined by

F, = {1 € T.F : B, W») =0, forall Y, € T,F}. (2.9)

In this context, we shall define another important Riemannian intrinsic invariant called
the scalar curvature of F2"*! and denoted at T(T,F2"*1), which, at some x in F>"*1, is

given

TP = Y Ky (2.10)

1<i<j<2m+1

where IE,»,» = Iz(ei A ¢). It is clear that first equality (2.10) is congruent to the following
equation, which will be frequently used in a subsequent proof,

7L = > Ky (2.11)

1<i<j<2m+1

Similarly, scalar curvature T(L,) of L-plan is given by

W)= Y Ky (2.12)

1<i<j<m

Let {e1,...e,} be an orthonormal basis of the tangent space T, F and
e, = (en+1,. .- €2m+1) belong to an orthogonal basis of the normal space T1F, then we have

B =g(Blee).e) and [BI*=> g(Blese), Blese). (2.13)

ij=1
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Let K;j and I%,j denote the sectional curvature of the plane section spanned and e; at x in
the submanifold F” and in the Riemannian space form F 2+l (), respectively. Thus, IC;
and I%,»}- are the intrinsic and extrinsic sectional curvature of the span {e;, ¢;} at x. From the

Gauss equation (2.6)(i), we have

2m+1

27(TF") = Ky = 28 (LF ) = Ky + > (BiBy - (B))). (2.14)

u=yj
r=n+1

The second invariant is called the Chen first invariant, which is defined as
87ame1 (x) = T(TLF2" ) —inf{K(r) : 7 € T F 2™ x e FP1dimB=2}.  (2.15)

Assume that Ffl and ]ng are two Riemannian manifolds with their Riemannain metrics
g1 and g, respectively. Let f be a smooth function defined on d;. Then warped product

manifold F” = ]F‘lll Xf ng is the manifold Fdl X IF;IZ furnished by the Riemannian metric

g =g +f%g. Assume that the F” = 1 Xf IF’ is warped product manifold, then for any

V1 € I(TF{) and Y5 € T(TFR), we ﬁnd that

Vy, V1 = Vy, Vs = (V1 Inf) s, (2.16)

Similarly, knowing that units vector fields }; and )5 are tangent to I ‘111 and IFZZ, respec-

tively, we derive

KA Ys) = (RO, V3) V1, Vs)
= (V, V) Infg(Vs, Vs) - (Vo (V1 Inf)V3), V)
= (V, V) Infg(Vs, V) = g(Vy, D1 Inf)Vs + (D1 Inf)g(Vy, Vs, Vs)
= (Vy, Y1) Infg(Vs, V) = (V1 Inf)* = (V1 Inf). (2.17)

Assuming that {e;,...e,} is an orthonormal frame for F”, we sum over the vector fields

such that
dy dy dy dy
DY Kleineg) =Y ((Vee) Inf —eileiinf) - (e;Inf)?),
i=1 j=1 i=1 j=1
which implies that
3 Klei ney) = dy(Ang) — | Vanf)[). (2.18)
i=1 j=1

However, it was proved [10] that for arbitrary warped product submanifold,

dy dy

DY Kleine) = By (219)
i=1 j=1 f
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Thus, from (2.18) and (2.19), we get

A Allnf) - || Vans) | (2.20)

f

The following remarks are consequences of warped product submanifold:

Remark 2.1 A warped product manifold F” = ]F‘li1 Xr ng is said to be trivial if the warping
function f is constant or simply a Riemannian product manifold.

Remark 2.2 If " = IF‘{fl Xf ng is a warped product manifold, then F; is totally geodesic
and F, is totally umbilical submanifold of F”.

A Kenmotsu manifold is said to be Kenmotsu space form with constant ¢-sectional cur-
vature € if and only if the Riemannian curvature tensor R can be written as [1,19]:

RO Vo Vs Vi) = (?) [eOh Va)gn Da) — g0, Vi)g O Vi)

+ (6 Z 1) {n(yl)ﬂ(ys)g(yz;yz;) +n(VnQ)gV, Vs)

(2.21)
- n(V)n(V3)g(V1, Va) — n(V1)g(Va, V3)n(Va)
+8(0V2, V3)g(@ V1, Va) — g1, V3)g (02, Va)

+2g(V1, o )g(pYs, y4)},

where V1,5, 3, Vs € X(TF2"+1),

The hyperbolic space H?**! = {x, - - - x9,,,1 € R¥*1|x; > 0} equipped with the almost con-
tact structure ((¢, &, 7,g) constructed by Chinea and Gonzales [15] is a Kenmotsu mani-
fold. Many geometers have paid considerable attention to minimal Legendrian submani-
folds.

We recall the following important algebraic lemma

Lemma 2.1 Let ty,ty - -t,, s be (n + 1)(n > 2) real number such that

> W) =) <Z 7+ s>. (2.22)
i=1 i=1
Then 2t1t; > s, with equality holds if and only if t; + ty = t3 = - - - t,,.

Theorem 2.1 Let ¢ :F" = Ffl Xf ]ng be an isometric immersion of a warped product Leg-
endrian submanifold F" = F‘lil Xf ng into a Kenmotsu space form F21(c). Then, foreach
point x € F" and each plane section 7; C TxF:"',for i=1,2, weget

(1) Letm C Tx]F'lh, then

2
Sy (%) < ”7||H||2 +dy|V(nf)|? - dyAlIng)

+{%(d1+2d2—1)—1}(€;3). (2.23)
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Equality of the above inequality holds at x € F" if and only if there exists an

orthonormal basis {e; - - - e,} of T,F" and orthonormal basis {e, + 1+ - - ey1} of T

such that (a), r = Span{ey, e»}, and (b) shape operators take the following form

(@)

en+l —

1
ur Byt 0 -0 O1gy | O1gy41 01
Bist 2 O -
0 0 un -
_ : : : : ,
0d11 0 0 - 12 0d1d1+1 Odln
n+1 n+1
Ogye11 oo -or oo 04,414, Bd1+1d1+1 e Bd1+1n
n+1 n+1
L Our vvv v e Onay ndy+1 Bm’l B

where (L = [11 + (o. If ¥ € {n + 2,...m}, then we have the matrix

() If 7, C T,F2, then

(iii)) A

en+l —

[ B, B, 0 -+ Owy | O O1p
By -Bj, 0 -
0 0 O33---
Odll 0 0 --- 0d1d1 Od1d1+l Odln
Ogye11 =o o oo 0dy+14, Bﬁfhdlu Bsriln
[ On e O | Bt - Byt
n? 5 5
Sgray () < 7|IHII +dy|V(Inf)|” - daA(Inf)
dy €-3
+1—(dy+2d,-1)-1 .
{ 2y v 2y 1) }( . )
Equalities of the above equation hold if and only if
Bt e Bl | Ouger oo e e O,
32:111 ...... BZL}I Odydys1  ovr e Ouyn
Oy s11 -2 o Ody 1141 H1 Bsrildlﬂ 0 0d; +1n
Bﬁfimm M2 0 -
0 0 w -
: : : 0
Onl ...... Ond1 Ond1+1 0 0 n

(2.24)
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where L = 11 + . Ifre{n+2,...
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,m}, thus we have

B;l """ B;dl 01d1+1 ...... 01,
8:1111 ...... Bzhdl Odydy41 o e (O
() Ag = | Ogparr -+ -+ Oy 14, Bs1+ld1+1 ani:illerZ 0 - 04410
: BsriZdﬁl _821+1d1+1 0 - :
0 0 0 -
: : : Co0 0
L 0, -+ --- Ond1 Ond1+1 0 ... 0 0 ]

(v) If the equality holds in (1) or (2), then ]F‘f1 Xf ]F‘;l is mixed totally geodesic in F*"+1.
Moreover, F' x £ F is both F -minimal and B2 -minimal. Thus, "' x £ F is a minimal

warped product submanifold in F>".

Proof Let m; C T,IF; be a 2-plane for x € F”, then we consider the orthonormal basis
ey} of T,F" such that {e,...

exns1) is an orthonormal basis for T} F”. As-

{er- - ea,edys1r--- eq4,} is an orthonomal basis for T,F; and

{ed;+15...e,} is for T, F,. Similarly, {e,,1,...
suming that 7w = Span{e;, e;} such that the normal vector e,,; is in the direction of mean

curvature vector H and using (2.21) and the Gauss equation (2.6), we get

-3
n?|H|* =27 (T,F") + |BII*> - n(n - 1)( ) (2.25)
which implies that
n+1 n -3
ZB = 2(T.F") + | BI|* - n(n - n( &2
n 2 dy n
- ( > B};”) -2 ) Y BB (2.26)
y=d1+1 A=d1+1 B=d;+1
Let us consider the following
-3
Q =27(T,F") - n(n - 1)( 2 )
(di=2) (& ’
1 Z n+1) (Z Bn+1>
(dl B 1) ( y=d1+1
d] n
-2 Y Y BB (2.27)

A=d1+1 B=d;+1

Page 7 of 20
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It follows from (2.26) and (2.27) that
d 2
(Z B;*l) = (dy - 1)(Q2+ I1B]%).
i=1
The above equation can be expressed as:

n

dy
<Z B;rrl) (dl _ l)iQ + Z Bn+1 Z (B;H)Z

i=1 j=d1+1
n 2n+l n
DICEDIDNC S
i#=1 r=n+2 ij=1

Therefore, we apply Lemma 2.1 on the above equation, i.e.,

ty=B", Vt,e{l---,d;} and

aa ?
n 2n+l n
s=Q+ E : Bn+1 § : Bn+1 § § Bn+1
j=di+1 i#=1 r=n+2 ij=1

Thus, we obtain that

2n+l n

Bﬁ-lg%—l > - {Q+ Z Bn+1 Z Bn+1 Z Z Bn+l

j=d1+1 i#=1 r=n+2 i,j=1

Then from (2.21) and (2.14), we derive

2n+1

-3
K(m) = (E 2 ) + Z (B11B3, - (Bi2)2)'

r=n+1

If we combine equations (2.30) and (2.31), we get

€-3 1 1 1)\ 2
2n+1 n 2n+l n

1
+ Z (B, B3, - (8;2)2) Z Bml

We choose the last two terms of the above equation and derive

n n
(Bn+1) Bn+1 +2 Bn+1
2 - 23
i# ”

2B + 22(33}%1)2

Jj=3

Z Z Bn+1

r=n+1 1—7// r n+2 ij=1

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

Page 8 of 20
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Moreover, for the last term, we obtain

2n+l n 2n+l n 2n+l n

Z Z Bn+1 Z Z Bm—l +2 Z Z Bn+1

r=n+2 ij=1 r=n+2 ij=3 r=n+2 j=3

2n+l n

+2 Z Z Bg;l B{’;l)

r=n+2 j=3

2n+1
+ Z ((Bn)2 + (322)2)'
r=n+2

Furthermore, we have

2n+1 2n+1 2n+1

1 1
Z B}, B3, + Z ((8{1)2 + (822)2) =35 Z (B1, + Bgz)z’ (2.34)
r=n+2 r n+2 r=n+2
n 2n+l n 5 2n+l n )
Z((Bml Bg;rl Z Z anﬂ) + Z Z(Bg]ﬂ)
j=3 r=n+2 j=3 r=n+2 j=3
2n+l n
= > 3B + (B (2.35)
r=n+2 j=3

After adding (2.33) and (2.60), using (2.34) and (2.35), and taking into account that

2n+1 2n+1
(B5Y) + D2 (B = 30 (B
r=n+2 r=n+1
we get
n 2n+l n 2n+l n
Z Bn+1 Z Z Bn+l -9 Z Z Bg]ﬂ Bg;l) }
ij=1 r=n+2 ij=1 r=n+2 j=3
i
n 2n+l n
+Z(B;1+l Z Z Bn+1
ij=3 r=n+2 ij=3
i
2n+1 )
-2 {BLB;, - (By)')
r=n+2
2n+1
+ > (B +B)" (2.36)
r=n+2

It follows from (2.32) and (2.36) that

n

-3\ 1_ 1
K(m)2<€4 >+§Q+E 3 B

B=d1+1

2n+l n

+ Z Z B;}H B«Zﬂ) }

r=n+2 j=3

Page 9 of 20
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1 n 2n+l n 1 2n+1
DTS 3 RED LAY
ij=3 r=n+2 i,j=3 rn+2
i7

which implies that

€—3 1 n 2n+l n n )
I((]Tl) > < 4 )+ E{Q-'—Z(Blm.l Z Z Bi’l+1 Z ngl) }
ij=3 r=n+2 ij=3 B=d1+1
i7

From (2.27), we arrive at

2
€-3 n 1 . n+
K(m) > (T) + (T, F") + 2 _1)< Z Bwl)

a=dj+1
_n_2”H||2_n(n—1) €-3
2 2 4

1 n 2n+l n n
ASer Sy e} 0)
ij=3 r=n+2 i,j=3 B=di+1
i

Using together (2.11) and (2.19) in (2.37), we obtain

K(my) > t(T.F) + (T FS?) + dszf - %ZH]HIHZ
1 nn-1)\/[e-3
()

n 2n+l n n
A S e s e}

ij=3 r=n+2 ij=3 B=d1+1
i
This implies that
d n2 2 d V
r(TxIE*‘ll) -K(m) < ?HHH - (T, 2) f

+<n(n—l)_1> €e-3
2 4

n 2n+l n n
‘%:Z(BZ”)2+ SN B S (B (238)

ij=3 r=n+2 i,j=3 p=d1+1

The Gauss equation (2.6)(i) for r(TxIng) gives us

o(T,F®) = Ld;_ )<€;3>
2n+1 n 2n+1

—= Z S (B - E Z(Bdl+1dl+1+---+B;n). (2.39)

r n+1 A,B=d1+1 r n+l

Page 10 of 20
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In view of the equations (2.38) and (2.39), we find that

2 - p—
o(TF) - Km) < 2 [ - M(f 43)

2
1 n 2n+l n
_E:Z Bn+l ZZ
i,j=3 r=n+2 i,j=3

7

+ Z (B - Z Z (B;g)z}

B=d1+1 r=n+1A,B=d+1

nn-1) €-3\ d)Vf
EEE

Then the last relation turns into

,(szg;h)_K(m)s%llHllz dz(dz e43> (n(n ) 1)(&)

4
1 di 2n+l  n dy
_5 Z n+1 +2 n+1 Z (Bn+1)
k1=3 k=3 l:d1+1 A,B=dy+1
kAl A#B
2n+1 dp 2n+1 dp n
DI CDEEDD (Bi)*
r=n+2k,l=3 r=n+2 k=3 A=d;+1
2n+1 n n
ro\2 n+1)2
v 2 (B (B35')
r=n+2 A,B=d1+1 B=di+1

2n+1 n
-2 ) (B 2} S (241)

r=n+1A,B=d;+1

Using the above equation and the following two relations

n n n
2 \2 n+1)2 _ n+1\2

E (Bia) + Z (Big') = E (B4g')” and

A=di+1 A,B=3 A,B=dj+1
A+#B
n 2n+1 n 2n+1 n
n+1 7 —

Z BAB 2 : 2 : BAB - 2 : 2 : BAB ’

A,B=dj+1 r=n+2 A,B=d1+1 r=n+1A,B=d;+1

the assertion (2.41) follows as:

t(TF) - K(m) (2.42)
d €e-3
§{§(d1+2d2—1)—1}( i >
1{ dy 2n+l dp
_ = Z n+1 Z Z Bn+1
k=3 r=n+2 k=3

k+l

Page 11 of 20
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dq n 2n+1 di n n2 d Vf
D3P HCTURES ) 3P YL HH LTI SO

a=3 B=di+1 r=n+2 A=3 B=d1+1

The first inequality of Theorem 2.1 holds from the above equation and (2.15). For the sec-
ond case, if 7 C Tx]FgZ, we consider 7y = Span{ey, 41, €4,+1}, following the same methodol-
ogy as in the first case:

(Z‘ B"+1>2_2t (T.F") + | BI* - n(n - 1)< ) (Z ng)

a=d+1 B=d1+1

dy n
_22 Z Bl Bt

a=1 B=d+1

Consider the following

W = 27 (T,F") - n(n - 1)(ﬂ)

4
dy 2 dy n
(d1—2) n+1 d n+1 pen+1
(2 m) (> ) 23 Y aeg
a=dj+1 B=di+1 a=1 B=d;+1

The last two equations imply that
" 2
( ) BZ?) = (d> - 1)(¥ + 1BI?),
a=dy+1
which implies that

( > B"+1>2 d2_1){\p+ (ZB"*1>2+( Z Bg;l)2

a=dy+1 a=1 B=d1+1

n 2n+1 n
£ (B Y Y (B;ﬁ)z}. (2.44)
a&izl r=n+2a=,=1

Similarly, applying Lemma 2.1 to the above equation, we get

dy 2 n 2n+1 n
1 2 2
Bgri1d1+182;+12d1+2 z E{\V + (ZB&?) + Z (Bg,;l) + Z Z (Bis) } (2.45)
a=1 o,f=1 r=n+2a=,=1
aFp
From (2.21) and (2.14), we find that
c—3 2n+1
- 2
I<(7T2) = ( ) + Z (B:il+ld1+18:il+2d1+2 - (B;1+ld1+2) ) (246)
r=n+l1

The equations (2.45) and (2.46) are implied that

2n+1

€—3
K(mp) > <T> + Z (B:il+1d1+1621+2d1+2 - (321+1d1+2)2)

r=n+1

Page 12 of 20
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1 dy 2 2n+1 n
x 5qu+ (ZB;;I) ¥ Z B+ 3 3 (B)’ - (247)
a=1 aa/iﬂl r=n+2a=,f=1

Following the method from (2.27) and (2.42), we get the second inequality of Theorem 2.1.
On the other hand, for the equality condition, we define two different cases whether the
2-plane 7; is tangent to the first factor or to the second factor. In the first case, we consider
m; C TxIF‘lil, then the equality holds if and only if equalities hold in (2.30), (2.32), (2.38),
(2.39), and (2.42), then we get following condition

Byt + Byt =Byt == By, (2.48)
2n+l n 2n+1

2o 2By (B + 30 (Biu+ B =0, (249)
r=n+2 j=3 r=n+2

2n+1 dy 2

Z (Bd1+1d1+1 +eeet B:m) = <Z Bg;l) =0, (2.50)
r=n+1 a=1

di 2n+l dp dy n 2n+l di n

SBEY IS Y ST (B YN > (Big) =0 (251)
k],(l#ZS r=n+2k,l=3 a=3 B=dy+1 r=n+2 A=3 B=d;+1

Equation (2.50) clearly indicates that the warped product F%! x f F4! is both F¢! -minimal
and ]F‘;Z—minimal warped product Legendrian submanifold in F2*1. It is concluded that
the warped product Legendrian submanifold Ffl Xf Fgl is minimal in F2"*1. Moreover, we
divide the other case into two methods, depending on the vector fields r. Assuming that

r =n+ 1, we define the following

Bit'+ Byt =Byt =--- =Byl and
dy ) dy n 5
ZBVHI ZBV[+1 Z n+1) _ Z Z (Bngl) -0.
kklﬂs =3 f=dy+1 "’

Thus, the above condition is equivalent to the following matrices.

— 1 -
M1 Bi’; 0 -+ Oy 01341 -+ Oy
B3t 2 0 -
(i) A€n+1 — : : : ,
0d11 0 0 - n 0d1d1+1 e Odln
n+1 n+1
Od1+11 ooty 0d1+1d1 Bd1+1d1+1 T Bd1+1}1
0 e e e 0 B"+1 ... prtl
L VYnl ndq ndy+1 nn
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where ¢t = 41 + o gives the (i) theorem. Similarly, if » € {n + 2,

condition implies that

n n
B+ Bt =Y Byt =Y By
j=3 j=3
dy
=3 (Y
k=3
k1
di n
=2 > (B =0
o=3 f=di+1

It is equivalent to the second metric:

(2024) 2024:63

B{l B;Z o - Oldl 01d1+1 Oln
By -Bj 0 -
0 0 Og--
(11) Aer: :
Odll 0 0 0d1d1 0d1d1+1 Odln
n+1 n+1
Ogye11 -o0 voe e 0a, 414 Bd1+1d1+1 Bd1+1n
1 1
| O e e Onay | B, Bt |

It is clear that two above conditions show that I ‘111 xrIF j‘ is mixed totally geodesic Legen-

drian subamnifold in F"+1.

Furthermore, the equality sign in (ii) holds if and only if the following two matrices are

014541

Od1d1+1

...,m}, then the above

satisfied:
n+1 n+1
Bll ...... Bld1
n+1 n+1
Bd111 ...... i,
(it) Ag,,, = | Odyer1 -+« Oy +14,
i Op1 -+ - (O

n+1

M1 Bd1+1d1+2 0 -

BZ:izdﬁl M2 0 -
0 0 W
Ond1+1 0

(=]
LN
=
+
—
N
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where w = 1 + pp. If re {n+2,...,2n + 1} thus we have

{1 ...... {dl Old1+l ...... Oln
r r
FRCIRARIEEE s 0d1d1+1 ...... Odln
5 r n+1
(IV) Aer - Odl"’11 ...... 0d1+1d1 Bd1+1d1+1 Bd1+ld1+2 0 - Od1+1”
. . n+l r :
Bd1+2d1+1 _Bd1+ld1+l 0 -
0 0 0 -
. . : 0 0
L Onl """ Ond1 Ond1+1 0 0 0 |

From the above, it is also clear that F%! x f F4' is both F¢'-minimal and F%2-minimal
[F2n+l
€

warped product Legendrian submanifold ¢! x; F§! in F2"+1,

warped product Legendrian submanifold in x R, which implies the minimality of

d

Warped product manifolds have studied themselves to be a profitable ambient space to
obtain a wide range of distinct geometrical properties for immersion. We now find the
inequalities for the Riemannian manifold that has constant sectional curvature € € {1, -3}
and can be expressed as a product manifold of F2"*1. We find the following results as
follows:

An application for warped product Legendrian submanifold in H?"*! with € = -1

Theorem 2.2 Assume that ¢ : F" = IF'fl Xf ng is an isometric immersion of a warped prod-
uct submanifold F" = ]F'f1 Xf ng into a hyperbolic spaces H?*"*, Then, for each point x € F"
and each plane section ; C T,F;", for i = 1,2, we get the following for

(a) m C Tfol

2 d
Sy (x) < %MHHZ +do||V(nf)|* - dyAdIngf) - {31((;11 +2dy —1) - 1}.

Equality of the above inequality holds at x € F" if and only if there exists an
orthonormal basis {e; - - - e,} of T,F" and orthonormal basis {e,.1 - - - eans1} of Tj
such that (a), w = Span{e, ex}, and (b) shape operators take the following form

— 1 -
nr Biy' 0 oo Oz | Oragy41 01,
1
(i) A, = : : : . : : : ,
041 O O - % Oy +1 Oy n
n+1 n+1
0d1+11 ottt 0d1+1d1 Bd1+1d1+1 T Bd1+17l
1 1
I Oty Z;lu By,
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where (L = 1 + (o. If r € {n + 2,...m}, then we have the matrix

n By 0 - 01y | Og41 01
r r
21 _611 0 -
0 0 033
(i) A, =| - ,
Odll 0 0 Odldl 0d1d1+1 Od]n
n+1 n+1
0d1+11 ...... 0d1+1d1 Bd1+1d1+1 e Bd1+1}’l
n+1 n+1
L (O Ond1 ndy+1 Bnn _

(b) form, C T,CIFSZ2
2 d
S5y (%) < %MHHZ +do||V(nf)|* - dyAdInf) - {72(612 +2d,-1) - 1}.

The equality of the above equation holds if and only if

B 1 1
Bt .. Bil | O oo e 01,
mil oL BYL Lo, . .. .. 0
dy11 dyrdy dydy+1 din
1
(i) Ae,, = | Ogpear -+ - O0uy+1c¢ M1 Bs:+1d1+2 0 - 04410 |,
. . n+1 .
Bd1+2d1+1 H2 0 -
0 0 no-
: : . : 0 0
L Onl """ Ond1 Ond1+1 0 0 1%
where (L = 1 + o If re {n+2,...,2n + 1}, thus we have
B oo Biy | O 01,
...... hdr | Odirs1 oo Ogyn
. r n+1
(lV) Aer = Od1+11 """" 0d1+1d1 Bd1+ld1+l Bd1+ld1+2 0 0d1+1”
: . n+1 r .
Bd1+2d1+l _Bd1+1d1+1 0 -
0 0 0 -
: : : : 0 0
L Onl """ Ond1 Ond1+1 0 0 0 i
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(v) If the equality holds in (1) or (2), then Ffl xrIF ‘;’2 is mixed totally geodesic in space form
F27+1. Moreover, F{* x; 5> is both F{-minimal and ¥ -minimal. Thus, F{' x; FY is a

minimal warped product submanifold in Kenmotsu space form F**1,

Proof Now we consider the constant sectional curvature € = —1 and F?**! = H>"*! for the
product manifold H?**1, Then, by inserting the proceeding value in (2.23) and (2.24), we
get the required result. O

Some applications to obtain Dirichlet eigenvalue inequalities A crucial part of Rieman-
nian geometry is determining the bound of the eigenvalue of the Laplacian on a particular
manifold. The study of eigenvalues that show up as solutions to the Dirichlet boundary
value problems for curvature functions is a key goal of this purpose. Due to the diversity
of boundary conditions on a manifold, and from the perspective of the Dirichlet boundary
condition, one can consider determining the upper bound of the eigenvalue as a method
of locating the proper bound of the Laplacian on the particular manifold. Now, if the first
eigenvalue of the Dirichlet boundary condition is denoted by v;(X) > 0 on a complete
noncompact Riemannian manifold F”* with the compact domain ¥ in F”, then we have

Ao +vo=0, onY and o=0 ondX, (2.52)

where A is the Laplacian on F”, and o is a nonzero function defined on F”. Then, v (F")
is expressed as infy v (X).

The Dirichlet eigenvalues are the eigenvalues of the Laplace operator on a domain with
Dirichlet boundary conditions. They have a number of important consequences in various
areas of mathematics, including differential geometry, number theory, and mathematical
physics. For example, the Dirichlet eigenvalues determine the geometry of a domain. For
example, the first Dirichlet eigenvalue of a domain is related to the diameter of the domain.
The higher eigenvalues are related to the curvature of the domain and the way it is embed-
ded in the Euclidean space. Consequently, the Dirichlet eigenvalues appear in the solution
of the heat equation on a domain. The eigenvalues and the corresponding eigenfunctions
determine the rate of decay of the solution. Assume that f is the nonconstant warping
function on compact warped product submanifold F”, then the minimum principle on v;
leads to (see, for instance, 3, 10])

/ Vo |?dV > v / (0)*dV, (2.53)
Fr P
and the equality is satisfied if and only if

Ao =v0. (2.54)

Implementing the integration along the base manifold F%! in Equations (2.23) and (2.24),
we get the following result.

Theorem 2.3 Assume that ¢ : F" = Ffl Xf ng is a compact warped product Legendrian
submanifold F" = leh Xf ng into a Kenmotsu space form F>"*1(€). Then we have

2
/ Soar () AV < ”—/ ||H||2d\/+d2/ (Inf)?dV
F1xdy 2 F1xdy

]Fl ><d2
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et €-3
+/F1Xd2{(3(d1+2d2—1)—1)< 2 )}d\/, (2.55)

for my C TF,. Moreover, we have

2
/ Sty (¥) AV < = [HI2dV +dy / (Inf)*dv
]ledz

F1xdy F1xdy
d -3
¥ / {(—z(d2 +2dy—1)- 1) (—6 ) }dv, (2.56)
Fyxdy L\ 2 4

formy C TF,.
Proof As we know from the Stokes theorem, [ Ao dV = 0 for a compact support. Then
we use the proceeding condition in (2.23) and (2.24) by replacing o = Inf and get easily
the result. O

An applications for Brochler formulas

Theorem 2.4 Assume that ¢ : F" = Ffl Xf IF;Z is a compact warped product Legendrian
submanifold F" = Ffl Xf ng into a Kenmotsu space form F>"*1(€). Then we have

2
/ Ric(VInf, Vinf)dV > 2 Ssiay (x) AV — = ”1/ [H|2dV
Fy xdy dy Jr,xd, 2d> Jr,xdy
d _3
+ﬂ/ {1—(—1(d1+2d2—1)>}<6 )dv
d2 F1xda 2 4
_ / |V2Inf|? av, (2557)
Fy xdy

for 1 C TF,. Moreover, we have

2
/ Ric(VInf, Vinf)dV > ﬂ/ Sar (¥) AV — = Ul/ |2 dV
F1xdy d F1xdy 2d2 F1xdy

2

U1 ds €-3
— 1-| =(dy+2d, -1 av
+d2 ledz{ (2(2+ ' ))}< 4 )

_ /F ) |V2inf|av, (2.58)
1Xaz

for my C TT,.

Proof If o is the first eigenfunction of the Laplacian Ao = div(Vo) for F” connected to the
first nonzero eigenvalue vy, such that, Ac = —v;0, then recalling the Bochner formula [2]

that gives the following relation of the differentiable function o denoted at the Riemannian
manifold as:

%AHVU I? = | V%0 |* + Ric(Vo, Vo) + g(Vo, V(A)).

By the integration of the previous equation using the Stokes theorem, we have

/ V2o | av + / Ric(Vo, Vo)dV + / ¢(Vo,V(Ac))dV =0.  (2.59)
F1xdy F1xdy F1xdy
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Now, using Ao = vy0 and making some rearrangement in Equation (2.59), we derive

1
/ IVo|2dV = —(/ ”VzaHZdV+/ Ric(Vo,Vo)dV). (2.60)
Fy xdy U1 Fy xdy F1xdy

Taking integration in (2.23) and (2.24) and inserting the above equation, we get the desired
results. O

3 Chen'’s problem: finding the conditions under which warped products must
be minimal

In this section, we provide the partial answer to the Chen problem, that is, the necessary

condition for the warped product Legendrian submanifold to be a minimal in Kenmotsu

space form F2+1(¢).

Corollary 3.1 Let ¢ : F" = leh Xr ng be an isometric immersion of a warped product
Legendrian submanifold F" = Ffl Xf IF‘;Z into a Kenmotsu space form F +1(¢). Then, for

each point x € " and each 7t C Tx]F;”, we have

2
’

8zay (x) + da A(Inf) < {%(d1 +2dy - 1) — 1} (?) +dy | V(Inf) (3.1)

and if the equality satisfies, then ¢ is minimal.

The second result is:
Corollary 3.2 Let ¢ : F" = IF‘lil Xr ]ng be an isometric immersion of a warped product
Legendrian submanifold F" = F‘fl Xf IE“;Z into a Kenmotsu space form F*'*1(¢). Then, for
each point x € " and each w, C T,F,?, we have

d -3
85a, () + dr A(Inf) < {72(512 +2dy - 1) - 1} (ET> +do|| V(nf) |, (3.2)
and if the equality satisfies, then ¢ is minimal.

4 Conclusion remarks

The Chen delta invariant is a numerical invariant in algebraic topology that measures the
extent to which a loop in space fails to be a boundary of a surface. More precisely, if a loop
is the boundary of a surface, then the Chen delta invariant is zero. Otherwise, it measures
how “far” the loop is from being a boundary. Applications of the delta invariant can be
found in various areas of mathematics, including topology, geometry, and algebraic ge-
ometry. For example, it has been used to study the topology of moduli spaces of algebraic
curves, the geometry of the Kahler-Einstein metric on a complex manifold, and the topol-
ogy of configuration spaces of particles in a Euclidean space. It has also found applications
in physics, particularly in the study of topological field theories [7, 11].
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