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1 Introduction

Well over a century ago, measures were developed to estimate the distance between two
probability distributions. Divergence measures are important in many statistical inference
and data processing problems, such as estimation, compression and classification. For ex-
ample, a group of biologists have visited the immense outer-space and observed that some
space worms have variable number of teeth. Now they want to post this information back
to Earth. But posting information from space to Earth is high in price. So they need to send
their observations with a minimum amount of information. An efficient way is to convert
their observations to a probability distribution.

The f-divergence is the distance in between two probability distribution by making an
average value, which is weighted by a specified function. Some special cases of which are
K-L divergence, Hellinger distance, Bhattacharyya discrimination, x 2-divergence, and tri-
angular distance. Anwar et al. [7] estimated the difference between the two sides of the
relevant f-divergence and Shannon’s inequality. Khan et al. [15] proposed new bounds for
Csiszdr and relevant divergences with the help of Jensen—Mercer’s inequality. They also
obtained several results for Zipf-Mandelbrot entropy. In [14], the authors have presented
new findings for the Shannon and Zipf-Mandelbrot entropies. They have also estimated
different bounds for these entropies.
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The aim behind the mathematical theory of time scales is to merge continuous and dis-
crete analysis presented by S. Hilger in 1988 (see [8, 9]). This theory has developed very
rapidly in last three decades. Many authors have established time scale versions of integral
inequalities. Ansari et al. [1] presented some inequalities for Csiszar divergence between
two probability measures for delta integrals on time scales. Ansari et al. [1-3, 6] provided
estimation of divergence measures for delta integrals via weighted Jensen inequality, Tay-
lor’s polynomial, Green’s function, and Fink’s identity. In [4], the authors have obtained
new entropic bounds via delta integrals using Hermite interpolating polynomial.

There are many significant inequalities which have been proved with the help of convex
functions. In [12], authors have provided the f-divergence functional given as follows:

Let f : R* — (0,00) be a convex function. If X = (x1,%5,...,%,) and ¥ = (y1,¥2,...,¥,) are
such that 37 wj=1and } 7", y; = 1, then

I(5%9) = ny(ﬁ)
i1 Yi

with £(0) := lims_, o+ (5), Of(g) := 0, and 0f (§) := lims_.o+ 3 (5), ¢ > 0 is f-divergence func-
tional.

The Csiszar’s f-divergence can be used to find the difference between two probability
densities.

In this study the flow of work is given as follows: In Sect. 2, the mathematical theory
of time scales is presented. Next, in Sect. 3, bounds for Csiszar divergence via diamond
integrals are presented. In order to illustrate the theoretical results, some examples are
given for some fixed time scales. Lastly, in Sect. 4, bounds of some divergence measures
are estimated in terms of special means.

2 Preliminaries

Now we introduce some basic definitions and results related to the mathematical theory
of time scales. A nonempty closed subset of real numbers is called a time scale, denoted
by T. For example, Cantor set, N, and R. Furthermore, readers are referred to [8] for some
essentials on time scales, including continuity and differentiability.

Definition 1 (Delta integral [8, Definition 1.71]) A mapping H : T — (—00,00) is called
the delta antiderivative of /1 : [b1, by ]r = [b1, 2] N T — (—00, 00) if H*(¢) = h(¢) holds true
V¢ € T*. The delta integral of / is

by
fb h(¢) AL = Hiby) — H(by). (1)

Definition 2 (Nabla integral [8, Definition 8.42]) A mapping G: T — (—o00,00) is called
the nabla antiderivative of g : [by, byl — (—00,00) if GY(¢) = g(¢) ¥¢ € T*. The nabla
integral of g is

by
/ 2O)VE = Glba) - G(b). @

by

In [16], the authors have defined the diamond-alpha integral as follows:
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Let/: [c1,co]T — R be a continuous mapping and ¢1,¢; € T (¢ < ¢3). The diamond alpha

integral of [ is given as

/ 1)t = / Cal(0)Ac + / L-a)l)Ve, 0<a<l, 3)

1 1

if ylis A-and (1 - y)/is V-integrable on [c1, c2]T.
In case o = 0, we have the nabla-integral and, for o = 1, we have the delta-integral.
In [10], a real-valued function y is given as follows:

ox) -y

=lim . 4
v &) yoos o(x) +2x -2y — p(x) (4)
Clearly,
%, if x is dense;
y@ =10
((yx)x, ==, ifxis not dense.
o (x)-p(x)

In general, 0 < y(x) < 1.
In [11], diamond integral is defined as follows.

Definition 3 (Diamond integral [11]) Assume that g : [b1, by]T — R is a continuous func-
tion and by, b, € T (b; < by). The $-integral of g is given as

by by by
fb 8(0)0¢ = fb r(£)g@)As + fb 1-r©)eg@)Ve, 0=y@) =1, (5)
1 1 1
where yg is A- and (1 — y)g is V-integrable on [b1, by]r.

For monotonicity, additivity, reflexivity, and multiplicativity properties of <-integrals,
see [11].

Throughout the paper, we assume that:

(A1) ©:=[ay,as]r, with a;,a; € T and a; < ay;
(A2) A:={l|l:© > R*, [, I(E)0F =1}

3 Csiszar divergence via diamond integral
Csiszar divergence via diamond integral is defined as follows.

Definition 4 Assume that /5,/; € A and ¢ is a convex function on (0, 00). If

/
Dy (ly, L) := /@ lz(()¢(£)<>é’: (6)

then Dy ([y, ) is called Csiszar divergence.

If we use ¢(¢) = £2 — 1 in (6), then Karl Pearson y2-divergence via diamond integral can

be given as follows:

l 2
D,2(ly, b) = /O 12(4)[( l:ig) —1]<>;. (7)

Page 3 of 22
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A new bound for Csiszdr divergence is obtained in the following result.

Theorem 1 Assume that the mapping ¢ : [0,00) — (—00, 00) is convex on [j11, 42] C [0, 00)
and py <1 < py. If

l
ps e i VT, ®)
then
ottt = [ 12<;>¢(’1(“><>¢ < 225 )+ ) ©)
5} L(¢) M2 —
Proof Since ¢ is convex on [ii1, (2],
¢ (uper + (1 - w)uz) < ugp(p1) + (1 — u)p(1a2), (10)

forevery u € [0,1]. Put u = 222~ 1 -y =1 - £2=% = M jp (10) to obtain
21 Mol | pa-p

60) < 2 p(r) + (o). (11)
M2 — M1 M2 — K1
Use v ﬁ, in (11) to obtain
L) h()
I A4 -
¢< m) < 0 (u0) + D 3(y1y) (12)
h(2) M2 = (1 M2 = 1

Multiply (12) by /;(¢) to obtain

l / -1 / — 1yl
l1(§)¢< 2(()) w2l (2) 2(()¢( D+ 2(8) — 1 I(C)¢>(M2)~ (13)

h(g) Ko — 1 Ha — 11

Integrating (13) over ® and since l,/; € A, we get

h(z) Ha—1 1
I, l <
Io(l) = /2(§)¢< ()><>z )+ -

-
= (112),

— M1

which is the desired result. O

Example 1 Choose the set of real numbers as time scale in Theorem 1 to obtain [13, The-

orem 1, p. 2].
Example 2 If we take T = hZ, h > 0, then for ¢ = hy € hZ,

oy SO=E  HyrD-hy
0(©)=p@) " hy+D-h-1) " 2

1 o)1 11
2’ vi&)= 2 2

Page 4 of 22
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Then from Theorem 1 we get

LG b) = /12(5)05(1&;) ¢

h(g) L(©)
fy(c)zz(cm( = ))A§+[(1—V(C))lz(§)¢<l (§)>V§

[w«“) - 3 s (149)]

M2 —
< ¢(M1) +
M2 — M1 M2

(14)

“ ().
- M1

Remark 1 Inequality (14) is generalization of the specific bound for Csiszar divergence
obtained by Ansari et al. [5].

Example 3 Choose the set of integers as time scale. Then (9) takes the form

1S () & L)\ | ne-1 1-
2[}2 0o (10) + 22(1)41(1(1)} B0+ ),

jear+1 M2 — K1 M2

Example 4 Choose T = ¢ (g > 1). Then for ¢ = g" € g"° we have

(g_): O'({)—C _ qn+1_qn :qz_q: q
o(@)-p@) g -q"' -1 q+1

and

q 1
1- =1- = .
r(©) g+l g+1

In Theorem 1, use a; = ¢" and a; = ¢° (r < s) to obtain

q-1 (o L(q) SN L(4)
q+1[z‘f 00 (zz<qf>>+,§q' 12(‘*)"5(12@‘))}

(15)

M2 -1 1
o) +
M1 2

< — ().
M2 — -

Remark 2 Inequality (15) provides a new bound for Csiszér divergence in g-calculus.

Theorem 2 [f the assumptions of Theorem 1 are true and ¢ is differentiable on [111, 2],
then

M2 —1 )+ 1-w

M1
M2 — U1 K2 =
YWD (1D ) 7
M2 — K1

_ (@' (2) — @' (1)) (2 — 1)
< 1 )

0<

d(u2) = Iy, b) (16)

(18)

Page 5 of 22
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Proof Given that ¢ is a differentiable convex function, we obtain

d1) —d(v2) = @' (v2)(v1 —v2),  Vvi,va € (U1, ta). (19)

Let by, by € [e1, 2], B1,B2 > 0, and By + B2 > 0. Put vy = % and v, = by in (19) to
obtain

¢(b1,31 + by

b1+ by b )
L
B1+ B2

) e ¢’(b1>( o
_ B9’ (b1)(by — b1). (20)
B1+ B

_ bif1+brfy
Use v; rihy

and v, = by in (19) to get

<b1131 + by

bi1Bi + by b)
= 2" _p,
B1 + B2

- "(b
)-ot0a) = o' (P12
_ —,31¢'(b2)(b2—h1).

B+ B2 21)

Multiply (20) with 81 and (21) with 8, and add the results to obtain

b b
(B + Bo)b (M> — Bod(b) — Brp(b)
Bi+ B2

,31,32(¢ (b1) — @' (b)) (b2 — 1)
B1+ B2

(22)

Divide (22) by —(B1 + B2) to get

0 < Bop(ba) + Pr1(b1) B (blﬂl + bzﬂz)
- (B1+ Ba) B1+ B2
- B1B2(¢'(by) — ¢'(b1)) (b — bl).

- (B1 + B2)? (23)

Use B1 = o — ¥, B2 =y — 41, b1 = 11, and by = 1 in (23) to obtain
< U m)ka) + (2~ )9 () b0)
(2 = 1)

<(Mz @ — ) (@' (12) - ¢(u1))
- (2 — p1)

(24)

Use y = in (24) and multiply by /;(¢) to get

0<

(B(6) = i (€)BGs2) + (Rl ©) = b(ENSG) ) ¢(12(§)>
(2 — 111) ! L(C)

(uzh(é) L(O)(¢) = 1l (£)) (@' (12) - </>(u1))
(2 — p1)

(25)
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Take diamond integral on both sides of (25) with /5,/; € A to obtain

(1= 1) (u2) + (u2 — D (1)

(Mz - M1) Ll )

(¢ 1)) w2l1(2) = L(2)U2(2) — m1hi(2))
= (m—m) / s ¢
@ (u2>—¢(m))< [Bo, )

T () 2 /@11@)
_ (@' (2) — @' (1))
(12 — (1)

[
v (u / Mé)(ZEZ) or+ /)11(€)<>§— f@ 11(C)<>C—uzu1+u1)

_ (@'(w2) - 4" (1))
(2 — 1)

(9 (2) = 9" (1))
- @l 2o ln))
(2 = p1)

(h2 =Dy2(l,l2) =1 = paps + pa)
2= D1 - 1) = D,2(h, b)),

therefore (17) is proved. Since (up — 1)(1 — uy) < i(uz — p1)? and D,a(ly, ) > 0, (18) is
obvious. O

Remark 3 Choose the set of real numbers as a time scale in Theorem 2 to obtain [13,
Theorem 2].

Example 5 If we take T = hZ, h > 0, then from Theorem 2 we get

o =1 11—
0< (ur) + B (u2)
M2 — 1 M2 — 1

aQ

1 a2
4 . ( b(h) d (b
- ;hZIQh)‘p(wm) 3 hll(’h”’(zl(ih))
= 1:71—+1

M2 — U1 L(ih)

- 3 o (2 1)

all

az -1
S¢>(pcz)—<i>(m){(l m)(uz—l)—Zhll(;h)[(h(’h) 1}

=7

- (@' (2) — @' (1)) (2 — 1)
< 2 .

Example 6 Select T = g"° where g > 1. Then ¢ = g™ for some m € Ny. Additionally, use
=q" and a; = ¢° (r < s) in Theorem 2 to obtain

0< ¢< D+ — (o)
M2 — L M2 — K1

q-1 1“ N COAE S RSN ()
2_d"h(d)e (ll(q/)>_q+lzq] ll@“’(h(g]‘))

j=r j=r+1

Page 7 of 22
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¢/(M )_¢/(M ) s—1 ) . l (q]) 2
5;[(1 M1)(M2_1)_q—qul (¢)[<lj(q")> _1]

M2 — 1
-1 {(zz(qf))z_}
12 M| Ga)

- (@' (2) — @' (1)) (2 — p11)
< 2 .

Theorem 3 Let the assumptions of Theorem 1 be true and suppose ¢ is twice differentiable
on [u1, pa]. If n < ¢"(t) < N for each t € [u1, 2], then

g[u — )2 = 1) —sz<lhlz>]

¢( 1)+
Mz—Ml

< (= )2~ )= D00, 1), @)

¢(,U«2) —Is(l, 1) (26)
— K1

Proof Consider the mapping ¢, : [0,00) — (—00,00) as {,(§) = ¢(§) — ”i—z Since ¢,/(§) =
¢" (&) —n >0 for each & € [, 12, ¢, is convex on 1, wa]. Use ¢, in (9) to obtain

I woplnb) < 2271 [wl) - f(m)Z] y Az [¢><u2) - ﬁ(#2)2:|. (28)
2 M2 = M1 2 — 2

Also,

Iy-pop(n o) = Ip(h, ) - /Z2(§)< E§;> ot
2

Iy )~ /[12(;)(18) - 1}04

=Iy(h, 1) - EDXZ(ZI, b) - 5

Therefore (28) gives

Mo-1m , 1-prn 5, n n
~ul “p2- Do b) -5
po—p1 2" - 27 27K

-1 1—
<272 pun) + — L (o) - Iy (h, ).
M2 — U1 U2 — M1

(29)

Since

Mo—lm o 1—pn ,
— oMt 2~ 5D
Mo — 1 2 1o — 11 2 2

n( py—1 11—
= —( M% + [,l,% —DXZ(ll,lz) - 1>
2\ pa — 1 M2 — (1

22 _
_ n (Mz Wi — pmapa(ps — (1) _Dx2(ll'12) _ 1)
M2 — K1

(11’12)

N

(2 + 1 = papa — 1= D,2(l1, b))

NSREN
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= 2 (12 - 1) = 1) - Dby, b)),
2

inequality (26) is proved. The proof of (27) is similar, here we take ¢,(§) = A% —-¢&). O

Remark 4 Select the set of real numbers as a time scale in Theorem 3 to obtain [13, The-

orem 3].

Example 7 If we take T = hZ, h > 0, then from Theorem 3 we get

“72_1 , 2
) T/ b
5[(1—#1)(#2—1)‘ ;hll(’h)KZ(}h)) _1}
=0

—éw[<ﬁfzzz>2—@}

¢( 1)+

1 )

Mz - M1
- () )

2

_ N2
((1 p1)(pz = 1) = Zhll(]h)[ngZ;) _11|

J=

S w1

j=+1

NIZ

BN

Example 8 Select T = g™0 where g > 1, then ¢ = g for some m € Ny. Additionally, use

ay =q" and a, = ¢° (r < s) in Theorem 3 to obtain
4 ORI it ST (a)[(l2("j))2_1}
2| TR g T M )

PNl [(%i) )

1 r+1

¢( 1)+

¢(M2)
= -

+1 ' j)
61+1qu ( ) 1r+1 (l(q/))
N -1 2(d)\

((1 )tz — 1) - Z [(z (qf)) 1]

j=r

_—ZQJ [(h(qji)z_lD‘

j=r+1

Page 9 of 22



Bilal et al. Journal of Inequalities and Applications (2023) 2023:55 Page 10 of 22

Corollary 1 Ifthe assumptions of Theorem 3 are true and n > 0, then

H“2

< 1= i)tz = 1) =Dl )] < 2271 g+~ ) — I (0, ).
— M1 Ko — 1

NIE

Proof The statement follows from Theorem 3. Indeed, since

" _b©
1= 11( ) = 2,

one has

05/ (/Lzll(;“)—lz(C))(lz(C)—mll(é“))<>€

L(2)
= (1= p1)(u2 = 1) = D2 (lh, o).

Hence, the proof is complete. d
Remark 5 Choose y =1 in Corollary 1 to obtain [5, Corollary 1].

Remark 6 Select the set of real numbers as a time scale in Corollary 1 to obtain [13, Corol-

lary 1].

4 Some bounds in terms of special means
In this section, first of all we recall a few special means:

Geometric mean

G(&1,5) = £V/&1&.

Arithmetic mean

§1+6 +§2

A, 8) = 5

Logarithmic mean

&, if& =&,

L(1,6) =
mengs if& 7§ andé,6>0.

Identric mean

. &, if & = &,
(€1,8) = i(iz ) 6 TE lnSz if& #&.

Now we discuss some special cases of f-divergence such as Bhattacharyya distance, K-L

divergence, Hellinger distance, triangular discrimination, and Jeffreys distance.



Bilal et al. Journal of Inequalities and Applications (2023) 2023:55 Page 11 of 22

4.1 Bhattacharyya distance via diamond integral
If we use ¢(¢) = —/C in (6), then we obtain Bhattacharyya distance.

Definition 5 Bhattacharyya distance via diamond integral can be defined as follows:

Dyl bo) 1= — /O JEOB©)oL.

Proposition 1 If the assumptions of Theorem 1 are true, then

-1 - G*(i1, 1)
Ihbh)< ——————.
Dg(l, ) < NN

Proof Use ¢(¢) = —+/¢ in Theorem 1 to get

(2 = D(=y/m1) + (1 = pa)(=/142)

Dg(ly, ) <
M2 — M1
_ VB2t VI - R e
- M2 — M1
_ 12 - i) - Jina (Vi — i)
- M2 — U1
-l- i -1-G (o)
(Vi) A i) -

The next result provides a new bound for Bhattacharyya discrimination in g-calculus.

Example9 Select T = "0 where g > 1, then ¢ = ¢” for some m € Ny. In Proposition 1, use

a1 =q" and ay = ¢° (r < s) to obtain

s-1 y , : .o : ~ _1-G(u1, o)
_;q/ 1 h(q/)lz(q/) —j;Hq’ 1 ll(ql)[z(ql) < W’l\/u—;)

Proposition 2 [fthe assumptions of Theorem 2 are true, then we have

0< LG )

= 2A(/Ti1, )
1

= 262 (1, 1) AT i)

- Dg(l1, 1)

[(n2 = 1A = 1) = Dy2(h, )]

Proof Use ¢(¢) = —/C in Theorem 2 to obtain the desired result, since in this case

¢ (12) ¢ (1) _ 1
pr-m 2yl + )
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Proposition 3 [fthe assumptions of Theorem 3 are true, then we have

0 < ——[(ss = D1~ 1) - Do (t1, 1]

8,/ 13
_1_G2(M1’M2)
——— = —Dg(ly,!
SZA(\//L_;\/E) (01, 12)
1
< ——=[(2a = DA = 1) = D,2(ly, bn)].
8\/u3

Proof Use ¢(¢) = —+/¢ in Theorem 3 to obtain the desired result, since in this case

1 1 1
¢"(¢) = and <¢"(0) <
43 4./u3 4./}
for each ¢ € [y, uo]. O

4.2 Kullback-Leibler divergence via diamond integral
If we use ¢(¢) = ¢ In¢ in (6), then we obtain Kullback-Leibler divergence.

Definition 6 Kullback—Leibler divergence via diamond integral can be given as follows:

D(ll,lz) = /Oll(;) III(%)O;

Proposition 4 If

l
Ml§ﬁ<u’2;

h() ~

foreach ¢ €T, then

l G*(u1,
Dt = | ll(c)ln( 1“))0; < Inl(ug, ) - SHLED g
® h(¢) L(p1, p2)
Proof Use ¢(¢) = ¢ In¢ in Theorem 1 to get
h(g)
Dty = [ 1 (c)¢( ot
R S h(¢)
_1 1_
<2 palnpg + “ paln po
Mo — 1 M2 — 1
_ popaInpy —palnpg + poInpy — popr Inpuy
M2 — U1
poln g — oy In g In ey —In g
= + Hifke
M2 — K1 M2 — K1
palnpy —puyInpy oInpy —Inpy
= -1+1+(up) ————
M2 — U1 e M2 — K1
GZ(MI:MZ)

= InI(py, o) +1 - .
! L1, p2)

Page 12 of 22
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Remark 7 Choose y =1 in Proposition 4 to obtain [5, Proposition 1].

Remark 8 Select the set of real numbers as a time scale in Proposition 4 to obtain [13,

Proposition 1].

Example 10 If we take T = hZ, h > 0, then from Proposition 4 we get

2 _q a
< , L(jh) - . L (k)
}2} hiy (k) 1n<12(jh)) +j=;+1hll(1h) ln(b(jh))

G? ,
< Inl(ug, ) - H0HD) Ly
L(er /’LZ)

(30)

Example 11 Select T = g"° where ¢ > 1, then ¢ = g™ for some m € Ny. Additionally, use

ay =q" and a, = ¢° (r < s) in Proposition 4 to obtain

1 L(q) 1 e (h(@)
Q+1|:Zq1 ll (lz(q/))+qu ll(q/)ln<12(q/)):|

j=r+1

(31)
G* (1, 2)

<Ini(uy, pa) = ———+
L(Ml’ /’LZ)

Remark 9 Inequality (31) provides a new upper bound for K-L divergence in g-calculus.

Proposition 5 If the assumptions of Proposition 4 are true, then we have

2
ognf(,“,,h,)_MH_LZZW(zl(:))<>§

Ly, l
(11, 2) 2(¢) (32)
< (IJ/Z - 1)(1 - Ml) - DXZ(ZI;IZ)
- L(pa1, o) '
Proof Use ¢(¢) = ¢ In¢ in Theorem 2 to get
' (pa) = ¢'(1) Inpp+1-1-Inp; 1
= = . O
M2 = Ha W2 = pa L(p1, pa)

Remark 10 Select the set of real numbers as a time scale in Proposition 5 to obtain [13,

Proposition 2].

Example 12 Select T = g0 where g > 1, then ¢ = ¢ for some m € Ny. Further, use a; = g"

and a; = ¢° (r < s) in Proposition 5 to obtain

G2(uq,
0 < Inf(py, p2) - Gl i) +1
L1, p12)

q 1 +1 j ll
61+1qu 2(a)9 (l(q/)) qg+1

Zq’ 7) (lz(OI’;>

j=r+1
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(2 — 1A — )
L1, o)

U @ADL - 11+ 55, a7 (@) (AL - 1))
- L(py, p2) )

In the following result we use Theorem 3 to improve (32).

Proposition 6 If[y, [, satisfy (8), then

L0 = i) s - 1) = Do, )]

20
G, /
<InI(py, pa) - L Mll 11;2)) / 12(§)¢(11$;>
1

g((l 1) (2 =1) = Dy (h, 1)).

Proof Use ¢(¢) = ¢ In¢ in Theorem 3, then ¢”(¢) = ¢ L. Since 1 < ¢ < iy, one gets

which implies

1 , 1
— =<¢"(¢) < —,
H2 M1

completing the proof. O

Example 13 Select the set of real numbers as a time scale in Proposition 6 to obtain [13,
Proposition 3].

Example 14 Select T = g™° for ¢ > 1, and ¢ = ¢ for some m € Ny. Also, use a; = ¢" and
ay = ¢° (r < s) in Proposition 6 to obtain

1 -1 o, A [(@)Y
z—h[(l—m)(uz—l)—m{;q’ ll(c/)[(h(qj)) -1}

e (A0) ]|

j=r+l1
G* (i1, 112)
<Inl(uy, pa) - m +1
s—1 , /)
+1
qHZ(f ((f)( qf)> qHZqI ((qf)>

j=r+1

1 () L(@)\*
52—12<(1 Ml)(MZ_l)_—{qul |:<11(q1‘)) _1]

A @|(; (q1;>2 1”)

j=r+l
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Remark 11 Use ¢(¢) = —1In¢ in (6) to obtain

[
Dyllsyby) = — /O zxam(%)oz

B L(¢) B
—/@lz(f)ln(m><>f =D(l, ).

Proposition 7 Ifly, [, satisfy (8), then

lg(g)) ( 1 1 ) 1
L,l))=] [ In| —= <1 —_ - .
ey /@ 28) n(ll(C) ¢t =l w1 p2) L, pa) +

Proof Use ¢(¢) =—1In¢ in (9) to obtain

Dila, 1) = /O zz(cnn(@)oc

L(2)
- (2 —1)(=1Inpy) N (1 —p1)(=Inp,)
25 Rl 3] Ko — 1
_ (o =D p) + (1 - pa)(=1n o)
M2 = 1
_ (u1lnpey —polnpy)  Inps —Inp,y
M2 — M2 — 1

Mlﬂz(tlnﬂz - ﬁ Inu1)  Inpy—Inp

M2 = M1 M2 =

Ipil_Lipt 1
T S R
= 11

o, L(p1, p2)

Ini( ) ! 1

=ni{py, 2) = 77—+ 1L
L(p1, pa)
which completes the proof. d

Example 15 Select the set of real numbers as a time scale in Proposition 7 to obtain [13,

Proposition 4].
Remark 12 Choose y =1 in Proposition 7 to obtain [5, Proposition 4].

Proposition 8 If[y, [, satisfy (8), then

0 <Inl(uy, ua) - Lt i) +1-D(l, )
n1, L2 (33)
== -1)(1- - D, o(l1, ).
G ) [(2 - 1)A = 1) = D2(l, 1o)]
Proof Use ¢(¢) = —1In¢ in Theorem 2 to obtain the desired result, since in this case
@' (n2) =¢'(m1) 1 1
(|

Po—p1 paps GApa, i)

Page 15 of 22
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Example 16 Select the set of real numbers as a time scale in Proposition 8 to obtain [13,
Proposition 5].

Remark 13 Choose y =1 in Proposition 8 to obtain [5, Proposition 5].
In the following result, Theorem 3 is used to improve (33).

Proposition 9 If the assumptions of Theorem 3 are true, then

1 1
Z—M%[(Mz =11 - 1) —DXZ(lhlz)] <Inl(p1, pu2) - m +1=D(h, )

= %[(ﬂz —1)(1 - u1) = D,2(l1, b))
1

Proof Use ¢(¢) = —In¢ in Theorem 3 to obtain the desired result, since in this case

1 1 1
" _ - d — <o’ <
V@)= and =905,
for each ¢ € [y, uo]. O

Example 17 Select the set of real numbers as a time scale in Proposition 9 to obtain [13,
Proposition 6].

Remark 14 Choose y =1 in Proposition 9 to obtain [5, Proposition 6].

4.3 Triangular discrimination via diamond integral

2
If we use ¢(¢) = ({;%11) in (6), then we obtain triangular discrimination.

Definition 7 Triangular discrimination via diamond integral can be defined as follows:

@) - b))
Dalhb) “/@ GG (34)

Proposition 10 If the assumptions of Theorem 1 are true, then we have

4A(11, o) — 2G* (1, ) — 2
2A(p1, o) + G*(pa, o) + 17

Da(l, 1) <

Proof Use ¢(¢) = (5;1)2 in Theorem 1 to obtain
(2 = (1 = 1)*(ug + 1) + (1 = 1) (g — 1)*(uq + 1)

Da(ly,1
alh,b) = (12 = )z + D +1)

_ 3 - pd) - @uaps - 2uips) - (2 - 111)
- (2 = 1) (g + 1)(py + 1)
- 2(pg — 1) + p1 — poapr — 1)
(2 = 1) (g + 1)(py + 1)
_ 2pa + p1 = popr = 1)
(et D +1)




Bilal et al. Journal of Inequalities and Applications (2023) 2023:55

_ 2(po + (1 — pop1 — 1)
Mo+ (1 + fapr +1
4A(p1, 12) — 2G (1, pa) — 2

= . I:l

2A(11, o) + G2 (1, o) + 1

Example 18 Select the set of real numbers as time scale in Proposition 10 to obtain

/ (12(§)—11(§))2d - 4A(11, o) — 2G* (w1, pa) — 2
o h(&)+h() T 2A(p1, o) + GAui, o) +1

Remark 15 Choose y =1 in Proposition 10 to obtain [5, Proposition 7].

The next result provides a new bound for triangular discrimination in g-calculus.

Example 19 Select T = 4"° where g > 1, then ¢ = g” for some m € Ny. In Proposition 10,

use a1 = q" and ay = ¢° (r < s) to obtain

Z 1 (b(d) - h(q)) s ZS: 1 (b(@) - h(g))

L(q) + L(q) ] L(g) + L(q)

- 4A(1, p2) — 2G> (11, ha) — 2
T 2A(u1, u2) + GHur, pa) + 1

Proposition 11 If the assumptions of Theorem 2 are true, then we have

- 4A(u1, pa) — 2G* (i, o) — 2
T 2A(u1, pu2) + G2 (11, o) + 1
- 8A(u1, ) +8 (
T 2A(w1, ) + GH, p2) + 172

—Dp(l1, 1)

o = 1)(1 = 1) = D,2(l, 1b)].

Proof Use ¢(¢) = “1 ® in Theorem 2 to obtain the desired result, since in this case

@' () =" (1) Apa + p1 +2) BA(m1, 12) +8

= . D

pa—pm (o + D+ 1) [2A(u, i) + G2, o) + 1]2
Proposition 12 If the assumptions of Theorem 3 are true, then we have
< 2= DA - )~ Dyl )]
T L+ pol? *

_ 4, 12) - 2G% (1, pa) - 2
T 2A(u1, p2) + G, pg) + 1

———[(u2 = 1)(1 = 1) = Dy (b, 1) ].

—Da(h, )

8
[1+ 13

Proof Use ¢(¢) = §+1 in Theorem 3 to obtain the desired result, since in this case

” _ 8 8 "
PO ™M Lr S O ap

for each ¢ € [y, ua]. (]
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4.4 Hellinger distance via diamond integral

If we use ¢(¢) = @ in (6), then we obtain Hellinger distance.

Definition 8 Hellinger distance via diamond integral can be defined as follows:
1
W)= / (V) - VulD) >0t
®

Proposition 13 If the assumptions of Theorem 1 are true, then we have

12 1y) < ZAWAD V) — Gty o) — 1
) 2A(/Fn, 1)

Proof Use ¢(¢) = (‘/z; 1’ in Theorem 1 to obtain

D=

L) < 2H T VW - D 11— ) (i - 1)?
(2 — (1)
! —1)1-
2(«/ﬂ_zﬂz _)(Ml) V1) [(Vi2 + DA = i) + (Vi = V(L + /1)
| WiE = V(- IR - V) (=D i)
(2 = p1)

(V12 + /1)
_ V= i =1 24/ Vi) - GP(pa, o) - 1
NEN 2A( i /12) ' -

Remark 16 Choose y =1 in Proposition 13 to obtain [5, Proposition 10].
The next example provides a new bound for Hellinger discrimination in g-calculus.

Example 20 Select T = g0 where ¢ > 1, then ¢ = g™ for some m € Ny. In Proposition 13,
use a1 = q" and ay = ¢° (r < s) to obtain

50 a -

j=r+1

_ 2AWI Vi) — G (11, p2) - 1
- 2A(/11, /12)

Proposition 14 If the assumptions of Theorem 2 are true, then we have

(VI -D1-Jm) o,
RN A
1
- — 1) = D,2(l1, )]
S4WA(\/M_y\//L_2)[(M2 (1= 1) =D,2(h 2)]

Proof Use ¢(¢) = @ in Theorem 2 to obtain the desired result, since in this case

@' (112) — @' (u1) _ 1
M2 — U1 2/ (i + i2)

Page 18 of 22
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Example 21 Select the set of real numbers as a time scale in Proposition 14 to obtain [13,

Proposition 8].

Remark 17 Choose y =1 in Proposition 14 to obtain [5, Proposition 11].

Proposition 15 If the assumptions of Theorem 3 are true, then we have

0<  — (Mz— 1)(1_M1)_DX2(11!12)]
8
W)

= N )

sz(ll,lg)].

[(2 = 1A - py) -
8,/

2
Proof Use ¢(¢) = WE-1” i Theorem 3 to obtain the desired result, since in this case

1 1 1
and

4/c? 8,13 8,/ui

9" (¢) =

for each ¢ € [y, uo]. O

Remark 18 Choose y =1 in Proposition 15 to obtain [5, Proposition 12].

4.5 Jeffreys distance via diamond integral
If we use ¢(¢) = (¢ — 1)In¢ in (6), then we obtain Jeffreys distance.

Definition 9 Jeftreys distance via diamond integral can be defined as follows:

D](lplz)?:/@(h@) L) [zg;]%

Proposition 16 If

I (2)
Hn1 = L) <

M2,

foreach ¢ €T, then

it [

G* (1, 1 1 1
(g, ) - LRI L lnl(—, —) +2.
L(p1, p2) M1 2
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Proof Use ¢(¢) =(¢ —1)In¢ in Theorem 1 to get

Dyl ) - f (L(0) = b)) [122]04

_

M2 =
(=D =DInpy + (1 - Ml)(Mz —1)Inps]
- M2 — 41
_Halnpy —pyInpy paps(Inp, —Injuy)
C —m 1y — i

. palnpey —polnpy  Inpy —Inp,

M2 — K1 M2 — K1

1

M2\ Jigiiy

=1n<'uil> —Ine+Ine
231

1-
(m -Dinpg + m (Mz -1 lnpu,
2

(a2 + 1)(In py — lnul) (Mlﬂz)(hwz )

M2 — U1 M2 = M1

G (1, p12) + 1 1 1
=Inl(u, o) - —————— +Inf{ —, — | +2.
P T e, o) H

Example 22 Select g™ with ¢ > 1 as a time scale, then ¢ = ¢” for some m € Ny. Further,
use a; = q" and a, = ¢° (r < s) in Proposition 16 to obtain

S -l 25] S -l

P L(q)

G?*(u1, 1 1 1
< Il ) - SR FL 1(— —) +2.
L(//Ll,/L2)

Proposition 17 If the assumptions of Theorem 2 are true, then we have

G?*(u1, 1 1
0 < Inl(uy, p) — S22 ¥ 1 lnl(

1
—,— ) +2-D;(l1, 1)
L1, pt2) 1 Mz) e

1 1
: [Gz(m,uz) ' L(m,m)}[(ﬂz ~1)(1 - 1) = Dya(ly, )]

Proof Use ¢(¢) = (¢ —1)In¢ in Theorem 2 to obtain the desired result, since in this case

@' (n2) — @' (1) _ 1 s In o —Inpg 1 1

=— + .
M2 — 1 12 Mo — 1 G*(u1, ) L1, p2)

O
Proposition 18 If the assumptions of Theorem 3 are true, then we have

0< X2 [0y - 1)1 - ) - Do (ly, 1)]
Mz

G2(jur, o) + 1 11

Flubd el (L) v2- iy
L(Ml;Mz) Ml MZ

n1+1

< [(n2 = DA = 1) = D2 (l, bo)].
1y

<Inil(uy, pa) -
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Proof Use ¢(¢) = (¢ —1)In¢ in Theorem 3 to obtain the desired result, since in this case

+1 +1 +1
p'0)= L ana 2 g <Pt
¢ ) M1
for each ¢ € [u1, v2]. O

5 Conclusion

In this work, Csiszar f-divergence for diamond integral has been introduced. Some in-
equalities for Csiszar f-divergence have been proved. Bounds of different divergence mea-
sures have been obtained in terms of some special means by using particular convex func-
tions. The proved results are generalizations of the results provided in [5, 13]. This idea
can be used to study different divergence notions on time scales like Jensen—Shannon di-
vergence and Rényi divergence, etc.
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