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Abstract
This paper is mainly concerned with behaviors of solution to the Cauchy problem for
a generalized shallow water equation with dispersive term and dissipative term in the
Besov space. It is shown that the problem of nonlinear shallow water equation is
locally well posed. The H1(R) norm of solution to the problem is bounded under
certain assumption on the initial value. Several blow-up criteria of solution are
presented. The solution has compact support provided that the initial value has
compact support. More specifically, the solution exponentially decays at infinity if the
initial value exponentially decays at infinity. Our main new contribution is that the
effects of coefficients λ and β on solution are illustrated. To the best of our
knowledge, the results in Theorems 1.1–1.7 are new.
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1 Introduction
The main aim of the present work is to consider the following Cauchy problem of a gen-
eralized shallow water equation:

⎧
⎪⎪⎨

⎪⎪⎩

vt – vxxt + β(vx – vxxx) + λ(v – vxx)

= (1 + ∂x)(v2vxx + vv2
x – 2v2vx), t > 0, x ∈R,

v(0, x) = v0(x), x ∈R.

(1.1)

Here, v(t, x) is the velocity of shallow water wave, β(vx – vxxx)(β ∈ R) is the dispersive
term, λ(v – vxx)(λ > 0) is the dissipative term. The initial value satisfies v0 ∈ Bs

p,r(R)(s >
max( 3

2 , 1 + 1
p )).

It is worthwhile pointing out that problem (1.1) and the Camassa–Holm (CH) equation

vt – vxxt + βvx + 3vvx = 2vxvxx + vvxxx

are special equations of the following shallow water model:

(
1 – ∂2

x
)
vt = F(v, vx, vxx, vxxx),
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which is investigated in [1]. In recent decades, local well-posedness for the Cauchy prob-
lem of the CH equation in Hs(R) and Bs

p,r(R) has attracted a lot of attention (see detailed
instructions in [2–14]). Zhou and Chen [14] discovered that the solution v to problem (1.1)
could be regarded as a perturbation around β by investigating asymptotic behavior of so-
lution. The Cauchy problem of the CH equation with dissipative term and dispersion term
was considered (see [9]). Finite time blow-up result and existence of global solution were
obtained. Cui and Han [2] studied the asymptotic behavior of solution to a generalized CH
equation. Gao et al. [3] established the dispersive regularization for a modified CH equa-
tion in one space dimension. Huang and Yu [4] derived the soliton and peakon solution to
a generalized CH equation. Gui et al. [15] considered the nonlocal shallow water equation
in two space dimensions by employing the asymptotic perturbation method. Local well-
posedness and blow-up dynamics of solution to the Cauchy problem were demonstrated
in the Sobolev space. Li and Zhang [7] discovered the generic regularity of conservative so-
lution to a CH type equation by making use of the Thom transversality lemma. Silva and
Freire [10] studied local well-posedness and traveling waves for the Cauchy problem of
CH equation. Meanwhile, existence and uniqueness of solution were derived by applying
the Kato approach. Mi et al. [8] demonstrated that the generalized CH equation is locally
well posed in the Sobolev spaces Hs(s > 3

2 ) in periodic and nonperiodic cases. Local well-
posedness for the Cauchy problem of the periodic shallow water equation was proved in
Hs(T)(s > –n + 3

2 , n ≥ 2) (see [12]). Zhang [13] investigated local well-posedness for the
Cauchy problem of rotation CH equation on the torus T. Peakon solutions to the μ-CH
equation in Hs(S)(s > 7

2 ) were discovered (see [11]). In terms of other dynamic properties
of the generalized CH models, the readers are referred to [16–25] for more details.

There has been increasing interest in the other two shallow water models, namely, the
Degasperis–Procesi (DP) equation

vt – vxxt + 4vvx = 3vxvxx + vvxxx

and the Novikov equation

vt – vxxt + 4v2vx = 3vvxvxx + v2vxxx.

The wave breaking phenomena of solution to the DP equation were considered (see [26]).
Constantin and Ivanov [27] investigated soliton solution to the DP equation by utiliz-
ing the dressing method. Molinet [28] established asymptotic stability of the DP peakon.
Cai et al. [29] considered the Lipschitz metric for the Novikov equation. Himonas et al.
[30] obtained the construction of two-peakon solution for the Novikov equation. Zheng
and Yin [31] established the wave breaking and solitary wave solution for a generalized
Novikov equation. Blow-up mechanisms of solution to a degenerated Novikov equation
in Hs(R)(s > 5

2 ) were analyzed (see [32]).
Motivated by the previous works [2, 9, 21, 33, 34], we are devoted to investigating local

well-posedness and several blow-up results of solution to the Cauchy problem of gener-
alized shallow water Eq. (1.1). We observe that Li and Yin [21] have obtained local well-
posedness and blow-up dynamics of solution to the Cauchy problem of the Camassa–
Holm equation, which is a special case of problem (1.1) in the case λ = β = 0. The ap-
proaches were based on the transport equation and Littlewood–Paley theory in the Besov



Ming et al. Journal of Inequalities and Applications         (2023) 2023:37 Page 3 of 15

space. Constantin [35] investigated finite propagation speed for the Camassa–Holm equa-
tion. It was shown that classical solution to the Camassa–Holm equation has compact
support if its initial data has compact support. Henry [36] considered infinite propagation
speed for the Degasperis–Procesi equation. Himonas et al. [37] demonstrated persistence
properties of solution to the Camassa–Holm equation. The results indicated that a solu-
tion to the Camassa–Holm equation decays exponentially when the initial value decays
exponentially. The asymptotic behaviors of solution to a generalized CH equation were
discussed (see [2]). More precisely, the solution does not have compact support in the
framework of compactly supported initial value. In this work, it is shown that the Cauchy
problem of generalized shallow water equation with dispersive term and dissipative term
is locally well posed in the Besov space. The H1(R) norm of solution to the problem is
bounded under certain assumption on the initial value. Meanwhile, we establish several
blow-up criteria of solution to problem (1.1). We recognize that the solution has compact
support provided that the initial value has compact support. The solution exponentially
decays at infinity if the initial value exponentially decays at infinity. The advantage of the
present paper is to derive the effects of dispersive term β(v – vxxx) and dissipative term
λ(v – vxx) on behaviors of solution to problem (1.1). In addition, we extend parts of results
in [2, 21]. To the best of authors’ knowledge, the results in Theorems 1.1–1.7 are new.

Let s ∈R, T > 0, p ∈ [1,∞], r ∈ [1,∞]. Here, we set the framework of space

Es
p,r(T) =

⎧
⎨

⎩

C([0, T]; Bs
p,r(R)) ∩ C1([0, T]; Bs–1

p,r (R)), 1 ≤ r < ∞,

L∞([0, T]; Bs
p,∞(R)) ∩ Lip([0, T]; Bs–1

p,∞(R)), r = ∞.

Assume w0(x) = (1 – ∂x)v0(x) and w(t, x) = (1 – ∂x)v(t, x). Therefore, problem (1.1) is re-
formulated as

⎧
⎨

⎩

wt + (v2 + β)wx = vw2 – v2w – λw, t > 0, x ∈R,

w(0, x) = w0(x), x ∈R,
(1.2)

or

⎧
⎨

⎩

wt + (v2 + β)wx = –vvxw – λw, t > 0, x ∈R,

w(0, x) = w0(x), x ∈R.
(1.3)

We summarize our results as follows.

Theorem 1.1 Assume 1 ≤ p, r ≤ ∞, v0 ∈ Bs
p,r(R)(s > max( 3

2 , 1 + 1
p )). Then there exists a

unique solution v ∈ Es
p,r(T) to problem (1.1) for a suitable positive constant T .

Theorem 1.2 Let 1 ≤ p, r ≤ ∞, v0 ∈ Bs
p,r(R)(s > max( 3

2 , 1 + 1
p )). Then a solution v to prob-

lem (1.1) satisfies

∥
∥v(t)

∥
∥

H1 ≤ ‖v0‖H1 , t ∈ [0, T].
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Theorem 1.3 Let 1 ≤ p, r ≤ ∞, v0 ∈ Bs
p,r(R)(max( 3

2 , 1 + 1
p ) < s < 2), t ∈ [0, T]. Then a solu-

tion v to problem (1.1) blows up if and only if

∫ t

0

(∥
∥w(τ )

∥
∥2

L∞ – λ
)

dτ = ∞.

Theorem 1.4 Assume v0 ∈ Hs(R)(s > 3
2 ) and t ∈ [0, T]. Then a solution v to problem (1.1)

blows up if and only if

lim
t→T–

[
sup
x∈R

(
vw(t, x) – λ

)]
= ∞.

Theorem 1.5 Let 1 ≤ p, r ≤ ∞, v0 ∈ Bs
p,r(R)(s > max( 3

2 , 1 + 1
p )), v0 is compactly supported

in the interval [au0 , bu0 ]. Assume w0 = v0 – v0,x ≥ 0. T > 0 is the maximal existence time of
the corresponding solution v to problem (1.1). Then the solution v is compactly supported
in [p(t, au0 ), p(t, bu0 )] for all t ∈ [0, T).

Theorem 1.6 Let v0 ∈ Hs(R)(s > 3
2 ), w0 = v0 – v0,x ≥ 0. Assume that v0(v0 – v0,x)(x0) > 2λ +

‖v0‖2
H1 , where x0 is defined as v0(v0 – v0,x)(x0) = supx∈R[v0(v0 – v0,x)]. Then a solution v to

problem (1.1) blows up in finite time.

Theorem 1.7 Suppose that v0 ∈ Hs(R)(s > 5
2 ) and v is the corresponding solution to prob-

lem (1.1). Let t ∈ [0, T] and θ ∈ (0, 1). Assume that v0 satisfies

∣
∣v0(x)

∣
∣∼ O

(
e–θx) as x → ∞.

Then it holds that

∣
∣v(t, x)

∣
∣∼ O

(
e–θx) as x → ∞

uniformly on [0, T].

Remark 1.1 Problem (1.1) is locally well posed in Bs
p,r(R)(s > max( 3

2 , 1 + 1
p )). We obtain

that ‖v(t)‖H1(R) is bounded. Blow-up criterion of solution in the Besov space is shown in
Theorem 1.3. It is illustrated in Theorem 1.4 that the wave breaking of solution u occurs
in the case that vw is unbounded in finite time. Theorems 1.3, 1.4, and 1.6 indicate that
the dissipative coefficient λ is related to the blow-up of solution. From Theorem 1.5, we
observe that the solution has compact support provided that the initial value has compact
support. From Theorem 1.7, we deduce that the solution exponentially decays at infinity if
the initial value exponentially decays at infinity. Parts of the results in [2, 21] are extended.

2 Proof of Theorem 1.1
First of all, we show the proof in five steps. We note that w0 ∈ Bs

p,r(s > max( 1
p , 1

2 )) in (1.2).
Step one: Let w0 = 0 for all t > 0, x ∈ R. We assume that a sequence of smooth functions

(wi)i∈N ∈ C(R+; B∞
p,r) satisfies

⎧
⎨

⎩

(∂t + ((vi)2 + β)∂x)wi+1 = F(t, x),

wi+1(0, x) = wi+1
0 (x) = Si+1w0

(2.1)
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and

F(t, x) = vi(wi)2 –
(
vi)2wi – λwi. (2.2)

We observe that Si+1w0 ∈ B∞
p,r . Taking advantage of Lemma 2.5 in [38], we derive that

wi ∈ C(R+; B∞
p,r) is global for all i ∈N.

Step two: It is deduced from Lemma 2.4 in [38] that

∥
∥wi+1(t)

∥
∥

Bs
p,r

≤ e
C1

∫ t
0 ‖∂x(vi)2(τ )‖Bsp,r

dτ

×
[

‖w0‖Bs
p,r +

∫ t

0
e

–C1
∫ τ

0 ‖∂x(vi)2(ξ )‖Bsp,r
dξ∥∥F(τ , ·)∥∥Bs

p,r
dτ

]

. (2.3)

Making use of vi = (1 – ∂2
x )–1(1 + ∂x)wi, we obtain

∥
∥∂x

(
vi)2∥∥

Bs
p,r

�
∥
∥wi∥∥2

Bs
p,r

, (2.4)

which results in

∥
∥F(t, ·)∥∥Bs

p,r
�

(
1 + λ +

∥
∥wi(t)

∥
∥

Bs
p,r

)2∥∥wi(t)
∥
∥

Bs
p,r

. (2.5)

Applying (2.3), (2.4), and (2.5), we have

∥
∥wi+1(t)

∥
∥

Bs
p,r

≤ C2e
C2

∫ t
0 (1+λ+‖wi(τ )‖Bsp,r

)2 dτ
[

‖w0‖Bs
p,r

+
∫ t

0
e

–C2
∫ τ

0 (1+λ+‖wi(ξ )‖Bsp,r
)2 dξ

× (
1 + λ +

∥
∥wi(τ )

∥
∥

Bs
p,r

)2∥∥wi(τ )
∥
∥

Bs
p,r

dτ

]

. (2.6)

Let the positive constant T satisfy 4C3
2(1 + λ + ‖w0‖Bs

p,r )2T < 1 and

(
1 + λ +

∥
∥wi(t)

∥
∥

Bs
p,r

)2 ≤ C2
2(1 + λ + ‖w0‖Bs

p,r )2

1 – 4C3
2(1 + λ + ‖w0‖Bs

p,r )2t
. (2.7)

Thus, we calculate from (2.6) and (2.7) that

(
1 + λ +

∥
∥wi+1(t)

∥
∥

Bs
p,r

)2 ≤ C2
2(1 + λ + ‖w0‖Bs

p,r )2

1 – 4C3
2(1 + λ + ‖w0‖Bs

p,r )2t
.

This implies that (wi)i∈N is uniformly bounded in Es
p,r(T).

Step three: We set i, j ∈N. From (2.1), we observe

(
∂t +

((
vi+j)2 + β

)
∂x

)(
wi+j+1 – wi+1)

= –
[(

vi+j)2 –
(
vi)2]wi+1

x +
(
vi+j – vi)(wi+j)2

+ vi((wi+j)2 –
(
wi)2) –

(
vi+j – vi)(vi+j + vi)wi+j
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–
(
vi)2(wi+j – wi) – λ

(
wi+j – wi). (2.8)

Employing Lemma 2.14 in [39] yields

∥
∥wi+j+1 – wi+1∥∥

Bs–1
p,r

≤ e
C

∫ t
0 ‖wi+j‖2

Bsp,r
dτ

[
∥
∥wi+j+1

0 – wi+1
0

∥
∥

Bs–1
p,r

+ C
∫ t

0
e

–C
∫ τ

0 ‖wi+j‖2
Bsp,r

dξ∥
∥wi+j – wi∥∥

Bs–1
p,r

× (∥
∥wi∥∥

Bs
p,r

+
∥
∥wi+j∥∥

Bs
p,r

+
∥
∥wi+1∥∥

Bs
p,r

+ 1
)2 dτ

]

. (2.9)

We note that the initial values satisfy

wi+j+1
0 – wi+1

0 =
i+j∑

q=i+1

�qw0.

We recognize that there exists a positive constant C1 independent of i such that

∥
∥wi+j+1 – wi+1∥∥

L∞([0,T];Bs–1
p,r ) ≤ C12–i.

We arrive at the desired result.
Step four: Similar to the discussions in Step 4 in Sect. 3 in [38], we derive that the solution

w ∈ Es
p,r(T) is continuous.

Step five: We are in the position to present the uniqueness of solution.
Let (p, r) ∈ [1,∞]2, s > max( 1

p , 1
2 ), w1

0, w2
0 ∈ Bs

p,r . w1 and w2 satisfy (1.2). w1, w2 ∈ L∞([0, T];
Bs

p,r) ∩ C([0, T]; Bs–1
p,r ). We assume w12 = w1 – w2 and

w12 ∈ L∞(
[0, T]; Bs

p,r
) ∩ C

(
[0, T]; Bs–1

p,r
)
,

which satisfies
⎧
⎨

⎩

(∂t + ((v1)2 + β)∂x)w12 = –v12(v1 + v2)(w2)x + F1(t, x),

w12(0, x) = w12
0 = w1

0 – w2
0

(2.10)

and

F1(t, x) = v12(w1)2 + v2w12(w1 + w2) – v12(v1 + v2)w1 –
(
v2)2w12 – λw12.

Utilizing Lemma 2.14 in [39], we achieve

e
–C

∫ t
0 ‖w1‖2

Bsp,r
dτ∥

∥w12∥∥
Bs

p,r

≤ ∥
∥w12

0
∥
∥

Bs–1
p,r

+ C
∫ t

0
e

–C
∫ τ

0 ‖w1‖2
Bsp,r

dξ∥
∥w12∥∥

Bs
p,r

(
1 + λ +

∥
∥w1∥∥

Bs
p,r

+
∥
∥w2∥∥

Bs
p,r

)2 dτ .
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It holds that

∥
∥w12∥∥

Bs–1
p,r

≤ ∥
∥w12

0
∥
∥

Bs–1
p,r

e
C

∫ t
0 (1+λ+‖w1‖Bsp,r

+‖w2‖Bsp,r
)2 dτ

. (2.11)

This completes the proof of Theorem 1.1.

Remark 2.1 We note that (1 – ∂x)–1 = (1 – ∂2
x )–1(1 + ∂x) is S–1 multiplier. That is

‖v‖Bs
p,r � ‖w‖Bs–1

p,r
,

v(x) = (1 – ∂x)–1w(x)

=
(
1 – ∂2

x
)–1(1 + ∂x)w(x)

=
∫ ∞

x
ex–ξ w(ξ ) dξ . (2.12)

3 Proofs of Theorems 1.2, 1.3, 1.4, and 1.5
3.1 Proof of Theorem 1.2
We assume that f (x) ∈ C∞

c (R) is the nonnegative mollifier. It holds that
∫

R
f (x) dx = 1,

f j(x) = jf (jx), vj
0 = f j ∗ v0, and ‖f j‖L1 = 1. vj is the solution to problem (1.1) with initial value

vj
0. �q(f j ∗ v0) = f j ∗ �qv0. That is,

∥
∥vj

0
∥
∥

Bs
p,r

≤ ‖v0‖Bs
p,r ,

∥
∥vj

0
∥
∥

H1 ≤ ‖v0‖H1 . (3.1)

It follows that vj
0 ∈ H3. From (1.1), we conclude

vj(t, x) ∈ C
(
[0, T]; H3 ∩ Bs

p,r
) ∩ C1([0, T]; H2 ∩ Bs–1

p,r
)

for all [0, T] ×R,

where T = C3
‖v‖L∞([0,T];Bsp,r )

. The sequence (vj)j∈N ∈ Es
p,r(T) is bounded.

It is deduced from (1.2) that

1
2

d
dt

∥
∥wj∥∥2

L2

=
∫

R

wjwj
t dx

=
∫

R

wj[vj(wj)2 –
(
vj)2wj – λwj – βwj

x –
(
vj)2wj

x
]

dx

=
∫

R

wj[vjwj(–vj
x
)

– λwj – βwj
x –

(
vj)2wj

x
]

dx

≤ –λ
∥
∥wj∥∥2

L2 .

Equivalently, we have

∥
∥wj∥∥2

L2 =
∫

R

(
vj – vj

x
)2 dx =

∫

R

[(
vj)2 – 2vjvj

x +
(
vj

x
)2]dx =

∥
∥vj∥∥2

H1 .

It is equal to check that

∥
∥vj(t)

∥
∥

H1 ≤ ∥
∥vj

0
∥
∥

H1 ≤ ‖v0‖H1 for all t ∈ [0, T]. (3.2)
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Sending j → ∞ in (3.2), we come to the estimate

∥
∥v(t)

∥
∥

H1 ≤ ‖v0‖H1 for all t ∈ [0, T]. (3.3)

The proof of Theorem 1.2 is finished.

3.2 Proof of Theorem 1.3
We present a lemma that is applied in the proof.

Lemma 3.1 ([40]) Let 1 ≤ p, r ≤ ∞, and 0 < s < 1. There exists a positive constant C, which
is independent of w, g such that

∥
∥[�j, w · ∇]g

∥
∥

Bs
p,r

≤ C‖∇w‖L∞‖g‖Bs
p,r .

Applying the operator �q to (1.2) yields

(
∂t +

(
v2 + β

)
∂x

)
�qw =

[
v2,�q

]
∂xw + F2(t, x) – λ�qw, (3.4)

where

F2(t, x) = �q
[
vw2 – v2w

]
.

If 1
2 < s < 1, then taking advantage of Lemma 3.1, we acquire

∥
∥
[
v2,�q

]
∂xw

∥
∥

Bs
p,r

�
∥
∥∂x

(
v2)∥∥

L∞‖w‖Bs
p,r

≤ ‖v‖L∞‖vx‖L∞‖w‖Bs
p,r . (3.5)

A straightforward computation gives rise to

∥
∥vw2∥∥

Bs
p,r

�
(‖v‖L∞‖w‖L∞ + ‖w‖2

L∞
)‖w‖Bs

p,r (3.6)

and

∥
∥v2w

∥
∥

Bs
p,r

�
(‖v‖2

L∞ + ‖v‖L∞‖w‖L∞
)‖w‖Bs

p,r . (3.7)

A simple calculation shows

1
p

d
dt

‖�qw‖p
Lp

�
∥
∥∂x

(
v2 + β

)∥
∥

L∞‖�qw‖p
Lp +

∥
∥
[
v2,�q

]
∂xw

∥
∥

Lp‖�qw‖p–1
Lp

+
∥
∥F2(t, x)

∥
∥

Lp‖�qw‖p–1
Lp – λ‖�qw‖p

Lp , (3.8)

which results in

d
dt

‖�qw‖Lp �
∥
∥∂x

(
v2)∥∥

L∞‖�qw‖Lp +
∥
∥
[
v2,�q

]
∂xw

∥
∥

Lp

+
∥
∥F2(t, x)

∥
∥

Lp – λ‖�qw‖Lp . (3.9)
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That is,

∥
∥w(t)

∥
∥

Bs
p,r

� ‖w0‖Bs
p,r +

∫ t

0

(‖v‖L∞‖vx‖L∞ + ‖v‖L∞‖w‖L∞

+ ‖w‖2
L∞ + ‖v‖2

L∞ – λ
)∥
∥w(τ )

∥
∥

Bs
p,r

dτ

� ‖w0‖Bs
p,r +

∫ t

0

(‖w‖2
L∞ – λ

)∥
∥w(τ )

∥
∥

Bs
p,r

dτ . (3.10)

Employing (3.10) leads to

∥
∥w(t)

∥
∥

Bs
p,r

� ‖w0‖Bs
p,r e

∫ t
0 (‖w‖2

L∞ –λ) dτ . (3.11)

If

∫ t

0

(‖w‖2
L∞ – λ

)
dτ < ∞, (3.12)

then we derive that ‖w(T∗)‖Bs
p,r is bounded, where T∗ < ∞ is the maximal existence time.

This yields a contradiction. This finishes the proof of Theorem 1.3.

3.3 Proof of Theorem 1.4
Based on the density argument, we need to illustrate the proof of Theorem 1.4 with s ≥ 2.
Therefore, we calculate ‖w‖H1 for simplicity.

According to (1.2), we come to

1
2

d
dt

∫

R

[
w2 + w2

x
]

dx

=
∫

R

wx
[(

vw2 – v2w – v2wx
)

x – λwx + βwxx
]

dx

�
∫

R

(
vww2

x – λw2
x
)

dx + C1‖w‖2
H1 . (3.13)

We suppose that the positive constant M satisfies vw ≤ M, t ∈ [0, T], T < ∞. We then
conclude that

∥
∥w(t)

∥
∥2

H1 � ‖w0‖2
H1 e(M–λ)t ,

which contradicts that T < ∞ is the maximal existence time. The proof of Theorem 1.4 is
completed.

3.4 Proof of Theorem 1.5
We consider the problem

⎧
⎨

⎩

d
dt p(t, x) = (v2 + β)(t, p(t, x)), t ∈ (0, T), x ∈R,

p(0, x) = x, x ∈R.
(3.14)
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The solution p ∈ C1([0, T],R) to problem (3.14) is unique. We recognize that

px(t, x) = e
∫ t

0 (2vvx)(τ ,p(τ ,x)) dτ for all (t, x) ∈ [0, T] ×R. (3.15)

We deduce

d
dt

[
t, w

(
p(t, x)

)
p

1
2
x (t, x)

]

= (wt + wxpt)p
1
2
x +

1
2

wp– 1
2

x pxt

=
[
wt + wx

(
v2 + β

)
+ vvxw

]
p

1
2
x

= –λwp
1
2
x . (3.16)

Thus, we achieve

w
(
p(t, x), t

)
p

1
2
x (t, x) = w0(x)e–λt .

An application of (3.15) gives rise to

w
(
t, p(t, x)

)
= w0(x)e

∫ t
0 (–vvx–λ) dτ . (3.17)

If u0 is compactly supported in [au0 , bu0 ], then w0 is compactly supported in [p(t, au0 ),
p(t, bu0 )]. We deduce from (3.17) that w(t, x) has its support in the interval [p(t, au0 ),
p(t, bu0 )]. From (2.12), we acquire that u(t, x) is compactly supported in [p(t, au0 ), p(t, bu0 )].
This completes the proof of Theorem 1.5.

3.5 Proof of Theorem 1.6
First of all, we illustrate a useful lemma.

Lemma 3.2 ([41]) Let v ∈ C1([0, T); H3(R)) and n = v(v – vx). Then, for all t ∈ [0, T), there
exists at least one point ξ (t) ∈R with

n(t) = sup
x∈R

n(t, x) = n
(
t, ξ (t)

)
. (3.18)

The function n(t) is absolutely continuous on (0, T) with

d
dt

n(t) = nt
(
t, ξ (t)

)
.

Here, we set s = 2 in view of the density argument. We observe

d
dt

[
vw

(
t, p(t, x)

)]
+

(
v2 + β

)
∂x(vw)

= vtw + vwt + v2vxw + v3wx + β(vw)x
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= –2λvw + v2w2 – w
(
1 – ∂2

x
)–1(1 + ∂x)

[
vw2]

≥ (vw)2 – 2λvw – w
∫ ∞

x
ex–ξ v(t, ξ )w2(t, ξ ) dξ

≥ (vw)2 – 2λvw – wex
[
sup
ξ≥x

e–ξ v(t, ξ )
]∫ ∞

x
w2(t, ξ ) dξ . (3.19)

It is deduced by a straightforward computation that

d
dξ

(
e–ξ v(t, ξ )

)
= e–ξ

(
vx(t, ξ ) – v(t, ξ )

)
= –e–ξ w(t, ξ ) ≤ 0. (3.20)

Eventually, we derive supξ≥x[e–ξ v(t, ξ )] = e–xv(t, x). It follows from Theorem 1.2 that

∫ ∞

x
w2(t, ξ ) dξ ≤ ‖w‖2

L2 ≤ ‖w0‖2
L2 = ‖v0‖2

H1 . (3.21)

Utilizing (3.17), (3.18), and (3.19), we arrive at

d
dt

[
vw

(
t, p(t, x)

)]
+

[(
v2 + β

)
∂x(vw)

(
t, p(t, x)

)]

≥ (vw)2 – 2λvw – wex sup
ξ≥x

e–ξ v(ξ )
∫ ∞

x
w2(ξ ) dξ

≥ (vw)2 – 2λvw – vw‖v0‖2
H1

≥ (vw)2 – λ1vw, (3.22)

where λ1 = 2λ + ‖v0‖2
H1 .

Let n(t) = supx∈R[vw(t, p(t, x))]. Making use of Lemma 3.2, we acquire that there exists
ξ (t) with t ∈ [0, T) such that

n1(t) = sup
x∈R

n(t, x) = n
(
t, ξ (t)

)
for all t ∈ [0, T).

This in turn implies that nx(t, ξ (t)) = 0 for all t ∈ [0, T).
On the other hand, since p(t, ·) : R→R is a diffeomorphism for all t ∈ [0, T), there exists

x1(t) ∈ R such that p(t, x1(t)) = ξ (t) for all t ∈ [0, T).
Applying (3.22) gives rise to

d
dt

n(t) ≥ (
n(t)

)2 – λ1n(t). (3.23)

Setting n2(t) = –(n(t) – λ1
2 ), we have

d
dt

n2(t) ≤ (
n2(t)

)2 + K , (3.24)

where K = λ2
1

4 .
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Employing the assumption n0(x0) > λ1 with the point x0 defined by n(x0) = supx∈R n0(x)
in Theorem 1.6 and letting ξ (0) = x0, we deduce

n2(0) = –
(

n1(0) –
λ1

2

)

= –
(

n0
(
ξ (0)

)
–

λ1

2

)

= –
(

n0(x0) –
λ1

2

)

< –
√

K .

We choose δ ∈ (0, 1) to satisfy –
√

δn2(0) =
√

K .
We observe that n2(0) = –(n(0) – λ1

2 ) < –
√

K and n2(t) decreases on [0, T). We set
–
√

δn2(0) =
√

K , where δ ∈ (0, 1). Direct calculations show

–
1

n2(t)
+

1
n2(0)

≤ –(1 – δ)t.

We arrive at n2(t) < 0, t ∈ [0, T), T ≤ –1
(1–δ)n2(0) < ∞, and n2(0) = –(n(0) – λ1

2 ) < 0. As a
consequence, we obtain

–
[

n
(
t, ξ (t)

)
–

λ1

2

]

= –
[
(
v(v – vx)

)(
t, ξ (t)

)
–

λ1

2

]

≤ n(0) – λ1
2

–1 + t(1 – δ)(n(0) – λ1
2 )

→ –∞

as t → 1
(1 – δ)(n(0) – λ1

2 )
. (3.25)

The proof of Theorem 1.6 is finished.

4 Proof of Theorem 1.7
Let M = supt∈[0,T] ‖v(t)‖Hs > 0 with s > 5

2 . We derive

∥
∥v(t)

∥
∥

L∞ ≤ ∥
∥vx(t)

∥
∥

L∞ ≤ ∥
∥vxx(t)

∥
∥

L∞ ≤ ∥
∥v(t)

∥
∥

Hs ≤ M.

We observe that the weight function

ϕN (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, x ≤ 0,

eθx, x ∈ (0, N),

eθN , x ≥ N ,

satisfies 0 ≤ (ϕN (x))x ≤ ϕN (x), where N ∈N
∗ and θ ∈ (0, 1). There exists a positive constant

M0, which depends on θ such that

ϕN (x)
∫

R

e–|x–y| 1
ϕN (y)

dy ≤ M0.

We rewrite the first equation in problem (1.1) in the form

vt = G – λv – βvx, (4.1)

where

G(t, x) = (1 – ∂x)–1[v2vxx + vv2
x – 2v2vx

]
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=
∫ ∞

x
ex–y(v2vxx + vv2

x – 2v2vx
)
(y) dy. (4.2)

Multiplying both sides of (4.2) by v2n–1ϕ2n
N with respect to the variable x over R leads to

1
2n

d
dt

‖vϕN‖2n
L2n

= λ

∫

R

(vϕN )2n dx – β

∫

R

[
∂x(vϕN ) – v(ϕN )x

]
(vϕN )2n–1 dx

+
∫

R

(vϕN )2n–1GϕN dx

≤ λ

∫

R

(vϕN )2n dx + β

∫

R

(vϕN )(vϕN )2n–1 dx

+
∫

R

(vϕN )2n–1GϕN dx

≤ (λ + β)‖vϕN‖L2n + ‖vϕN‖2n–1
L2n ‖GϕN‖L2n . (4.3)

We then conclude that

d
dt

‖vϕN‖L2n ≤ (λ + β)‖vϕN‖L2n + ‖GϕN‖L2n . (4.4)

Sending n → ∞ in (4.4) gives rise to the estimate

d
dt

‖vϕN‖L∞ ≤ (λ + β)‖vϕN‖L∞ + ‖GϕN‖L∞ . (4.5)

A direct computation shows

|GϕN |

=
∣
∣
∣
∣φN (x)

∫ ∞

x
ex–y[v2vxx + vv2

x – 2v2vx
]
(y) dy

∣
∣
∣
∣

≤ φN (x)
∫ ∞

x
ex–y∣∣

[
v2vxx + vv2

x – 2v2vx
]
(y)

∣
∣dy

≤ φN (x)
∫

R

e–|x–y| 1
φN (y)

φN (y)
∣
∣
[
v2vxx + vv2

x – 2v2vx
]
(y)

∣
∣dy

�
(‖v‖L∞‖vxx‖L∞ + ‖vx‖2

L∞ + 2‖v‖L∞‖vx‖L∞
)‖vϕN‖L∞

� M‖vϕN‖L∞ . (4.6)

Taking advantage of the Gronwall inequality yields

‖vϕN‖L∞ � e(M+λ+β)t‖v0ϕN‖L∞ . (4.7)

We achieve

sup
t∈[0,T]

∥
∥eθxv

∥
∥

L∞ �
∥
∥eθxv0

∥
∥

L∞ .
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Therefore, we deduce

|v|∼ O
(
e–θx) as x → ∞

uniformly on [0, T]. The proof of Theorem 1.7 is completed.
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