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Abstract
The normalization of the generalized Bessel functions Uσ ,r (σ , r ∈ C) defined by

Uσ ,r(z) = z +
∞∑

j=1

(–r)j

4j(1)j(σ )j
zj+1

was introduced, and some of its geometric properties have been presented
previously. The main purpose of the present paper is to complete the results given in
the literature by employing a new procedure. We first used an identity for the
logarithmic of the gamma function as well as an inequality for the digamma function
to establish sufficient conditions on the parameters so that Uσ ,r is starlike or convex
of order α (0≤ α ≤ 1) in the open unit disk. Moreover, the starlikeness and convexity
of Uσ ,r have been considered where the leading concept of the proofs comes from
the starlikeness of the power series f (z) =

∑∞
j=1 Ajz

j and the classical Alexander
theorem between the classes of starlike and convex functions. We gave a simple
proof to show that our conditions are not contradictory. Ultimately, the

close-to-convexity of (z cos
√
z) ∗ Uσ ,r and (sin z) ∗ Uσ ,r (z2)

z have been determined,
where “∗” stands for the convolution between the power series.
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1 Introduction and preliminaries
It is well-known that the special functions, and, in particular, the generalized Bessel func-
tion, play a crucial role in different fields of mathematical physics and engineering. These
functions received particular attention for providing solutions of the differential equations
and systems used as mathematical models, as well as numerous classes of transcendental
functions, as special ones, which appear in many branches, including the Geometric Func-
tion Theory (GFT).

Geometric Function Theory concerned with the interplay between the geometric prop-
erties of the image domain and the analytic properties of the mapping function. The ori-
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gin of the GFT was founded at the turn of the 20th century by the famous mathematician
Riemann in his doctoral thesis. The Riemann mapping theorem is known as one of the
most fundamental contributions of Complex Analysis, and it allows the mathematicians
to solve problems for the simply connected domain in the particular case of the open unit
disc U := {z ∈ C : |z| < 1} without loss of the generality. The theorem states that every sim-
ply connected domain D of the complex plane that is a proper subset of the complex plane
C can be mapped conformally onto U. Furthermore, there is unique conformal mapping
f : D →U such that f (z0) = 0 and f ′(z0) > 0.

The cornerstone of GFT is the theory of univalent functions initiated by Koebe [10].
Before the Bieberbach conjecture [4] on the coefficients of a power series expansion of
normalized univalent functions was proved, many papers dealing with the relevance be-
tween the theory of univalent functions and these special functions were published in the
literature. In a series of studies, Kreyszig and Todd [11–13] investigated the univalence
of the error function Erf(z), the function exp(z2) · Erf(z), as well as the Bessel function
z1–ν · Jν(z). Merkes and Scott [18] investigated the starlikeness of Gaussian hypergeomet-
ric functions using the continued fraction of Gauss. In [3], Carlson and Shaffer defined
an operator involving an incomplete beta function and obtained interesting results for
starlike and prestarlike functions. In addition, the order of starlikeness of hypergeomet-
ric functions was investigated by Ruscheweyh and Singh [28] using a refined version of
continued fractions like those used by Merkes and Scott.

More recently, there has been an extensive bibliography on the geometric properties of
some normalized special functions, like the univalence, starlikeness, convexity, and close-
to-convexity in the open unit disk. Regarding treatises on this investigation, we refer, for
example, for the hypergeometric function to [19, 25–27], for the Bessel function to [1, 2],
for the generalized Struve function to [21, 22, 31, 33], for the Lommel function to [30], for
the generalized Lommel–Wright function to [32], for the Fox–Wright function to [16],
and to [17] for the Le Roy-type Mittag-Leffler function. These results would enrich the
understanding of the geometrical properties of such functions as tools in such applications
of GFT.

The content of the paper is summarized in the following way. First of all, we outline
several well-known mathematical facts to be used in the sequel. Further, we complete the
results given in [1, 2, 20] by applying a new procedure first using an identity for the loga-
rithm of the gamma function, as well as an inequality for the digamma function proved by
[8], to establish sufficient conditions on the parameters such that Uσ ,r is starlike or convex
of order α (0 ≤ α ≤ 1). Moreover, the starlikeness and convexity of Uσ ,r have been con-
sidered where the leading concept of the proofs comes from the starlikeness of the power
series f (z) =

∑∞
j=1 Ajzj and the classical Alexander theorem between the classes of starlike

and convex functions followed by a simple proof showing that our conditions are not con-
tradictory. Ultimately, the close-to-convexity of (z cos

√
z) ∗ Uσ ,r and (sin z) ∗ Uσ ,r (z2)

z have
been determined, where “∗” represents the convolution between the power series.

Throughout this paper, let H stand for the class of all functions that are analytic in U,
while A denote the subfamily of H consisting of functions that have the form f (z) = z +
∑∞

j=2 Ajzj, z ∈U, and by S the subfamily of A, which are univalent in U.
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If g ∈A has the form g(z) = z +
∑∞

j=2 Bjzj, z ∈ U, then the Hadamard product (or convo-
lution) of f and g , denoted by f ∗ g , is given by

(f ∗ g)(z) := z +
∞∑

j=2

AjBjzj, z ∈ U,

and the above definition of the Hadamard product originates from (see [5])

(f ∗ g)
(
r2eiθ ) =

1
2π

∫ 2π

0
f
(
rei(θ–t))g

(
reit)dt, r < 1.

One of the most important concepts of the univalent function theory are the families
of starlike and convex functions, which are subfamilies of H. More importantly, these
classes admit geometrical and analytical characteristics that do not pass in the case of
those functions that are used in the mathematical analysis. We refer the interested read-
ers to [5, 7, 9, 24] for further information. Naturally, a domain D ⊂ C is called a starlike
with respect to an interior point z0 if every line segment joining z0 to any other point in D
lies completely in D. In particular, if z0 = 0, then D is called a starlike domain. A function
f ∈A is called a starlike with respect to the origin (or briefly starlike), denoted by S∗, if f (U)
is a starlike domain, that is,

S∗ := {f ∈A : f is a starlike function}.

The following theorem gives an analytic description of the starlike functions:

Theorem A If f ∈A, then f is a starlike function if and only if

Re
zf ′(z)
f (z)

> 0, z ∈U.

Further, if every line segment joining any two points of D ⊂C lies completely in D, then
D is called a convex domain. A function f ∈A is called a convex function if f (U) is a convex
domain, that is,

K := {f ∈A : f is a convex function}.

The well-known analytical characterization of convexity is given by the following theorem:

Theorem B If f ∈A, then f is a convex function if and only if

1 + Re
zf ′′(z)
f ′(z)

> 0, z ∈U.

It is well-known that S∗ and K have particular interest if more restrictions are enjoined,
and it gives us several types of subclasses of univalent functions. Moreover, the positivity
of Re zf ′(z)

f (z) and 1 + Re zf ′′(z)
f ′(z) for S∗ and K, respectively, helps us to study different families

of conformal transformation with other motivating geometric properties.
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On the other hand, f ∈A is a starlike functions of order α, denoted by S∗(α), if and only
if

Re
zf ′(z)
f (z)

> α, z ∈ U,

where 0 ≤ α ≤ 1, and is in the class of convex functions of order α, denoted by K(α), if and
only if

1 + Re
zf ′′(z)
f ′(z)

> α, z ∈U.

It is well-known that S∗(α) ⊂ S∗ := S∗(0) and K(α) ⊂K := K(0). Further, f ∈H is close-
to-convex in U if it is univalent, and the range f (U) is a close-to-convex domain, that is
the complement of f (U) can be expressed as the union of non-interesting half-lines. In
addition, a normalized f ∈ H is close-to-convex with respect to a fixed starlike function
g ∈ S∗, not necessarily normalized, denoted by Cg , if and only if

Re
zf ′(z)
g(z)

> 0, z ∈U.

The well-known observation that all the classes S∗(α), K(α), and Cg are subsets of S can
be easily verified.

A widely investigated homogeneous second-order differential equation is given by (see,
for details, [1])

z2ω′′(z) + qzω′(z) +
[
rz2 – p2 + (1 – q)p

]
ω(z) = 0, (1.1)

whose solutions are extensions of the generalized Bessel function, p, q ∈R and r ∈C. The
generalized Bessel function of order p is the particular solution of (1.1), which has the
power series expansion

ωp,q,r(z) =
∞∑

j=0

(–r)j

�(j + 1)�(p + j + q+1
2 )

(
z
2

)2j+p

. (1.2)

It is worth mentioning that the above differential equation (1.1) has a particular interest.
It allows us to know more information regarding the Bessel, modified Bessel, and spheri-
cal Bessel functions. In addition, the series (1.2) is convergent everywhere while it is not
univalent in U. Considering also that special values of the parameters p, q, and r will give
us the well-known Bessel, modified Bessel, and spherical Bessel functions. For instance,
putting q = c = 1, the Bessel function will follow, which defined as

Jp(z) :=
∞∑

j=0

(–1)j

j!�(j + p + 1)

(
z
2

)p+2j

, z ∈C.

For q = 1 and c = –1, we get the modified Bessel function defined by

Ip(z) :=
∞∑

j=0

1
j!�(j + p + 1)

(
z
2

)p+2j

, z ∈C,
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while for q = 2 and c = –1, we get the spherical Bessel function defined by

Sp(z) :=
∞∑

j=0

1
j!�(j + p + 3

2 )

(
z
2

)p+2j

, z ∈ C.

One can observe that ωp,q,r /∈ A; therefore, we consider the following transformation
(see [22])

up,q,r(z) := 2p�

(
p +

q + 2
2

)
z– p

2 ωp,q,r(
√

z). (1.3)

From (1.3), the series expansion of up,q,r has the form

up,q,r(z) =
∞∑

j=0

(–r)j

4j(1)j(p + q+2
2 )j

zj,

where p + (q + 2)/2 /∈ {0, –1, –2, . . . }, and (ρ)n represents the Pochhammer symbol defined
by

(ρ)n :=

⎧
⎨

⎩
1 if n = 0,

ρ(ρ + 1)(ρ + 2) . . . (ρ + n – 1) if n ∈N := {1, 2, . . . }.

Based on the previous representations, we formulate the following definition:

Definition 1.1 For p, q, r ∈ C, the normalization of the of generalized Bessel functions
Uσ ,r is defined by

Uσ ,r(z) := z · up,q,r(z) = z +
∞∑

j=1

(–r)j

4j(1)j(σ )j
zj+1, z ∈U, (1.4)

where σ := p + (q + 2)/2 /∈ {0, –1, –2, . . . }.

The following lemmas will be beneficial to get the main results:

Lemma 1.1 ([8]) The following inequality holds for t ∈ (0,∞):

ln t –
1
t

< ψ(t) < ln t –
1
2t

, (1.5)

where ψ represents the digamma function, that is the derivative of the logarithm of � func-
tion.

Lemma 1.2 ([6, Satz IX]) If {Aj}n∈N is a nonnegative real sequence with A1 = 1, such that
{jAj}j∈N and {jAj – (j + 1)Aj+1}j∈N are nonincreasing sequences, then f (z) =

∑∞
j=1 Ajzj is star-

like in U.

Lemma 1.3 ([23, Corollary 7 and Theorem 8′]) Assume that 0 ≤ jAj ≤ · · · ≤ 2A2 ≤ 1, or
2 ≥ jAj ≥ · · · ≥ 2A2 ≥ 1, where f can be expressed by f (z) = z +

∑∞
j=2 Ajzj, z ∈ U, then the

function f is close-to-convex with respect to – log(1 – z).
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The following lemma is a special case of [23, Corollary 9] for the odd functions of the
form f (z) = z +

∑∞
j=1 A2j+1z2j+1, z ∈U, (see also [23, Theorem 10]), and it deals with f to be

close-to-convex with respect to

g∗(z) :=
1
2

log

(
1 + z
1 – z

)
.

Lemma 1.4 Assume that f (z) = z +
∑∞

j=1 A2j+1z2j+1, z ∈ U, is an odd function such that
0 ≤ (1 + 2j)A2j+1 ≤ · · · ≤ 3A3 ≤ 1, or 2 ≥ (1 + 2j)A2j+1 ≥ · · · ≥ 3A3 ≥ 1, for all n ∈ N. Then,
f ∈ Cg∗ ⊂ S .

2 Main results
The first two theorems of this section contain some interesting and useful results involving
the order of starlikeness and the order of convexity of Uσ ,r . The proofs use the inequalities
for the digamma function and its derivative that have been proved in [8].

Theorem 2.1 Let σ ∈ (–1, 0) ∪ (0, +∞) and r ∈C, such that

ln(1 + σ ) + ln 2 –
1

1 + σ
–

3
2

– ln |r| ≥ 0, (2.1)

and

0 ≤ α ≤ 3|σ | – 2|r|
3|σ | – |r| . (2.2)

Then, Uσ ,r ∈ S∗(α).

Proof It is obvious that the inequality

∣∣∣∣
zU′

σ ,r(z)
Uσ ,r(z)

– 1
∣∣∣∣ < 1 – α, z ∈U, (2.3)

implies that Uσ ,r ∈ S∗(α), where α < 1.
From the well-known triangle inequality and the theorem of the maximum of the mod-

ulus for an analytic function, we get

∣∣∣∣U
′
σ ,r(z) –

Uσ ,r(z)
z

∣∣∣∣ =

∣∣∣∣∣

∞∑

j=1

j(–r)j

4jj!(σ )j
zj

∣∣∣∣∣ < sup
θ∈[0,2π ]

∣∣∣∣∣

∞∑

j=1

j(–r)j

4jj!(σ )j
eijθ

∣∣∣∣∣

≤ �(σ + 1)
|σ |

∞∑

j=1

j|r|j
4j�(σ + j)�(j + 1)

, z ∈U.

Let the function Xσ ,r : [1, +∞) → (0, +∞) defined by

Xσ ,r(t) =
t|r|t

�(σ + t)�(t + 1)
, t ≥ 1. (2.4)

It is well-known that

ln�(z) = –γ z – ln z +
∞∑

m=1

[
z
m

– ln

(
1 +

z
m

)]
, (2.5)
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where γ is the Euler–Mascheroni constant given by

γ = lim
n→∞

( n∑

m=1

1
m

– log n

)
= 0.5772156649 . . . .

Taking the natural logarithm on both sides of (2.4) and using (2.5), we get

ln Xσ ,r(t) = ln t + t ln |r| + γ (σ + t) + ln(σ + t) –
∞∑

m=1

[
σ + t

m
– ln

(
1 +

σ + t
m

)]

+ γ (t + 1) + ln(t + 1) –
∞∑

m=1

[
t + 1

m
– ln

(
1 +

t + 1
m

)]
, (2.6)

and differentiating the both sides of (2.6), it follows that

X ′
σ ,r(t)

Xσ ,r(t)
=

1
t

+ ln |r| + 2γ +
1

σ + t
+

1
t + 1

–
∞∑

m=1

[
1
m

–
1

σ + t + m

]
–

∞∑

m=1

[
1
m

–
1

t + m + 1

]
=: X̃σ ,r(t).

Differentiating the function X̃σ ,r we obtain

X̃ ′
σ ,r(t) = –

1
t2 –

1
(σ + t)2 –

1
(t + 1)2

–
∞∑

m=1

1
(σ + t + m)2 –

∞∑

m=1

1
(t + m + 1)2 < 0, t ∈ [1, +∞),

for each σ ∈ (–1, 0) ∪ (0, +∞), which implies that X̃σ ,r is strictly decreasing on [1, +∞).
Since X̃σ ,r is strictly decreasing, if we show that X̃σ ,r(1) < 0, this implies that X̃σ ,r(t) < 0

for each t ≥ 1 and σ ∈ (–1, 0) ∪ (0, +∞) so that X ′
σ ,r(t) = Xσ ,r(t)X̃σ ,r(t) < 0, that is Xσ ,r is

a strictly decreasing function on [1, +∞). Thus, we shall establish conditions on σ and r
such that X̃σ ,r(1) is non-positive.

Keeping in mind that ψ represents the well-known digamma function defined by

ψ(z) =
∂

∂z
[
log�(x)

]
=

�′(z)
�(z)

,

and using the fact that

ψ(z + 1) = –γ +
∞∑

s=1

(
1
s

–
1

s + z

)
, z ∈C \ {–1, –2, . . . },

the function X̃σ ,r can be expressed as

X̃σ ,r(t) =
1
t

+
1

t + σ
+

1
t + 1

– ψ(σ + 1 + t) – ψ(t + 2) + ln |r|. (2.7)
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Since

ψ(z + 1) =
1
z

+ ψ(z),

relation (2.7) becomes

X̃σ ,r(t) =
1
t

– ψ(t + σ ) – ψ(t + 1) + ln |r|.

Now, the fact that X̃σ ,r is a strictly decreasing function on [1, +∞) can be used to get

M
(|r|,σ )

:= sup
{

X̃σ ,r(t) : t ≥ 1
}

= X̃σ ,r(1) = 1 + ln |r| – ψ(1 + σ ) – ψ(2),

such that M(|r|,σ ) ≤ 0. From (1.5), we have

M
(|r|,σ )

= 1 + ln |r| – ψ(σ + 1) – ψ(2) <
3
2

+ ln |r| – ln(1 + σ ) – ln 2 +
1

1 + σ
≤ 0,

and the last inequality represents assumption (2.1) of the theorem. Therefore,

∣∣∣∣U
′
σ ,r(z) –

Uσ ,r(z)
z

∣∣∣∣ ≤ �(σ + 1)
|σ |

∞∑

j=1

1
4j · |r|

�(σ + 1)�(2)
=

|r|
3|σ | , z ∈ U. (2.8)

Moreover, from the theorem of the maximum of the modulus for an analytic function, we
get

∣∣∣∣
Uσ ,r(z)

z

∣∣∣∣ =

∣∣∣∣∣1 +
∞∑

j=1

(–r)j

4jj!(σ )j
zj

∣∣∣∣∣ > 1 –

∣∣∣∣∣

∞∑

j=1

(–r)j

4jj!(σ )j
eijθ

∣∣∣∣∣

≥ 1 –
�(σ + 1)

|σ |
∞∑

j=1

|r|j
4j�(j + 1)�(j + σ )

, z ∈U,

where θ ∈R.
The function Xσ ,r is strictly decreasing on [1, +∞), hence the function |r|j

�(j+1)�(j+σ ) is
strictly decreasing for j ≥ 1, that leads to

∣∣∣∣
Uσ ,r(z)

z

∣∣∣∣ > 1 –
�(σ + 1)

|σ |
∞∑

j=1

1
4j · |r|

�(σ + 1)�(2)
=

3|σ | – |r|
3|σ | , z ∈ U. (2.9)

Since
∣∣∣∣
zU′

σ ,r(z)
Uσ ,r(z)

– 1
∣∣∣∣ =

∣∣∣∣U
′
σ ,r(z) –

Uσ ,r(z)
z

∣∣∣∣ ·
∣∣∣∣

z
Uσ ,r(z)

∣∣∣∣, z ∈U,

from (2.8) and (2.9), according to assumption (2.2), we deduce that

∣∣∣∣
zU′

σ ,r(z)
Uσ ,r(z)

– 1
∣∣∣∣ <

|r|
3|σ | – |r| ≤ 1 – α, z ∈U.

Finally, from (2.3), it follows that Uσ ,r ∈ S∗(α). �
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Analogously, we will prove in the following result that deals with sufficient conditions
on the parameters σ and r such that Uσ ,r ∈K(α).

Theorem 2.2 Let σ ∈ (–1, 0) ∪ (0, +∞) and r ∈C, such that

ln(σ + 1) + ln 2 –
1

σ + 1
– 2 – ln |r| ≥ 0, (2.10)

and

0 ≤ α ≤ 3|σ | – 4|r|
3|σ | – 2|r| . (2.11)

Then, Uσ ,r ∈K(α).

Proof We could check immediately that

∣∣∣∣
zU′′

σ ,r(z)
U′

σ ,r(z)

∣∣∣∣ < 1 – α, z ∈U, (2.12)

implies Uσ ,r ∈K(α), where α < 1.
Using the triangle’s inequality and the maximum modulus theorem of an analytic func-

tion, we get

∣∣zU′′
σ ,r(z)

∣∣ =

∣∣∣∣∣

∞∑

j=1

j(j + 1)(–r)j

4jj!(σ )j
zj

∣∣∣∣∣ <

∣∣∣∣∣

∞∑

j=1

j(j + 1)(–r)j

4jj!(σ )j
eijθ

∣∣∣∣∣

≤ �(σ + 1)
|σ |

∞∑

j=1

j(j + 1)|r|j
4j�(j + 1)�(j + σ )

, z ∈U,

where θ ∈R.
Letting the function Yσ ,r : [1, +∞) → (0, +∞) defined by

Yσ ,r(t) =
t(t + 1)|r|t

�(t + 1)�(t + σ )
, t ≥ 1, (2.13)

and using relation (2.5), from (2.13), we get

ln Yσ ,r(t) = ln t + ln(t + 1) + t ln |r| + γ (σ + t) + ln(σ + t) + γ (t + 1) + ln(t + 1)

–
∞∑

m=1

[
σ + t

m
– ln

(
1 +

σ + t
m

)]
–

∞∑

m=1

[
t + 1

m
– ln

(
1 +

t + 1
m

)]
. (2.14)

Differentiating (2.14), we have

Y ′
σ ,r(t)

Yσ ,r(t)
=

1
t

+
1

t + 1
+ ln |r| + 2γ +

1
σ + t

+
1

t + 1

–
∞∑

m=1

[
1
m

–
1

σ + t + m

]
–

∞∑

m=1

[
1
m

–
1

t + m + 1

]
=: Ỹσ ,r(t),
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as well as the function Ỹσ ,r , we obtain

Ỹ ′
σ ,r(t) = –

1
t2 –

1
(t + 1)2 –

1
(σ + t)2 –

1
(t + 1)2

–
∞∑

m=1

1
(σ + t + m)2 –

∞∑

m=1

1
(t + m + 1)2 < 0, t ∈ [1, +∞),

for all σ ∈ (–1, 0) ∪ (0, +∞) so that Ỹσ ,r is a strictly decreasing function on [1, +∞). Since
Ỹσ ,r can be expressed as

Ỹσ ,r(t) =
1
t

+
1

t + 1
– ψ(t + σ ) – ψ(t + 1) + ln |r|,

and Ỹσ ,r is a strictly decreasing function on [1, +∞), it follows

N
(|r|,σ )

:= sup
{

Ỹσ ,r(t) : t ≥ 1
}

= Ỹσ ,r(1) =
3
2

+ ln |r| – ψ(σ + 1) – ψ(2).

Using the inequality (1.5), we obtain

N
(|r|,σ )

=
3
2

+ ln |r| – ψ(σ + 1) – ψ(2) < 2 + ln |r| – ln(1 + σ ) – ln 2 +
1

σ + 1
≤ 0,

and the last inequality is in fact assumption (2.10). Hence,

∣∣zU′′
σ ,r(z)

∣∣ ≤ �(σ + 1)
|σ |

∞∑

j=1

1
4j · 2|r|

�(σ + 1)�(2)
=

2|r|
3|σ | , z ∈U. (2.15)

Furthermore, from the theorem of the maximum of the modulus for an analytic func-
tion, we have

∣∣U′
σ ,r(z)

∣∣ =

∣∣∣∣∣1 +
∞∑

j=1

(j + 1)(–r)j

4j(1)j(σ )j
zj

∣∣∣∣∣ > 1 –

∣∣∣∣∣

∞∑

j=1

(j + 1)(–r)j

4j(1)j(σ )j
eijθ

∣∣∣∣∣

≥ 1 –
�(σ + 1)

|σ |
∞∑

j=1

(j + 1)|r|j
4j�(j + 1)�(j + σ )

, z ∈U,

where θ ∈R.
The function Yσ ,r is strictly decreasing on [1, +∞), hence the function (j+1)|r|j

�(j+1)�(j+σ ) is
strictly decreasing for n ≥ 1, thus

∣∣U′
σ ,r(z)

∣∣ > 1 –
�(σ + 1)

|σ |
∞∑

j=1

1
4j · 2|r|

�(σ + 1)�(2)
=

3|σ | – 2|r|
3|σ | , z ∈U. (2.16)

Since

∣∣∣∣
zU′′

σ ,r(z)
U′

σ ,r(z)

∣∣∣∣ =
∣∣zU′′

σ ,r(z)
∣∣ ·

∣∣∣∣
1

U′
σ ,r(z)

∣∣∣∣, z ∈U,
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Figure 1 Figures for Remark 2.1

from (2.15) and (2.16), and using the assumption (2.11), we deduce that

∣∣∣∣
zU′′

σ ,r(z)
U′

σ ,r(z)

∣∣∣∣ <
2|r|

3|σ | – 2|r| ≤ 1 – α, z ∈U,

and according to (2.12), it follows that Uσ ,r ∈K(α). �

Remark 2.1 1. Taking the values r = 0.132, σ = –0.1 and α = 0.2, it is easy to check that
assumptions (2.1) and (2.2) are satisfied. Then, according to Theorem 2.1, we get Uσ ,r ∈
S∗(α), and from Fig. 1(A), we can see that Uσ ,r /∈K(0), hence it is not a convex function.

2. For the values r = 2, σ = 8 and α = 0.7, we could easily see that assumptions (2.10) and
(2.11) are satisfied. According to Theorem 2.2, we get Uσ ,r ∈K(α), and from Fig. 1(B), we
can see the image of the unit disc by this function.

Theorem 2.3 Let σ ≥ r with r ∈ (0, +∞). Then, the function z
1+z ∗ Uσ ,r(z) is starlike in U.

Proof From (1.4) and the power series expansion

z
1 + z

= z +
∞∑

j=1

(–1)jzj+1, z ∈U,

we have

z
1 + z

∗ Uσ ,r(z) =
∞∑

j=1

Ajzj, z ∈U, (2.17)

where

Aj =
rj–1

4j–1(1)j–1(σ )j–1
, j ∈N. (2.18)

To prove our result, according to Lemma 1.2, it is enough to show that the inequalities
jAj ≥ (j + 1)Aj+1 and jAj + (j + 2)Aj+2 ≥ 2(j + 1)Aj+1 hold for all j ∈ N.
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Since

jAj – (j + 1)Aj+1 = �(σ )
[

jrj–1

4j–1�(j)�(σ + j – 1)
–

(j + 1)rj

4j�(j + 1)�(σ + j)

]
,

and j > (j + 1)/4, j ∈N, it follows

jAj – (j + 1)Aj+1 = �(σ )
[

jrj–1

4j–1�(j)�(σ + j – 1)
–

(j + 1)rj

4jj�(j)(σ + j – 1)�(σ + j – 1)

]

=
�(σ )rj–1

4j–1�(j)�(σ + j – 1)

[
j –

(j + 1)r
4j(σ + j – 1)

]

>
(j + 1)�(σ )rj–1

4j�(j)�(σ + j – 1)

[
1 –

r
j(σ + j – 1)

]

=
(j + 1)�(σ )rj–1

4j�(j)�(σ + j – 1)
ϕ(j),

where

ϕ(j) := 1 –
r

j(σ + j – 1)
, j ∈N. (2.19)

Using the fact that ϕ is an increasing function on N, it follows that

min
{
ϕ(j) : j ∈N

}
= ϕ(1) =

σ – r
σ

≥ 0,

under the assumptions σ ≥ r > 0. Using the inequality

(j + 1)�(σ )rj–1

4j�(j)�(σ + j – 1)
> 0,

we deduce that jAj – (j + 1)Aj+1 ≥ 0 for all j ∈N, that is the sequence {jAj}j∈N is decreasing.
Since Aj+2 > 0 for all j ∈N, we get

jAj – 2(j + 1)Aj+1 + (j + 2)Aj+2 > jAj – 2(j + 1)Aj+1, j ∈N,

and because j ≥ (j + 1)/2 for each j ∈N, we deduce that

jAj – 2(j + 1)Aj+1 =
�(σ )rj–1

4j–1�(j)�(σ + j – 1)

[
j –

2(j + 1)r
4j(σ + j – 1)

]

≥ (j + 1)�(σ )rj–1

4j–1�(j)�(σ + j – 1)
1
2

[
1 –

r
j(σ + j – 1)

]

=
1
2

(j + 1)�(σ )rj–1

4j�(j)�(σ + j – 1)
ϕ(j),

where ϕ is defined by (2.19). We have already proved that under our assumption ϕ(j) ≥ 0,
j ∈ N, and using the above-mentioned reasons, it follows that jAj –2(j+1)Aj+1 +(j+2)Aj+2 >
0 for all j ∈N, hence the proof of the theorem is complete. �
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Theorem 2.4 Let σ ≥ r
2 with r ∈ (0, +∞) and

32σ 2 + 32(1 – r)σ – 32r + 3r2 ≥ 0, (2.20)

Then, z
1+z ∗ Uσ ,r(z) is starlike in U.

Proof Using power series expansion (2.17), relation (2.18), and Lemma 1.2, it is enough to
prove that jAj ≥ (j + 1)Aj+1 and jAj + (j + 2)Aj+2 ≥ 2(j + 1)Aj+1, for all j ∈N.

To show that the inequality jAj ≥ (j + 1)Aj+1 holds for all j ∈N, it is easy to observe that

jAj – (j + 1)Aj+1 =
jrj–1

4j–1(1)j–1(σ )j–1
–

(j + 1)rj

4j(1)j(σ )j

=
rj–1�(σ )

4j–1�(j)�(σ + j – 1)
· 4j2(σ + j – 1) – (j + 1)r

4j(σ + j – 1)
.

Let the function � : [1, +∞) →R defined by

�(j) := 4j2(σ + j – 1) – (j + 1)r,

and we shall proceed to show that �(j) ≥ 0 for all j ∈ [1, +∞) using the mathematical
induction.

First, for j = 1, we have that �(1) = 4σ – 2r ≥ 0 if and only if σ ≥ r
2 , as we assumed in the

statement of the theorem.
Second, let us assume that �(m) ≥ 0 for a fixed m ∈ [1, +∞). Since

�(m + 1) = �(m) + ϕ(m), where ϕ(m) := 4m2 + 4(2m + 1)(σ + m) – r,

using the fact that the function ϕ is increasing on N, we have ϕ(m) ≥ ϕ(1) = 4(3σ + 4) – r ≥
0 if and only if

σ ≥ r – 16
12

. (2.21)

It follows that under assumption (2.21), we have �(m + 1) ≥ 0; therefore, from the math-
ematical induction, it follows that �(j) ≥ 0 for all j ∈N.

Concluding, if σ ≥ max{ r
2 ; r–16

12 } = r
2 whenever r ∈ (0, +∞), then we have jAj ≥ (j + 1)Aj+1

for all j ∈N.
On the other hand,

jAj – 2(j + 1)Aj+1 + (j + 2)Aj+2

=
rj–1�(σ )

4j–1�(j)�(σ + j – 1)

× 16j2(j + 1)(σ + j)(σ + j – 1) – 8(j + 1)2(σ + j)r + (j + 2)r2

16j(j + 1)(σ + j)(σ + j – 1)
,

that is

jAj – 2(j + 1)Aj+1 + (j + 2)Aj+2 =
rj–1�(σ )

4j–1�(j)�(σ + j – 1)
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× �̃(j)
16j(j + 1)(σ + j)(σ + j – 1)

, (2.22)

and we will use the mathematical induction again to prove the nonnegativity of the func-
tion �̃ : [1, +∞) →R defined by

�̃(j) := 16j2(j + 1)(σ + j)(σ + j – 1) – 8(j + 1)2(σ + j)r + (j + 2)r2.

First, for j = 1, we have

�̃(1) = 32(σ + 1)(σ – r) + 3r2 = 32σ 2 + 32(1 – r)σ – 32r + 3r2 ≥ 0,

according to assumption (2.20).
Now, suppose that �̃(m) ≥ 0 for a fixed m ∈N. It is easy to check that

�̃(m + 1) = �̃(m) + ϕ̃(m), (2.23)

where

ϕ̃(m) := 80m4 + (128σ + 160)m3 +
(
48σ 2 – 24r + 240σ + 112

)
m2

+
(
80σ 2 + (144 – 16r)σ – 56r + 32

)
m

+ 32σ 2 + (32 – 24r)σ + r2 – 32r, m ∈N.

If we define the function G : [1, +∞) →R by

G(x) := 80x4 + (128σ + 160)x3 +
(
48σ 2 – 24r + 240σ + 112

)
x2

+
(
80σ 2 + (144 – 16r)σ – 56r + 32

)
x

+ 32σ 2 + (32 – 24r)σ + r2 – 32r, x ∈ [1, +∞),

then ϕ̃ = G|N. Since σ ≥ r
2 > 0, we have

48σ 2 – 24r + 240σ + 112 ≥ 12r2 + 96r + 112 > 0,

80σ 2 + (144 – 16r)σ – 56r + 32 = 16σ (5σ + 9) – 8r(2σ + 7) + 3r2

> 16σ (2σ + 7) – 8r(2σ + 7) + 3r2 = 8(2σ + 7)(2σ – r) + 3r2 > 0,

and we see that the coefficients of

G′(x) = 320x3 + 3(128σ + 160)x2 + 2
(
48σ 2 – 24r + 240σ + 112

)
x

+
(
80σ 2 + (144 – 16r)σ – 56r + 32

)

are positive numbers, hence G′(x) > 0 for all x ∈ [1, +∞), and consequently G is a strictly
increasing function on [1, +∞). From here, using again the assumptions σ ≥ r

2 , σ > 0, it
follows that

G(x) ≥ G(1) = r2 – (40σ + 112)r + 160σ 2 + 544σ + 384
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Figure 2 The assumptions for Theorem 2.4

≥ r2 + 80σ 2 + 320σ + 384 > 0,

that is G(x) > 0, x ∈ [1, +∞). Therefore, we get G(x) > 0 for all x ∈ [1, +∞), and thus ϕ(m) >
0, n ∈ N. From here, relation (2.23) implies �̃(m + 1) > 0, and using the mathematical
induction, we conclude that �̃(j) > 0 for all j ∈N.

Finally, the above last result and relation (2.22) lead us to jAj + (j + 2)Aj+2 ≥ 2(j + 1)Aj+1,
for all j ∈N, and the proof is complete. �

Remark 2.2 1. As we can see in Fig. 2, the assumptions σ ≥ r
2 , with r ∈ (0, +∞), and (2.20)

are not contradictory: the points of the region colored with “grey” colour satisfy all these
conditions, or, for example, r = 1 and σ = 100 satisfies both of these assumptions.

2. As it is shown in the above figure, we presume that for r,σ > 0, we have

{
(r,σ ) ∈R

2 : 32σ 2 + 32(1 – r)σ – 32r + 3r2 ≥ 0, r,σ > 0
}

⊂
{

(r,σ ) ∈ R
2 : σ ≥ r

2
, r,σ > 0

}
,

hence, we shall try to prove the following implication:
If r,σ > 0, then

32σ 2 + 32(1 – r)σ – 32r + 3r2 ≥ 0 ⇒ σ ≥ r
2

,

or equivalently

σ ∈
(

0,
r
2

)
, r > 0 ⇒ U(σ ) := 32σ 2 + 32(1 – r)σ – 32r + 3r2 < 0. (2.24)

Since

lim
σ→0

U(σ ) = r(3r – 32) =: V (r),

and

V (r) ≮ 0, for all r ∈ (0, +∞),
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Figure 3 The image of U by z
1+z ∗ Uσ ,r (z) for σ = 5.1, r = 10

implication (2.24) is not true, hence

{
(r,σ ) ∈R

2 : 32σ 2 + 32(1 – r)σ – 32r + 3r2 ≥ 0, r,σ > 0
}

⊂
{

(r,σ ) ∈ R
2 : σ ≥ r

2
, r,σ > 0

}
.

3. The values r = 10, σ = 5.1 and α = 0.2 satisfy the assumptions σ ≥ r
2 > 0 and (2.20).

Then, according to Theorem 2.4, we get that z
1+z ∗ Uσ ,r(z) is starlike in U. From Fig. 3, we

can see that z
1+z ∗ Uσ ,r(z) /∈K(0), hence it is not a convex function.

Theorem 2.5 Let σ ≥ 2r with r ∈ (0, +∞). Then, the function z
1+z ∗ Uσ ,r(z) is convex in U.

Proof To prove this result, we shall use the classical Alexander theorem between the
classes of starlike and convex functions, which asserts that f ∈K if and only if zf ′(z) ∈ S∗.
Thus, it is sufficient to prove that the function z

1+z ∗ (zU′
σ ,r(z)) is starlike in U.

Assuming that Uσ ,r has the form (1.4), a simple computation shows that

z
1 + z

∗ (
zU′

σ ,r(z)
)

=
∞∑

j=1

Bjzj, z ∈U, (2.25)

where

Bj =
jrj–1

4j–1(1)j–1(σ )j–1
, j ∈N. (2.26)

According to Lemma 1.3, it is sufficient to prove that jBj ≥ (j+1)Bj+1 and jBj +(j+2)Bj+2 ≥
2(j + 1)Bj+1 for all j ∈N.

A simple computation shows that

jBj – (j + 1)Bj+1 =
rj–1

4j–1(j – 1)!(σ )j–1
· 4j3 + (4σ – r – 4)j2 – 2rj – r

4j(σ + j – 1)
, (2.27)
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and to show that jBj – (j + 1)Bj+1 ≥ 0, j ∈ N, it is sufficient to prove that the function φ :
[1, +∞) →R defined by

φ(x) := 4x3 + (4σ – r – 4)x2 – 2rx – r,

is nonnegative on [1, +∞). Since

φ′(x) = 2
[
6x2 + (4σ – r – 4)x – r

]
,

the function φ′ attained its minimum at the point

xm =
r + 4 – 4σ

12
< 1, whenever σ ≥ 2r > 0,

hence it is a strictly increasing function on [1, +∞). Therefore, since σ ≥ 2r > 0, we have

φ′(x) ≥ φ′(1) = 4(2σ – r + 1) ≥ 4(3r + 1) > 0, x ≥ 1,

and consequently, the function φ is strictly increasing on [1, +∞). Concluding, for σ ≥
2r > 0, we obtain that

φ(x) ≥ φ(1) = 4(σ – r) ≥ 2r > 0, x ≥ 1,

hence (2.27) leads to

jBj – (j + 1)Bj+1 =
rj–1

4j–1(j – 1)!(σ )j–1
· φ(j)

4j(σ + j – 1)
≥ 0, j ∈N,

that is jBj ≥ (j + 1)Bj+1 for all j ∈N.
As Bj+2 > 0, j ∈N, we have

jBj – 2(j + 1)Bj+1 + (j + 2)Bj+2 > jBj – 2(j + 1)Bj+1, (2.28)

and to show that jBj – 2(j + 1)Bj+1 + (j + 2)Bj+2 ≥ 0, j ∈N, it is sufficient to prove that

jBj

2(j + 1)Bj+1
=

2j3(σ + j – 1)
(j + 1)2r

=: ψ(j) ≥ 1, j ∈ N. (2.29)

Since

ψ(1) =
σ

2r
≥ 1 and ψ(2) =

16(σ + 1)
9r

> 1, whenever σ ≥ 2r > 0,

as well as using the inequality

j2

(j + 1)2 >
1
2

, j ≥ 3,

and σ ≥ 2r > 0, it follows that

ψ(j) >
j(σ + j – 1)

r
=: F(j), j ≥ 3.
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However, since σ , r > 0, the function F(j) is a strictly increasing function as a product of
two strictly increasing and positive functions

G1(j) := j and G2(j) := σ + j – 1, j ≥ 3.

Hence, using again the assumption σ ≥ 2r > 0, we deduce

F(j) =
j(σ + j – 1)

r
≥ F(3) =

3(σ + 2)
r

≥ 3(2r + 2)
c

=
6(r + 1)

r
> 1.

Therefore, according to (2.29), we conclude that jBj – 2(j + 1)Bj+1 ≥ 0, j ∈ N, and from
(2.28), it follows that jBj – 2(j + 1)Bj+1 + (j + 2)Bj+2 > 0 for all j ∈N. �

Theorem 2.6 Let σ ≥ r with r ∈ (0, +∞), and suppose that

32σ 2 + 32(1 – 2r)σ + 9r2 – 64r ≥ 0, (2.30)

Then, z
1+z ∗ Uσ ,r(z) is convex function in U.

Proof Using the power series expansion (2.25) where the coefficients are given by (2.26),
according to Lemma 1.2, it is enough to prove that jBj ≥ (j + 1)Bj+1 and jBj – 2(j + 1)Bj+1 +
(j + 2)Bj+2 ≥ 0 for all j ∈N.

To show that the inequality jBj ≥ (j + 1)Bj+1 holds for all j ∈N, it is easy to observe that

jBj – (j + 1)Bj+1 =
j2rj–1

4j–1(1)j–1(σ )j–1
–

(j + 1)2rj

4j(1)j(σ )j

=
rj–1�(σ )

4j–1�(j)�(σ + j – 1)
· 4j3(σ + j – 1) – (j + 1)2r

4j(σ + j – 1)
.

If we define the function � : [1, +∞) →R by

�(j) := 4j3(σ + j – 1) – (j + 1)2r,

we shall proceed to show that �(j) ≥ 0 for all j ∈ N using the mathematical induction.
First, for j = 1, we have that �(1) = 4(σ – r) ≥ 0 if and only if σ ≥ r, as we assumed in the

statement of the theorem.
Second, let us assume that �(m) ≥ 0 for a fixed m ∈ N. A simple computation shows

that

�(m + 1) = �(m) + φ(m),

where φ(m) := 16m3 + 12(σ + 1)m2 + 3(6σ – r + 2)m + 4σ – 3r. For σ ≥ r > 0, we have

φ(m) = 16m3 + 12(σ + 1)m2 + 3(6σ – r + 2)m + 4σ – 3r

≥ 16m3 + 12(r + 1)m2 + 3(5r + 2)m + r > 0, m ∈N,

therefore �(m + 1) > �(m), and using the mathematical induction, it follows that jBj ≥
(j + 1)Bj+1 for all n ∈N.
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On the other hand,

jBj – 2(j + 1)Bj+1 + (j + 2)Bj+2

=
rj–1�(σ )

4j–1�(j)�(σ + j – 1)

× 16j3(j + 1)(σ + j)(σ + j – 1) – 8(j + 1)3(σ + j)r + (j + 2)r2

16j(j + 1)(σ + j)(σ + j – 1)
,

that is

jBj – 2(j + 1)Bj+1 + (j + 2)Bj+2 =
rj–1�(σ )

4j–1�(j)�(σ + j – 1)

× �̃(j)
16j(j + 1)(σ + j)(σ + j – 1)

, (2.31)

and we will use the mathematical induction again to prove the nonnegativity of the func-
tion �̃ : [1, +∞) →R defined by

�̃(j) := 16n3(j + 1)(σ + j)(σ + j – 1) – 8(j + 1)3(σ + j)r + (j + 2)2r2.

First, for j = 1, according to assumption (2.30), we have

�̃(1) = 32σ 2 + 32(1 – 2r)σ + 9r2 – 64r ≥ 0.

Now, suppose that �̃(m) ≥ 0 for a fixed m ∈N. It is easy to check that

�̃(m + 1) = �̃(m) + φ̃(m), (2.32)

where

φ̃(m) :=96m5 + (160σ + 240)m4 +
(
64σ 2 – 32r + 384σ + 256

)
m3

+
(
144σ 2 + (368 – 24r)σ – 120r + 144

)
m2

+
(
112σ 2 + (176 – 72r)σ + 2r2 – 152r + 32

)
m

+ 32σ 2 + (32 – 56r)σ + 5r2 – 64r, m ∈N.

If we define the function H : [1, +∞) → R by

H(x) := 96x5 + (160σ + 240)x4 +
(
64σ 2 – 32r + 384σ + 256

)
x3

+
(
144σ 2 + (368 – 24r)σ – 120r + 144

)
x2

+
(
112σ 2 + (176 – 72r)σ + 2c2 – 152r + 32

)
x

+ 32σ 2 + (32 – 56r)σ + 5r2 – 64r, x ∈ [1, +∞),

then φ̃ = H|N. Since σ ≥ r > 0, we have

64σ 2 – 32r + 384σ + 256 ≥ 64r2 + 252r + 256 > 0,
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Figure 4 The assumptions for Theorem 2.6

144σ 2 + (368 – 24r)σ – 120r + 144 ≥ 144σ r + (368 – 24r)σ – 120r + 144

= 120σ r – 120r + 368σ + 144 ≥ 120σ r + 248σ + 144 > 0,

112σ 2 + (176 – 72r)σ + 2r2 – 152r + 32 ≥ 112σ r + (176 – 72r)σ + 2r2 – 152r + 32

= 40σ r + 176σ + 2r2 – 152r + 32 ≥ 42r2 + 24r + 32 > 0,

and we see that the coefficients of

H ′(x) := 480x4 + 4(160σ + 240)x3 + 3
(
64σ 2 – 32r + 384σ + 256

)
x2

+ 2
(
144σ 2 + (368 – 24r)σ – 120r + 144

)
x

+ 112σ 2 + (176 – 72r)σ + 2r2 – 152r + 32

are positive numbers, hence H ′(x) > 0 for all x ∈ [1, +∞), and therefore H is a strictly
increasing function on [1, +∞). From here, using again the assumptions σ ≥ r, σ > 0, it
follows that

H(x) ≥ H(1) = 352σ 2 + (1120 – 152r)σ + 7r2 – 368r + 768

≥ 200σ r + 1120σ + 7r2 – 368r + 768 ≥ 200σ r + 7r2 + 752r + 768 > 0,

that is H(x) > 0, x ∈ [1, +∞). Therefore, we get H(x) > 0 for all x ∈ [1, +∞), and thus φ̃(m) >
0, m ∈ N. Consequently, relation (2.32) implies �̃(m + 1) > 0, and using the mathematical
induction, we conclude that �̃(j) > 0 for all j ∈ N.

Finally, the above last result and relation (2.31) lead us to jBj + (j + 2)Bj+2 ≥ 2(j + 1)Bj+1,
for all j ∈N, and the proof is complete. �

Remark 2.3 1. As we can see in Fig. 4, the assumptions σ ≥ r, with r ∈ (0, +∞), and (2.30)
are not contradictory: the points of the region colored with “grey” colour satisfy all these
conditions, or, for example, r = 1 and σ = 100 satisfies both of these assumptions.

2. As it is shown in the above-mentioned figure, we could presume that for r,σ > 0, we
have

{
(r,σ ) ∈R

2 : 32σ 2 + 32(1 – 2r)σ + 9r2 – 64r ≥ 0, r,σ > 0
}
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⊂ {
(r,σ ) ∈ R

2 : σ ≥ r, r,σ > 0
}

,

hence we shall try to prove the following implication:
If r,σ > 0, then

32σ 2 + 32(1 – 2r)σ + 9r2 – 64r ≥ 0 ⇒ σ ≥ r,

or equivalently

σ ∈ (0, r), r > 0 ⇒ Ũ(σ ) := 32σ 2 + 32(1 – 2r)σ + 9r2 – 64r < 0. (2.33)

Since

lim
σ→0

Ũ(σ ) = r(9r – 64) =: Ṽ (r),

and

Ṽ (r) ≮ 0, for all r ∈ (0, +∞),

implication (2.33) is not true, hence

{
(r,σ ) ∈R

2 : 32σ 2 + 32(1 – 2r)σ + 9r2 – 64r ≥ 0, r,σ > 0
}

⊂ {
(r,σ ) ∈ R

2 : σ ≥ r, r,σ > 0
}

.

Remark 2.4 Theorem 2.5 and Theorem 2.6 give us sufficient conditions for the convexity
of the function z

1+z ∗ Uσ ,r(z). According to Theorem 2.5, it is necessary to assume that
σ ≥ 2r, with r ∈ (0, +∞), while Theorem 2.6 requirements are σ ≥ r, with r ∈ (0, +∞), and
inequality (2.30).

Since for r ∈ (0, +∞) the assumption σ ≥ r is weaker than σ ≥ 2r, the next two figures
obtained with MAPLE™ computer software show graphically the convexity of this function
for σ = 5, r = 2.45 (Fig. 5(A), using Theorem 2.5), and σ = 4, r = 2.1, (Fig. 5(B), according
to Theorem 2.6), respectively. We remark that for the second pair of the above values,
we cannot use Theorem 2.5 to prove the convexity, but Theorem 2.6 could be applied
successfully.

Theorem 2.7 If σ ≥ r
4 with r ∈ (0, +∞), then (z cos

√
z) ∗ Uσ ,r(z) is a close-to-convex func-

tion in U with respect to – log(1 – z).

Proof To prove that (z cos
√

z) ∗ Uσ ,r(z) is a close-to-convex function in U with respect to
– log(1 – z), we will use Lemma 1.3.

The function (z cos
√

z) ∗ Uσ ,r(z) has the power series expansion of the form

(z cos
√

z) ∗ Uσ ,r(z) =
∞∑

j=1

Cjzj, z ∈U,
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Figure 5 Figures for Remark 2.4

where

Cj =
rj–1

4j–1(1)j–1(σ )j–1(2j – 2)!
, j ∈N.

We proceed to prove that {jCj}j∈N is a decreasing sequence with jCj > 0, j ∈ N. Nothing
that

jCj – (j + 1)Cj+1 =
rj–1

4j–1(1)j–1(σ )j–1(2j – 2)!

[
j –

(j + 1)r
4j(σ + j – 1)(2j)(2j – 1)

]

=
rj–1

4j–1(1)j–1(σ )j–1(2j – 2)!
· 8j3(2j – 1)(σ + j – 1) – (j + 1)r

4j(σ + j)(2j)(2j – 1)

=
rj–1

4j–1(1)j–1(σ )j–1(2j – 2)!
· χ (j)

4j(σ + j)(2j)(2j – 1)
, (2.34)

where

χ (j) := 8j3(2j – 1)(σ + j – 1) – (j + 1)r, j ∈N,

we will use the mathematical induction to prove the nonnegativity of χ (j) for all j ∈N.
First, for j = 1, according to the assumption σ ≥ r

4 , we have

χ (1) = 8σ – 2r ≥ 0.

Now, suppose that χ (m) ≥ 0 for a fixed m ∈N. It is easy to check that

χ (m + 1) = χ (m) + χ̃ (m),

where

χ̃ (m) := 80m4 + 64(σ + 1)m3 + 8(9σ + 5)m2 + 8(5σ + 1)m – r + 8σ > 0,

which holds under the assumption σ ≥ r
4 > r

8 , with r ∈ (0, +∞), and m ∈N.



Zayed and Bulboacă Journal of Inequalities and Applications        (2022) 2022:158 Page 23 of 26

Therefore, inequality (2.34) implies jCj – (j + 1)Cj+1 ≥ 0, j ∈ N, under our assumptions.
Also, since 1 ≥ 2C2, it is equivalent with our assumption σ ≥ r

4 , the proof is complete. �

Theorem 2.8 If σ ≥ r
8 with r ∈ (0, +∞), then (sin z) ∗ Uσ ,r (z2)

z is a close-to-convex function

in U with respect to log
√

1+z
1–z .

Proof From the power series expansion of the function sin z as well as (1.4), we have

(sin z) ∗ Uσ ,r(z2)
z

= z +
∞∑

j=1

C2j+1z2j+1, z ∈U,

where

C2j+1 =
rj

4j(1)j(σ )j(2j + 1)!
, j ∈N.

To use Lemma 1.4 for our proof, it can further be shown that {(2j + 1)C2j+1}j∈N is a de-
creasing nonnegative sequence with 1 ≥ 3C3. Thus, a simple computation shows that

(2j – 1)C2j–1 – (2j + 1)C2j+1

=
(2j – 1)rj–1

4j–1(1)j–1(σ )j–1(2j – 1)!
–

(2j + 1)rj

4j(1)j(σ )j(2j + 1)!

=
rj–1

4j–1(1)j–1(σ )j–1(2j – 1)!

[
(2j – 1) –

(2j + 1)r
4j(σ + j – 1)(2j)(2j + 1)

]

=
rj–1

4j–1(1)j–1(σ )j–1(2j – 1)!
· κ(j)

4j(σ + j – 1)(2j)(2j + 1)
,

where

κ(j) := 8j2(2j + 1)(2j – 1)(σ + j – 1) – (2j + 1)r, j ∈N.

We use the mathematical induction to prove the nonnegativity of κ(j) for all j ∈ N. For
j = 1, according to the assumption σ ≥ r

8 , we have

κ(1) = 24σ – 3r ≥ 0.

Supposing that κ(m) ≥ 0 for a fixed m ∈N, it is easy to check that

κ(m + 1) = κ(m) + κ̃(m),

where

κ̃(m) := 160m4 + 64(3σ + 3)m3 + 8(24σ + 13)m2 + 8(14σ + 3)m – 2r + 24σ > 0,

which holds under the assumption σ ≥ r
8 > r

12 , with r ∈ (0, +∞), and m ∈ N. Also, since
σ ≥ r

8 > 0, it is equivalent to 1 ≥ 3C3, it follows that our result is proved. �
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Figure 6 Figures for Remark 2.5

Remark 2.5 1. Taking in Theorem 2.7 the values σ = 2.1 and r = 8.3, the function
(z cos

√
z) ∗ Uσ ,r(z) will be close-to-convex in U, but definitively not convex in U, as we

can see in Fig. 6(A).
2. For the particular case σ = 3 and r = 23, Theorem 2.8 yields that the function (sin z) ∗

Uσ ,r (z2)
z is close-to-convex in U. Figure 6(B) obtained with MAPLE™ computer software

shows graphically that this function is not convex in U.

3 Concluding remarks
In the current work, we have employed a new investigation procedure. First, using an iden-
tity for the logarithmic of the gamma function, as well as an inequality for the digamma
function, we established the sufficient conditions on the parameters such that Uσ ,r is a
starlike or a convex function of order α (0 ≤ α ≤ 1) in the open unit disk. Moreover, other
starlikeness and convexity conditions for Uσ ,r have been determined, where the leading
concept of the proofs comes from the starlikeness of the power series f (z) =

∑∞
j=1 Ajzj, and

from the classical Alexander duality theorem between the classes of starlike and convex
functions. The results are followed by a simple demonstration showing that our condi-
tions are not contradictory. Finally, simple sufficient conditions for the close-to-convexity
of the functions (z cos

√
z) ∗ Up,q,r and (sin z) ∗ Uσ ,r (z2)

z have been considered. Further inves-
tigations connected with this topic are now underway and will be reported in forthcoming
papers.
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