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1 Introduction
The so-called Fibonacci sequence {Fn} and Lucas sequence {Ln} are defined by

F0 = 0, F1 = 1, Fn = Fn–1 + Fn–2, n ≥ 2,

and

L0 = 2, L1 = 1, Ln = Ln–1 + Ln–2, n ≥ 2.

The Fibonacci and Lucas sequences have many interesting properties and applications
[1]. In addition, in [2], Ohtsuka and Nakamura considered the partial infinite sums of
reciprocal Fibonacci sequence and proved that:

⌊( ∞∑
k=n

1
Fk

)–1⌋
=

⎧⎨
⎩Fn–2, if n is even;

Fn–2 – 1, if n is odd,
n ≥ 2,

and

⌊( ∞∑
k=n

1
F2

k

)–1⌋
=

⎧⎨
⎩Fn–1Fn – 1, if n is even;

Fn–1Fn, if n is odd,
n ≥ 2,

where �·� (the floor function) denotes the greatest integer less than or equal to x.
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Many authors have studied the Fibonacci and Lucas sequences by changing initial con-
ditions or recursive relations. For instance, for any two nonzero real numbers a and b,
Edson and Yayenie [3] introduced the bi-periodic Fibonacci sequence {fn} as:

f0 = 0, f1 = 1, fn =

⎧⎨
⎩afn–1 + fn–2, if n is even;

bfn–1 + fn–2, if n is odd,
n ≥ 2. (1)

For a = b = 1, {fn} reduces to the Fibonacci sequence {Fn}. If a = b = k, then {fn} becomes
the k-Fibonacci sequence {qn} defined in [4], etc. Similarly, for any two nonzero real num-
bers a and b, Bilgici [5] introduced the bi-periodic Lucas sequence {ln} as:

l0 = 2, l1 = a, ln =

⎧⎨
⎩bln–1 + ln–2, if n is even;

aln–1 + ln–2, if n is odd,
n ≥ 2. (2)

For a = b = 1, {ln} reduces to the Lucas sequence {Ln}. If a = b = k, then {ln} becomes the
k-Lucas sequence {pn} defined in [6]. In [7], Tan and Leung considered a generalization of
Horadam sequence {wn}, which is defined by the recurrence relation

w0 = w0, w1 = w1, wn =

⎧⎨
⎩awn–1 + cwn–2, if n is even;

bwn–1 + cwn–2, if n is odd,
n ≥ 2,

with arbitrary initial conditions w0, w1 and nonzero real numbers a, b, and c. In [8], Tan
considered the sequence {wn} when c = 1. In [9], Ramírez and Sirvent introduced a q-bi-
periodic Fibonacci sequence by

F (a,b)
n (q, s) =

⎧⎨
⎩aF (a,b)

n–1 (q, s) + qn–2sF (a,b)
n–2 (q, s), if n is even;

bF (a,b)
n–1 (q, s) + qn–2sF (a,b)

n–2 (q, s), if n is odd,
n ≥ 2,

with initial conditions F (a,b)
0 (q, s) = 0 and F (a,b)

1 (q, s) = 1 and nonzero real numbers a, b, q
and s. Motivated by [9], in [10] Tan introduced a q-bi-periodic Lucas sequence by

L(a,b)
n (q, s) =

⎧⎨
⎩bL(a,b)

n–1 (q, s) + sL(a,b)
n–2 (q, qs), if n is even;

aL(a,b)
n–1 (q, s) + sL(a,b)

n–2 (q, qs), if n is odd,
n ≥ 2,

with initial conditions L(a,b)
0 (q, s) = 2 and L(a,b)

1 (q, s) = q, and nonzero real numbers a , b ,q
and s.

In [11], Holliday and Komatsu obtained the infinite sums of the reciprocal of k-Fibonacci
sequence {qn}. In [12], Basbük and Yazlik obtained the infinite sums of the reciprocal of
the bi-periodic Fibonacci sequence {fn}. Various authors studied the infinite sums of the
reciprocal of the other famous sequences [13–15].

Recently, some authors studied the nearest integer of the sums of reciprocal of some
linear recurrence sequences. In [16], Komatsu proved that there exists a positive integer
n1 such that:

∥∥∥∥∥
( ∞∑

k=n

1
qk

)–1∥∥∥∥∥ = qn – qn–1, n ≥ n1,
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where {qn} is the k-Fibonacci sequence. ‖ · ‖ denotes the nearest integer. Specifically, sup-
pose that ‖x‖ = �x + 1

2�.
On the other hand, Wu and Zhang [17] considered an mth-order linear recursive se-

quence {un} defined by

un = x1un–1 + x2un–2 + · · · + xmun–m, n > m, (3)

where initial values ui ∈ N for 0 ≤ i < m, at least one of them is different from zero, and
x1, x2, . . . , xm are positive integers. The characteristic polynomial of the sequence {un} is
given by

ψ(y) = ym – x1ym–1 – · · · – xm–1y – xm.

For m = 2, x1 = x2 = 1 and initial values u0 = 0, u1 = 1, {un} reduces to the Fibonacci se-
quence. If m = 2, x1 = x2 = 1 and initial values u0 = 2, u1 = 1, then {un} becomes the Lucas
sequence.

In addition, they proved that there exists a positive integer n2 such that:

∥∥∥∥∥
( ∞∑

k=n

1
uk

)–1∥∥∥∥∥ = un – un–1, n ≥ n2,

for any positive integers x1 ≥ x2 ≥ · · · ≥ xm ≥ 1. For more the nearest integer of the sums of
reciprocal of the recurrence sequence studies, see [18–21]. Specifically, in [19], Trojorský
considered finding a sequence that is “asymptotically equivalent” to partial infinite sums
and proved that

{( ∞∑
k=n

1
P(uk)

)–1}
n

and
{

P(un) – P(un–1)
}

n

are asymptotically equivalent, where P(z) ∈ C[z] is a non-constant polynomial. Specifi-
cally, we say that two sequences {Gn} and {Hn} are called “asymptotically equivalent” if
{Gn}/{Hn} tends to 1 as n → ∞.

In addition to the study of the infinite reciprocal sums of recursive sequence, we can also
consider the infinite reciprocal products of recursive sequence. In 2006, Wu [22] studied
the partial infinite products of qi

k –1
qi

k
. He used the element method and the properties of

the floor function and proved that

⌊(
1 –

∞∏
k=n

(
1 –

1
qk

))–1⌋
= qn – qn–1, n ≥ 2,

and

⌊(
1 –

∞∏
k=n

(
1 –

1
q2

k

))–1⌋
=

⎧⎨
⎩q2

n – q2
n–1, if n is even;

q2
n – q2

n–1 – 1, if n is odd,
n ≥ 2,

where {qn} is the k-Fibonacci sequence. For more the partial infinite products of the other
sequences, see [23, 24].
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Inspired by [19], in this paper, we apply a different research method from the previous
one and use the properties of error estimation and the analytic method to study the re-
ciprocal products of {fn}, {ln} and {un}. We derive some sequences that are asymptotically
equivalent to reciprocal products including {fn}, {ln} and {un}. Our main results are the
following:

Theorem 1 Let {fn} be the bi-periodic Fibonacci sequence, and {ln} be the bi-periodic Lucas
sequence. For positive integers a and b with a ≥ 1, b ≥ 1, the sequences

{(
1 –

∞∏
k=n

(
1 –

1
fk

))–1}
n

and {fn – fn–1}n (4)

are asymptotically equivalent, and the sequences

{(
1 –

∞∏
k=n

(
1 –

1
lk

))–1}
n

and {ln – ln–1}n (5)

are asymptotically equivalent.

Corollary 1 We obtain the infinite products of the reciprocal of the k-Fibonacci sequence
qn and k-Lucas sequence pn, when a = b = k. Then, the sequences

{(
1 –

∞∏
k=n

(
1 –

1
qk

))–1}
n

and {qn – qn–1}n (6)

are asymptotically equivalent, and the sequences

{(
1 –

∞∏
k=n

(
1 –

1
pk

))–1}
n

and {pn – pn–1}n (7)

are asymptotically equivalent.

Theorem 2 Let {un} be an mth-order linear recursive sequence with any positive integers
x1 ≥ x2 ≥ · · · ≥ xm ≥ 1. Then, the sequences

{(
1 –

∞∏
k=n

(
1 –

1
uk

))–1}
n

and {un – un–1}n (8)

are asymptotically equivalent.

2 Proof of the theorems
To complete the proof of our theorems, we need the following:

Lemma 1 ([3, 5], Generalized Binet’s formula) The terms of the bi-periodic Fibonacci se-
quence {fn}, and bi-periodic Lucas sequence {ln} are given by

fn =
aζ (n+1)

(ab)� n
2 �

(
αn – βn

α – β

)
,
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and

ln =
aζ (n)

(ab)� n+1
2 �

(
αn + βn),

where α = ab+
√

a2b2+4ab
2 and β = ab–

√
a2b2+4ab

2 , i.e. α and β are roots of the equation x2 –abx–
ab = 0. It is obvious that α > 1 and –1 < β < 0 with a ≥ 1, b ≥ 1. In addition, ζ (n) is the
parity function, such that ζ (n) = 0 if n is even and ζ (n) = 1 if n is odd.

Lemma 2 Let {fn} be the bi-periodic Fibonacci sequence defined by (1), and {ln} be the
bi-periodic Lucas sequence defined by (2). Then, we have

fn =

⎧⎪⎨
⎪⎩

cαn

(ab)
n
2

– cβn

(ab)
n
2

, if n is even;
dαn

(ab)
n–1

2
– dβn

(ab)
n–1

2
, if n is odd,

where c = a
α–β

, d = 1
α–β

, and

ln =

⎧⎪⎨
⎪⎩

αn

(ab)
n
2

+ βn

(ab)
n
2

, if n is even;
aαn

(ab)
n+1

2
+ aβn

(ab)
n+1

2
, if n is odd.

Proof By Lemma 1, we can easily prove it. �

Lemma 3 ([17]) Let {un} be an mth-order linear recursive sequence defined by (3). The
coefficients of the characteristic polynomial ψ(y) are satisfied that x1 ≥ x2 ≥ · · · ≥ xm ≥ 1.
Then, the closed formula of {un} is given by

un = sγ n + O
(
t–n), (n → ∞),

where s > 0, t > 1, γ is the positive real zero of ψ(y) for x1 < γ < x1 + 1, and “O” (the Landau
symbol) denotes if g(x) > 0 for all x ≥ a, we write f (x) = O(g(x)) to mean that the quotient
f (x)/g(x) is bounded for x ≥ a.

Lemma 4 Let a, b, c, d, α, and β be defined by Lemma 1 or Lemma 2 and s, γ , and t be
defined by Lemma 3. Then, we have

∞∏
k=n

(
1 –

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2 β

α2

)k))

= 1 –
∞∑

k=n

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2

α

)2n)
,

(9)

∞∏
k=n

(
1 –

1
(ab) 1

2 d

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2 β

α2

)k))

= 1 –
∞∑

k=n

1
(ab) 1

2 d

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2

α

)2n)
,

(10)

∞∏
k=n

(
1 –

1
sγ k + O

(
γ –2kt–k)) = 1 –

∞∑
k=n

1
sγ k + O

(
γ –2n). (11)
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Proof We shall prove only (6) in Lemma 4, and other identities are proved similarly. The
identity ab = –αβ now yield |β| < (ab) 1

2 = (–αβ) 1
2 < α, where α > 1 and –1 < β < 0. First,

we prove the following equation

n+m∏
k=n

(
1 –

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2 β

α2

)k))

= 1 –
n+m∑
k=n

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2

α

)2n)
,

(12)

We prove (9) by mathematical induction. When m = 1,

n+1∏
k=n

(
1 –

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2 β

α2

)k))

=
(

1 –
1
c

(
(ab) 1

2

α

)n

+ O
((

(ab) 1
2 β

α2

)n))

×
(

1 –
1
c

(
(ab) 1

2

α

)n+1

+ O
((

(ab) 1
2 β

α2

)n+1))

= 1 –
1
c

(
(ab) 1

2

α

)n

–
1
c

(
(ab) 1

2

α

)n+1

+
1
c2

(
(ab) 1

2

α

)2n+1

+ O
((

(ab) 1
2 β

α2

)n)

= 1 –
n+1∑
k=n

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2

α

)2n)
+ O

((
(ab) 1

2 β

α2

)n)

= 1 –
n+1∑
k=n

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2

α

)2n)
.

When m = 2,

n+2∏
k=n

(
1 –

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2 β

α2

)k))

=

(
1 –

n+1∑
k=n

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2

α

)2n))

×
(

1 –
1
c

(
(ab) 1

2

α

)n+2

+ O
((

(ab) 1
2 β

α2

)n+2))

= 1 –
n+1∑
k=n

1
c

(
(ab) 1

2

α

)k

–
1
c

(
(ab) 1

2

α

)n+2

+
1
c2

(
(ab) 1

2

α

)n+2
( n+1∑

k=n

(
(ab) 1

2

α

)k
)

+ O
((

(ab) 1
2

α

)2n)
+ O

((
(ab) 1

2 β

α2

)n)

= 1 –
n+2∑
k=n

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2

α

)2n)
+ O

((
(ab) 1

2 β

α2

)n)

= 1 –
n+1∑
k=n

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2

α

)2n)
.



Du and Wu Journal of Inequalities and Applications        (2022) 2022:154 Page 7 of 11

That is, (9) is true for m = 1 or m = 2. Suppose that for any integer m, we have

n+m∏
k=n

(
1 –

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2 β

α2

)k))

= 1 –
n+m∑
k=n

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2

α

)2n)
.

(13)

Then, for m + 1, we have

n+m+1∏
k=n

(
1 –

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2 β

α2

)k))

=

(
1 –

n+m∑
k=n

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2

α

)2n))

×
(

1 –
1
c

(
(ab) 1

2

α

)n+m+1

+ O
((

(ab) 1
2 β

α2

)n+m+1))

= 1 –
n+m∑
k=n

1
c

(
(ab) 1

2

α

)k

–
1
c

(
(ab) 1

2

α

)n+m+1

+
1
c2

(
(ab) 1

2

α

)n+m+1
(n+m∑

k=n

(
(ab) 1

2

α

)k
)

+ O
((

(ab) 1
2

α

)2n)
+ O

((
(ab) 1

2 β

α2

)n)

= 1 –
n+m+1∑

k=n

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2

α

)2n)
+ O

((
(ab) 1

2 β

α2

)n)

= 1 –
n+m+1∑

k=n

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2

α

)2n)
.

Taking m → ∞, we have

∞∏
k=n

(
1 –

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2 β

α2

)k))

= 1 –
∞∑

k=n

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2

α

)2n)
,

which completes the proof. �

Proof of Theorem 1 We shall prove only (4) in Theorem 1, and the identity (5) is proved
similarly. From the geometric series as ε → 0, we find

1
1 ± ε

= 1 + O(ε).

If n is even, with n ≥ 2. Using Lemma 2, we have

1
fk

=
1

cαk

(ab)
k
2

– cβk

(ab)
k
2

=
1

cαk

(ab)
k
2

(1 – ( β

α
)k)

=
(ab) k

2

cαk

(
1 + O

(
β

α

)k)
.
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By Lemma 4, we obtain

∞∏
k=n

(
1 –

1
fk

)
=

∞∏
k=n

(
1 –

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2 β

α2

)k))

= 1 –
∞∑

k=n

1
c

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2

α

)2n)

= 1 –
(ab) n

2

cαn

(
α

α – (ab) 1
2

)
+ O

((
(ab) 1

2

α

)2n)
.

Taking the reciprocal of this expression yields

(
1 –

∞∏
k=n

(
1 –

1
fk

))–1

=
1

(ab)
n
2

cαn ( α

α–(ab)
1
2

) + O(( (ab)
1
2

α
)2n)

=
1

(ab)
n
2

cαn ( α

α–(ab)
1
2

)(1 + O( (ab)
1
2

α
)n)

=
cαn

(ab) n
2

(
α – (ab) 1

2

α

)(
1 + O

(
(ab) 1

2

α

)n)

=
(

fn – fn–1 +
cβn

(ab) n
2

–
cβn–1

(ab) n–1
2

)(
1 + O

(
(ab) 1

2

α

)n)
,

where |β| < (ab) 1
2 yields

(
fn – fn–1 +

cβn

(ab) n
2

–
cβn–1

(ab) n–1
2

)
tends to (fn – fn–1),

as n → ∞. In addition, as (ab) 1
2 < α, we obtain

(1 –
∏∞

k=n(1 – 1
fk

))–1

(fn – fn–1)
tends to 1,

as n → ∞.
If n is odd, with n ≥ 1. Using Lemma 2, we have

1
fk

=
1

dαk

(ab)
k–1

2
– dβk

(ab)
k–1

2

=
1

dαk

(ab)
k–1

2
(1 – ( β

α
)k)

=
(ab) k–1

2

dαk

(
1 + O

(
β

α

)k)
.

By Lemma 4, we obtain

∞∏
k=n

(
1 –

1
fk

)
=

∞∏
k=n

(
1 –

1
(ab) 1

2 d

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2 β

α2

)k))

= 1 –
∞∑

k=n

1
(ab) 1

2 d

(
(ab) 1

2

α

)k

+ O
((

(ab) 1
2

α

)2n)
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= 1 –
(ab) n–1

2

dαn

(
α

α – (ab) 1
2

)
+ O

((
(ab) 1

2

α

)2n)
.

Taking the reciprocal of this expression yields

(
1 –

∞∏
k=n

(
1 –

1
fk

))–1

=
1

(ab)
n–1

2
dαn ( α

α–(ab)
1
2

) + O(( (ab)
1
2

α
)2n)

=
1

(ab)
n–1

2
dαn ( α

α–(ab)
1
2

)(1 + O( (ab)
1
2

α
)n)

=
dαn

(ab) n–1
2

(
α – (ab) 1

2

α

)(
1 + O

(
(ab) 1

2

α

)n)

=
(

fn – fn–1 +
dβn

(ab) n
2

–
dβn–1

(ab) n–1
2

)(
1 + O

(
(ab) 1

2

α

)n)
,

where |β| < (ab) 1
2 yields

(
fn – fn–1 +

cβn

(ab) n
2

–
cβn–1

(ab) n–1
2

)
tends to (fn – fn–1),

as n → ∞. In addition, as (ab) 1
2 < α, we obtain

(1 –
∏∞

k=n(1 – 1
fk

))–1

(fn – fn–1)
tends to 1,

as n → ∞, which completes the proof. �

Proof of Theorem 2 Using Lemma 3, we have

1
uk

=
1

sγ k + O(t–k)
=

1
sγ k(1 + O(γ –kt–k))

=
1

sγ k

(
1 + O

(
γ –kt–k)).

By Lemma 4, we obtain

∞∏
k=n

(
1 –

1
uk

)
=

∞∏
k=n

(
1 –

1
sγ k + O

(
γ –2kt–k))

= 1 –
∞∑

k=n

1
sγ k + O

(
γ –2n)

= 1 –
γ

sγ n(γ – 1)
+ O

(
γ –2n).

Taking the reciprocal of this expression yields

(
1 –

∞∏
k=n

(
1 –

1
uk

))–1

=
1

γ

sγ n(γ –1) + O(γ –2n)
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=
1

γ

sγ n(γ –1) (1 + O(γ –n))

=
sγ n(γ – 1)

γ

(
1 + O

(
γ –n))

= (un – un–1)
(
1 + O

(
γ –n)),

which yields

(1 –
∏∞

k=n(1 – 1
uk

))–1

(un – un–1)
tends to 1,

as n → ∞, which completes the proof. �

3 Discussion
In this paper, we obtain the sequences that are asymptotically equivalent to reciprocal
products of fk –1

fk
, lk –1

lk
and uk –1

uk
, where {fn} denotes the bi-periodic Fibonacci sequence, {ln}

denotes the bi-periodic Lucas sequence, and {un} denotes an mth-order linear recursive
sequence. For any positive integers j, an open problem is whether there exists the similar

identities for the infinity products of f j
k –1

f j
k

, ljk –1

ljk
and uj

k –1

uj
k

.
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