
Ben Said and Negzaoui Journal of Inequalities and Applications        (2022) 2022:134 
https://doi.org/10.1186/s13660-022-02874-1

R E S E A R C H Open Access

Norm inequalities for maximal operators
Salem Ben Said1* and Selma Negzaoui2

*Correspondence:
salem.bensaid@uaeu.ac.ae
1Mathematical Sciences
Department, College of Science,
United Arab Emirates University,
Al Ain, UAE
Full list of author information is
available at the end of the article

Abstract
In this paper, we introduce a family of one-dimensional maximal operators Mκ ,m,
κ ≥ 0 andm ∈N \ {0}, which includes the Hardy–Littlewood maximal operator as a
special case (κ = 0,m = 1). We establish the weak type (1, 1) and the strong type (p,p)
inequalities for Mκ ,m, p > 1. To do so, we prove a technical covering lemma for a finite
collection of intervals.
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1 Introduction
Maximal operators have proved to be tools of great importance in the theory of differ-
entiation of functions, complex and harmonic analysis, ergodic theory, and also in index
theory. In general, one considers a certain collection of sets C in R

n and then, given any
locally integrable function f , at every x one measures the maximal average value of f with
respect to the collection C , translated by x. Then it is of fundamental importance to ob-
tain certain regularity properties of these operators such as weak type inequalities and Lp

boundedness.
The simplest example of such a maximal operator is the centered operator defined by

Mf (x) = sup
r>0

1
2r

∫ x+r

x–r

∣∣f (y)
∣∣dy

for every f ∈ L1(R). This operator was introduced by Hardy and Littlewood in the 1930s,
and its higher dimensional version was first used by Wiener in 1939. Since then the opera-
tor has been widely studied and used. It is well known that the Hardy–Littlewood maximal
operator plays a major role in several places of analysis. It is a classical mean operator, and
it is frequently used to majorize other important operators in harmonic analysis. For in-
stance, from the boundedness of the Hardy–Littlewood maximal operator, one can give
a quick proof of Lebesgue’s differentiation theorem; see, e.g., [25, 26]. The generalization
of the differentiation theorem to averages over a variety of families of sets leads to the
definition of several variants of the Hardy–Littlewood maximal operator. The purpose of
this article is to contribute to this endeavor by studying a variant of the Hardy–Littlewood
maximal operator.
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To be more precise, given an integer m ≥ 1 and a parameter κ such that 2κ > 1 – (2/m),
we consider the maximal function

Mκ ,mf (x) = sup
r>0

1
μκ ,m(]–r, r[)

∣∣∣∣
∫
R

f (y)τx(χr)
(
(–1)my

)
dμκ ,m(y)

∣∣∣∣,

where χr is the characteristic function of the interval ]–r, r[, τx = τ κ ,m
x is a generalized

translation operator introduced and studied in [10], and dμκ ,m is the measure given by

dμκ ,m(y) = |y|2κ+ 2
m –2 dy.

It is of fundamental importance to mention that the translation operator τx is associated
with the generalized Fourier transform Fκ ,m built in [7] as follows:

Fκ ,mf (λ) = 2–1
(

2
m

)–(κm– m
2 )

×
∫
R

f (x)
(

J̃κm– m
2

(
m|xy| 1

m
)

+
(

m
2i

)m

xỹJκm+ m
2

(
m|xy| 1

m
))

︸ ︷︷ ︸
:=Eκ ,m(x,y)

dμκ ,m(x). (1.1)

Here

J̃ν(w) :=
(

w
2

)–ν

Jν(w) =
∞∑
�=0

(–1)�w2�

22��!�(ν + � + 1)
,

where Jν is the modified Bessel function of the first kind. In particular,

Fκ ,m(τxf )(y) = Eκ ,m
(
(–1)mx, y

)
Fκ ,mf (y).

Some notable special cases include, up to a scalar:
• m = 1 and κ = 0: Then Fκ ,m and τx are the Euclidean Fourier transform and the usual

translation, respectively, see, e.g., [27];
• m = 1, κ = 0 and f is an even function: We recover the Hankel transform and the

corresponding translation operator, see, e.g., [16, 18];
• m = 1 and κ > 0: We recover the Dunkl transform and the Dunkl translation operator,

see, e.g., [14, 23, 28];
• m = 2 and κ = 0: Then Fκ ,m and τx are the generalized Hankel transform and the

corresponding translation operator, see, e.g., [3, 20];
• m = 2, κ = 0 and f is an even function: We recover the Hankel–Clifford transform and

the corresponding translation operator, see, e.g., [17, 22];
• m = 2 and κ > 0: We recover the κ-Hankel transform and the corresponding

translation operator, see, e.g., [3–5].
This transform, which started with the paper [7], was developed extensively afterwards
and continues to receive considerable attention (see, e.g., [2, 4, 11–13, 15, 19, 21]).

The main result of the paper is to prove that the maximal operator Mκ ,m is of weak
type (1, 1) and strong type (p, p) for all p > 1. One of the major technical obstacles in the
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investigation of Mκ ,m is a lack of known deeper properties of the translation operator τx.
Therefore we introduce the uncentered maximal function

Mκ ,mf (x) = sup
r>0

1
μκ ,m(I(x, r))

∫
|y|∈I(x,r)

∣∣f (y)
∣∣dμκ ,m(y),

where

I(x, r) :=
](|x| 1

m – r
1
m

)m
+ ,

(|x| 1
m + r

1
m
)m[

(here (|x| 1
m – r 1

m )+ = max{0, |x| 1
m – r 1

m }). We pin down that I(x, r) is linked to the support
of the kernel that appears in the integral representation of τx. In particular, if y /∈ I(x, r),
then τx(χr)(y) = 0. We prove that Mκ ,mf �Mκ ,mf holds pointwise. To prove the weak (1, 1)
and the strong (p, p) estimates for Mκ ,m, for all p > 1, it is enough by Marcinkiewicz inter-
polation to prove the first kind of estimate as the strong (∞,∞) estimate is trivial. Now,
to show the weak (1, 1) estimate, we prove a covering lemma to a finite collection of inter-
vals I(xj, rj)j. This result, which is far from being obvious in our setting, states that if two
such intervals overlap, then the smaller one is contained in some dilate of the larger. This
is a fairly excepted result in our setting as μκ ,m(I(x, 2r)) = O(μκ ,m(I(x, r))) (Lemma 3.1).
However, the intervals I(x, r) are geometrically complicated objects.

Throughout the paper we use a fairly standard notation. We write Lp(μκ ,m) and
L1,∞(μκ ,m) to denote the weighted Lp and the weighted weak L1 spaces that consist of
all functions f on R for which

‖f ‖Lp
κ

=
(∫

R

∣∣f (x)
∣∣p dμκ ,m(x)

)1/p

< ∞

or

‖f ‖L1,∞
κ

= sup
λ>0

(
λ

∫
{|f |>λ}

dμκ ,m(x)
)

< ∞,

respectively. The main result is the following.

Theorem The maximal operator Mκ ,m is bounded from L1(μκ ,m) to the Lorentz space
L1,∞(μκ ,m), and from Lp(μκ ,m) to Lp(μκ ,m) for all 1 < p ≤ ∞.

As a direct application of the above result, we give a quick proof of a Lebesgue differen-
tiation type theorem that for almost every point, the value of an integrable function with
respect to μκ ,m is the limit of infinitesimal “averages” taken about the point.

The structure of the paper is as follows: In Sect. 2 we briefly recall some fundamental
properties of the generalized Fourier transform Fκ ,m and the translation operator τx. Sec-
tion 3 is devoted to the covering lemma for the intervals I(x, r) (Theorem 3.2). In Sect. 4
we provide a sharp estimate for τx(χr)(y) (Corollary 4.5). This estimate will be the key
tool to prove that Mκ ,mf ≤ Mκ ,mf . Finally, in Sect. 5 we prove that the maximal operator
Mκ ,m, and therefore Mκ ,m, is of weak type (1, 1) and of strong type (p, p) for all 1 < p ≤ ∞
(Theorem 5.1).

Throughout this paper, the notation U � V stands for U ≤ cV for some constant c > 0.
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2 Background
Recall from the previous section the integral transform Fκ ,m. We refer the reader to [7]
(or [6]) for a detailed study. Further, it shares many of the important properties with usual
integral transforms, part of which are listed as follows.

Theorem 2.1 Let m ∈N≥1 be given and assume 2κ > 1 – (2/m).
1) (Plancherel formula) The transform Fκ ,m is a unitary map of L2(μκ ,m) onto itself.
2) (Inversion formula) Let f ∈ L1(μκ ,m) and suppose that Fκ ,mf ∈ L1(μκ ,m). Then

F –1
κ ,mf (x) = Fκ ,mf ((–1)mx), almost everywhere.

Let x ∈ R be given. In [10] the authors introduced a translation operator τx on Cb(R)
defined, up to a constant, by

τxf (y) = τ κ ,m
x f (y) =

∫
R

f (z)Kκ ,m(x, y; z) dμκ ,m(z)

for some kernel Kκ ,m (see [10] for the explicit formula) satisfying

Fκ ,m(τxf )(y) = Eκ ,m
(
(–1)mx, y

)
Fκ ,mf (y).

It is important to mention that, for given x, y ∈ R, the support of Kκ ,m(x, y; z) = Kκ ,m(y, x; z)
is included in

{
z ∈R :

∣∣|x| 1
m – |y| 1

m
∣∣ < |z| 1

m < |x| 1
m + |y| 1

m
}

. (2.1)

Moreover, it was shown that the convolution product of suitable functions f and g defined
by

f � g(x) = 2–1
(

2
m

)–(κm– m
2 ) ∫

R

f (y)τxg
(
(–1)my

)
dμκ ,m(y)

satisfies Fκ ,m(f � g)(x) = Fκ ,mf (x)Fκ ,mg(x), and f � g = g � f .
The main properties of the translation operator and convolution are collected below

[10].

Theorem 2.2 Let m ∈N≥1 be given and now assume that 2κ > 1 – (1/m).
1) For every f ∈ Lp(μκ ,m), 1 ≤ p ≤ ∞, we have

‖τxf ‖Lp
κ
≤ 4�

(
κm –

m
2

+ 1
)–1

‖f ‖Lp
κ
.

2) (Young’s inequality) Let p, q, r ≥ 1 with 1/r = 1/p + 1/q – 1. For f ∈ Lp(μκ ,m) and
g ∈ Lq(μκ ,m), we have

‖f � g‖Lr
κ
≤ 2

(
2
m

)–(km– m
2 )

�

(
κm –

m
2

+ 1
)–1

‖f ‖Lp
κ
‖g‖Lq

κ
.

3) Let 1 ≤ p, q, r ≤ 2 with 1/r = 1/p + 1/q – 1. For f ∈ Lp(μκ ,m) and g ∈ Lq(μκ ,m), we have
Fκ ,m(f � g) = Fκ ,m(f )Fκ ,m(g).
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3 A covering lemma
The classical Vitali covering lemma is one of the fundamental tools of modern analysis
and geometric measure theory. Its one-dimensional version states that there exists a con-
stant c > 0 such that, given a finite collection of intervals {Ij} in R, there exists a disjoint
subcollection {Ĩj} ⊂ {Ij} such that |⋃ Ĩj| ≥ c|⋃ Ij|. In this section we develop a covering
lemma for the intervals

I(x, r) :=
](|x| 1

m – r
1
m

)m
+ ,

(|x| 1
m + r

1
m
)m[

(3.1)

for x ∈ R and r > 0. Here (|x| 1
m – r 1

m )+ = max{0, |x| 1
m – r 1

m }. This result will lead us to the
weak-(1, 1) boundedness of the maximal operator Mκ ,m. Observe that the intervals I(x, r)
are very close related to the support of the translation operator τx in (2.1).

The covering theorem requires the following structure of μκ ,m.

Lemma 3.1 The measure μk,m is doubling, i.e.,

0 < μκ ,m
(
I(x, 2r)

)
� μκ ,m

(
I(x, r)

)
< ∞ (3.2)

for all x ∈ R and r > 0.

By iterating the doubling condition, we conclude that, for all λ > 0, we have μκ ,m(I(x,
λr)) � μκ ,m(I(x, r)) for all x ∈R and r > 0.

Proof of Lemma 3.1 There are three possibilities to encounter.
1) The case |x| 1

m ≤ r 1
m , i.e., I(x, 2r) = ]0, (|x| 1

m + (2r) 1
m )m[ and I(x, r) = ]0, (|x| 1

m + r 1
m )m[.

In this case,

μκ ,m
(
I(x, 2r)

)
=

∫ (|x| 1
m +(2r)

1
m )m

0
y2κ+ 2

m –2 dy

=
(|x| 1

m + (2r) 1
m )2κm+2–m

2κ + (2/m) – 1
≤ (|2x| 1

m + (2r) 1
m )2κm+2–m

2κ + (2/m) – 1

= 22κ+ 2
m –1μκ ,m

(
I(x, r)

)
.

2) The case r 1
m ≤ |x| 1

m ≤ (2r) 1
m . Therefore we have I(x, 2r) = ]0, (|x| 1

m + (2r) 1
m )m[ and

I(x, r) = ](|x| 1
m – r 1

m )m, (|x| 1
m + r 1

m )m[. Thus,

μκ ,m
(
I(x, 2r)

) ≤
∫ 2m+1r

0
y2κ+ 2

m –2 dy =
2(m+1)(2κ+ 2

m –1)

2κ + (2/m) – 1
r2κ+ 2

m –1. (3.3)

On the other hand,

μκ ,n
(
I(x, r)

)
=

∫ (|x| 1
m +r

1
m )m

(|x| 1
m –r

1
m )m

y2κ+ 2
m –2 dy ≥

∫ 2mr

(2
1
m –1)mr

y2κ+ 2
m –2 dy

=
22κm+2–m – (2 1

m – 1)2κm+2–m

2κ + (2/m) – 1
r2κ+ 2

m –1. (3.4)

Now, by putting together (3.3) and (3.4), we deduce the doubling property in this case.
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3) The case |x| 1
m ≥ (2r) 1

m . That is, I(x, 2r) = ](|x| 1
m –(2r) 1

m )m, (|x| 1
m +(2r) 1

m )m[ and I(x, r) =
](|x| 1

m – r 1
m )m, (|x| 1

m + r 1
m )m[. By making a change of variable, we get

μκ ,m
(
I(x, 2r)

)
= m

∫ |x| 1
m +(2r)

1
m

|x| 1
m –(2r)

1
m

u2κm–m+1 du ≤ 2
1
m +1mr

1
m

(|x| 1
m + (2r)

1
m

)2κm–m+1.

Similarly, we have

μκ ,m
(
I(x, r)

)
= m

∫ |x| 1
m +r

1
m

|x| 1
m –r

1
m

u2κm–m+1 du ≥ 2mr
1
m

(|x| 1
m – r

1
m

)2κm–m+1.

In order to obtain the doubling inequality (3.2), it is enough to find a constant α such that
(|x| 1

m + (2r) 1
m ) ≤ α(|x| 1

m – r 1
m ). Obviously, for every α, α(|x| 1

m – r 1
m ) = |x| 1

m + (2r) 1
m + R

with R = (α – 1)|x| 1
m – (2r) 1

m – αr 1
m . Since |x| 1

m ≥ (2r) 1
m , then for every α ≥ 1, we have

R ≥ (α–2)(2r) 1
m –αr 1

m . Thus, it is enough to choose α = 21+ 1
m /(2 1

m –1) (which is ≥ 1) to get
R ≥ 0, and therefore α(|x| 1

m – r 1
m ) ≥ |x| 1

m + (2r) 1
m . This finishes the proof of Lemma 3.1. �

Now we are ready to prove the main result of this section.

Theorem 3.2 (Finite version of Vitali type covering lemma) Consider the finite collection
I = {I(x1, r1), . . . , I(xN , rN )}. Then there exists a disjoint subcollection I(xj1 , rj1 ), . . . , I(xj� , rj� )
of I such that

μκ ,m

( N⋃
i=1

I(xi, ri)

)
�

�∑
s=1

μκ ,m
(
I(xjs , rjs )

)
. (3.5)

Proof The argument relies on the following observation: Suppose that I(x, r) and I(y, r′)
are a pair of intervals that intersect, with the diameter of I(y, r′) being not greater than that
of I(x, r). Then I(y, r′) is contained in the interval I(x, cr) for some c ≥ 1.

As a first step, we pick an interval I(xj1 , rj1 ) in I with the largest diameter, and then
delete from I the interval I(xj1 , rj1 ) as well as any intervals that intersect I(xj1 , rj1 ). The
remaining intervals yield a new collection I ′, for which we repeat the procedure. We
pick I(xj2 , rj2 ) and any interval that intersects I(xj2 , rj2 ). Continuing this way, we find, after
at most N steps, a collection of disjoint intervals I(xj1 , rj1 ), . . . , I(xj� , rj� ).

To prove that this disjoint collection of intervals satisfies the inequality in the theorem,
we will use the doubling structure of μκ ,m (Lemma 3.1) to prove that every removed in-
terval I(xi, ri) is included in a certain interval I(xjs , crjs ), 1 ≤ s ≤ �, for some constant c ≥ 1.

Consider a deleted interval I(xi, ri). From the above algorithm, there exists smallest s,
1 ≤ s ≤ �, such that I(xi, ri)∩I(xjs , rjs ) 
= ∅with diam I(xi, ri) ≤ diam I(xjs , rjs ). We shall prove
that there exists c ≥ 1 such that I(xi, ri) ⊂ I(xjs , crjs ). To do so, we will distinguish two cases.

1) The case where I(xi, ri) = ]0, (|xi| 1
m + r

1
m
i )m[.

1-a) Presume that I(xjs , rjs ) = ]0, (|xjs | 1
m + r

1
m
js )m[. As diam I(xi, ri) ≤ diam I(xjs , rjs ), clearly

we have I(xi, ri) ⊂ I(xjs , rjs ).

1-b) Presume that I(xjs , rjs ) = ](|xjs | 1
m – r

1
m
js )m, (|xjs | 1

m + r
1
m
js )m[. The fact that diam I(xi, ri) ≤

diam I(xjs , rjs ) implies

(|xjs |
1
m – r

1
m
js

)m ≤ (|xi| 1
m + r

1
m
i

)m ≤ (|xjs |
1
m + r

1
m
js

)m –
(|xjs |

1
m – r

1
m
js

)m.
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Using the binomial formula, we get

∑
�even

(
m
�

)
|xjs |

m–�
m r

�
m
js –

∑
� odd

(
m
�

)
|xjs |

m–�
m r

�
m
js ≤ 2

∑
� odd

(
m
�

)
|xjs |

m–�
m r

�
m
js .

That is,

∑
�

(
m
2�

)
|xjs |

m–2�
m r

2�
m

js ≤ 3
∑

�

(
m

2� + 1

)
|xjs |

m–2�–1
m r

2�+1
m

js .

Using the well-known facts that
( m

2�

)
=

( m–1
2�

)
+

( m–1
2�–1

)
together with

( m
2�+1

) ≤ m
( m–1

2�

)
, we

deduce that

∑
�

(
m – 1

2�

)
|xjs |

m–2�
m r

2�
m

js +
∑

�

(
m – 1
2� – 1

)
|xjs |

m–2�
m r

2�
m

js

≤ 3mr
1
m
js

∑
�

(
m – 1

2�

)
|xjs |

m–2�–1
m r

2�
m

js ,

which implies

(|xjs |
1
m – 3mr

1
m
js

)∑
�

(
m – 1

2�

)
|xjs |

m–2�–1
m r

2�
m

js +
∑

�

(
m – 1
2� – 1

)
|xjs |

m–2�
m r

2�
m

js ≤ 0.

That is,

|xjs |
1
m – 3mr

1
m
js ≤ 0.

In these circumstances, the interval I(xjs , (3m)mrjs ) = ]0, |xjs | 1
m + 3mr

1
m
js [, which contains

the interval I(xi, ri) as

(|xi| 1
m + r

1
m
i

)m ≤ (|xjs |
1
m + r

1
m
js

)m ≤ (|xjs |
1
m + 3mr

1
m
js

)m.

2) The case where I(xi, ri) = ](|xi| 1
m – r

1
m
i )m, (|xi| 1

m + r
1
m
i )m[. In other words, here we as-

sume |xi| 1
m ≥ r

1
m
i .

2-a) Presume that I(xjs , rjs ) = ]0, (|xjs | 1
m + r

1
m
js )m[. That is, |xjs | 1

m ≤ r
1
m
js .

2-a-i) Let (|xi| 1
m + r

1
m
i )m ≤ (|xjs | 1

m + r
1
m
js )m. Then, clearly, we have I(xi, ri) ⊂ I(xjs , rjs ).

2-a-ii) Let (|xi| 1
m + r

1
m
i )m ≥ (|xjs | 1

m + r
1
m
js )m. Since I(xi, ri) ∩ I(xjs , rjs ) 
= ∅, it follows

(|xi| 1
m – r

1
m
i

)m ≤ (|xjs |
1
m + r

1
m
js

)m ≤ (|xi| 1
m + r

1
m
i

)m.

Using the facts that diam I(xi, ri) ≤ diam I(xjs , rjs ) and |xjs | 1
m ≤ r

1
m
js , we deduce that

(|xi| 1
m + r

1
m
i

)m ≤ (|xjs |
1
m + r

1
m
js

)m +
(|xi| 1

m – r
1
m
i

)m

≤ (|xjs |
1
m + r

1
m
js

)m +
(|xjs |

1
m + r

1
m
js

)m
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≤ (|xjs |
1
m + r

1
m
js

)m + 2mrjs

=
m–1∑
�=0

(
m
�

)
|xjs |

m–�
m r

�
m
js +

(
2m + 1

)
rjs

≤ (|xjs |
1
m +

(
2m + 1

) 1
m r

1
m
js

)m. (3.6)

On the other hand, the fact that |xjs | 1
m ≤ r

1
m
js ≤ ((2m + 1)rjs )

1
m implies I(xjs , (2m + 1)rjs )) =

]0, (|xjs | 1
m + ((2m + 1)rjs )

1
m )m[. This fact together with inequality (3.6) yields the inclusion

I(xi, ri) ⊂ I(xjs , (2m + 1)rjs ).

2-b) Presume that I(xjs , rjs ) = ](|xjs | 1
m – r

1
m
js )m, (|xjs | 1

m + r
1
m
js )m[. That is, |xjs | 1

m ≥ r
1
m
js . Based

on the fact that I(xi, ri) ∩ I(xjs , rjs ) 
= ∅, there will be three possible cases to be dis-
cussed.

2-b-i) The first possibility is

(|xjs |
1
m – r

1
m
js

)m ≤ (|xi| 1
m – r

1
m
i

)m ≤ (|xi| 1
m + r

1
m
i

)m ≤ (|xjs |
1
m + r

1
m
js

)m.

Then, obviously, we have I(xi, ri) ⊂ I(xjs , rjs ).
2-b-ii) The second possibility is

(|xjs |
1
m – r

1
m
js

)m ≤ (|xi| 1
m – r

1
m
i

)m ≤ (|xjs |
1
m + r

1
m
js

)m ≤ (|xi| 1
m + r

1
m
i

)m.

Since diam I(xi, ri) ≤ diam I(xjs , rjs ), we have

(|xi| 1
m + r

1
m
i

)m ≤ 2
(|xjs |

1
m + r

1
m
js

)m –
(|xjs |

1
m – r

1
m
js

)m.

In other words,

(|xi| 1
m + r

1
m
i

)m ≤
m∑

�=0

(
m
�

)(
2 – (–1)�

)|xjs |
m–�

m r
�
m
js

≤ |xjs | +
m∑

�=1

(
m
�

)
3�|xjs |

m–�
m r

�
m
js =

(|xjs |
1
m + 3r

1
m
js

)m. (3.7)

Now, if |xjs | 1
m – 3r

1
m
js ≤ 0, then I(xjs , 3mrjs ) = ]0, (|xjs | 1

m + 3r
1
m
js )m[, and hence I(xi, ri) ⊂

I(xjs , 3mrjs ).

If |xjs | 1
m – 3r

1
m
js ≥ 0, then I(xjs , 3mrjs ) = ](|xjs | 1

m – 3r
1
m
js )m, (|xjs | 1

m + 3r
1
m
js )m[. Using (3.7), we

deduce that

(|xjs |
1
m – 3r

1
m
js

)m ≤ (|xjs |
1
m – r

1
m
js

)m ≤ (|xi| 1
m – r

1
m
i

)m

≤ (|xi| 1
m + r

1
m
i

)m ≤ (|xjs |
1
m + 3r

1
m
js

)m,

and therefore I(xi, ri) ⊂ I(xjs , 3mrjs ).
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2-b-iii) The third possibility is

(|xi| 1
m – r

1
m
i

)m ≤ (|xjs |
1
n – r

1
m
js

)m ≤ (|xi| 1
m + r

1
m
i

)m ≤ (|xjs |
1
m + r

1
m
js

)m. (3.8)

Since diam I(xi, ri) ≤ diam I(xjs , rjs ), the recurrence relation
( m

�

)
=

( m–1
�

)
+

( m–1
�–1

)
implies

(|xi| 1
m – r

1
m
i

)m =
(|xi| 1

m + r
1
m
i

)m –
{(|xi| 1

m + r
1
m
i

)m –
(|xi| 1

m – r
1
m
i

)m}

≥ (|xjs |
1
m – r

1
m
js

)m –
{(|xjs |

1
m + r

1
m
js

)m –
(|xjs |

1
m – r

1
m
js

)m}

=
∑

�

(
m
2�

)
|xjs |

m–2�
m r

2�
m

js – 3
∑

�

(
m

2� + 1

)
|xjs |

m–2�–1
m r

2�+1
m

js

= |xjs |
1
m

∑
�

(
m – 1

2�

)
|xjs |

m–2�–1
m r

2�
m

js + |xjs |
1
m

∑
�

(
m – 1
2� – 1

)
|xjs |

m–2�–1
m r

2�
m

js

– 3r
1
m
js

∑
�

m
2� + 1

(
m – 1

2�

)
|xjs |

m–2�–1
m r

2�
m

js

≥ (|xjs |
1
m – 3mr

1
m
js

)∑
�

(
m – 1

2�

)
|xjs |

m–2�–1
m r

2�
m

js

+ |xjs |
1
m

∑
�

(
m – 1
2� – 1

)
|xjs |

m–2�–1
m r

2�
m

js . (3.9)

Now, if |xjs | 1
m – 3mr

1
m
js ≤ 0, then I(xjs , (3m)mrjs ) = ]0, (|xjs | 1

m + 3mr
1
m
js )m[, and by (3.8), clearly,

we have I(xi, ri) ⊂ I(xjs , (3m)mrjs ).

If |xjs | 1
m – 3mr

1
m
js ≥ 0, then I(xjs , (3m)mrjs ) = ]|xjs | 1

m – 3mr
1
m
js )m, (|xjs | 1

m + 3mr
1
m
js )m[. Recall

from (3.8) that

(|xi| 1
m + r

1
m
j

)m ≤ (|xjs |
1
m + r

1
m
js

)m ≤ (|xjs |
1
m + 3mr

1
m
js

)m.

Further, by inequality (3.9), we have

(|xi| 1
m – r

1
m
i

)m

≥ (|xjs |
1
m – 3mr

1
m
js

)∑
�

(
m – 1

2�

)
|xjs |

m–2�–1
m r

2�
m

js

≥ (|xjs |
1
m – 3mr

1
m
js

){∑
�

(
m – 1

2�

)
|xjs |

m–2�–1
m r

2�
m

js –
∑

�

(
m – 1
2� + 1

)
|xjs |

m–1–2�–1
m r

2�+1
m

js

}

=
(|xjs |

1
m – 3mr

1
m
js

)(|xjs |
1
m – r

1
m
js

)m–1

≥ (|xjs |
1
m – 3mr

1
m
js

)m.

In conclusion, I(xi, ri) ⊂ I(xjs , (3m)mrjs ).
In summary, we have proved that every interval I(xi, ri) is either of type I(xjs , rjs ) or in-

cluded in a certain interval of type I(xjs , crjs ) for some constant c ≥ 1. Thus, using the
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doubling property of the measure μκ ,m (see Lemma 3.1), we conclude that

μκ ,m

( N⋃
i=1

I(xi, ri)

)
≤ μκ ,m

(
�⋃

s=1

I(xjs , crjs )

)
≤

�∑
s=1

μκ ,m
(
I(xjs , crjs )

)

�
�∑

s=1

μκ ,m
(
I(xjs , rjs )

)
.

This finishes the proof of Theorem 3.2. �

4 A sharp estimate
The main goal of this section is to obtain a sharp estimate for τx(χr), where χr denotes
the characteristic function of the interval ]–r, r[ with r > 0 (see Corollary 4.5 below). This
result will play a key role in the proof of the weak type (1, 1) estimates for the maximal
operator Mk,m. To obtain the sharp estimates, some preliminary lemmas are needed.

Lemma 4.1 The kernel Eκ ,m given in (1.1) satisfies

∣∣Eκ ,m(x, y)
∣∣� |xy|–κ+ 1

2 – 1
2m (4.1)

for all x, y ∈R \ {0}.

Proof From the definition of Eκ ,m we have

∣∣Eκ ,m(x, y)
∣∣ ≤

(
m
2

)–κm+ m
2 |λx|–κ+ 1

2
(∣∣Jκm– m

2

(
m|λx| 1

m
)∣∣ +

∣∣Jκm+ m
2

(
m|λx| 1

m
)∣∣).

The lemma follows from the bound Jα(u) = O(u–1/2) for every α > –1 and u ≥ 0 [1,
p. 238]. �

Lemma 4.2 For all x ∈R, we have

Fκ ,m(χr)(x) � r2κ+ 2
m –1, (4.2)

while if x 
= 0, then we have

Fκ ,m(χr)(x) � rκ– 1
2 + 1

2m

|x|κ– 1
2 + 3

2m
. (4.3)

Proof Inequality (4.2) follows immediately from the fact that |Eκ ,m(x, y)| ≤ 1 for all x, y ∈R

(see [19, Lemma 2.9]). To prove (4.3), observe that

Fκ ,m(χr)(y) =
(

2
m

)–(km– m
2 ) ∫ r

0
J̃κm– m

2

(
m|x| 1

m y
1
m

)
y2κ+ 2

m –2 dy

= m|x|–κ+ 1
2 rκ+ 2

m – 1
2

∫ 1

0
Jκm– m

2

(
m|x| 1

m r
1
m u

)
uκm– m

2 +1 du.
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By Sonine’s formula [29, §12.11 (1)], we get

Fκ ,m(χr)(x) =
(

r
|x|

)κ– 1
2 + 1

m
Jκm– m

2 +1
(
m|x| 1

m r
1
m

)
.

Using again the boundedness Jα(u) = O(u–1/2) for all α > –1 and u ≥ 0, we deduce the
upper bound in (4.3) �

One more lemma is now needed. It concerns the function

ht(x) = m–1�

(
κm –

m
2

+ 1
)–1

t–κm+ m
2 –1e– |x| 2

m
t ,

which solves the heat equation |x|2– 2
m 
x

ku(x, t) – 4
m2 ∂tu(x, t) = 0 on R×R>0. It is the ana-

logue of the fundamental solution for the classical heat equation 
xu(x, t) – ∂tu(x, t) = 0,
which is given by h0

t (x) = t–1/2e
–|x|2

4t , up to a normalization constant.

Lemma 4.3 The heat function ht satisfies ‖ht‖L1
κ

= 1, and

Fκ ,m(ht)(x) = 2–1
(

m
2

)km– m
2
�

(
κm –

m
2

+ 1
)–1

e– m2
4 t|x| 2

m . (4.4)

Proof The first statement follows immediately from the following known identity:

|y|–a = �

(
a
2

)–1 ∫ ∞

0
u

a
2 e–u|y|2 du

u
. (4.5)

For the second part of the statement, using the fact that ht is an even function and Weber’s
first exponential integral

∫ ∞

0
Jν(au)uν+1e–p2u2

du =
aν

(2p2)ν+1 e
– a2

4p2 , (4.6)

we deduce that

Fκ ,m(ht)(x)

=
(

2
m

)–(km– m
2 ) ∫ ∞

0
ht(y)̃Jκm– m

2

(
m|x| 1

m y
1
m

)
y2κ+ 2

m –2 dy

= �

(
κm –

m
2

+ 1
)–1

t–κm+ m
2 –1|x|–k+ 1

2

∫ ∞

0
e– u2

t Jκm– m
2

(
m|x| 1

m u
)
uκm– m

2 +1 du

= 2–1
(

m
2

)κm– m
2
�

(
κm –

m
2

+ 1
)–1

e– m2
4 t|x| 2

m . �

These lemmas will give considerable help in establishing the following key step towards
the main result of this section.
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Theorem 4.4 For all x, y ∈R
∗, we have

∣∣τx(χr)(y)
∣∣�

(
r
|x|

)2κ+ 1
m –1

.

Proof We shall distinguish two cases:
1) Assume first that |x| 1

m ≤ mr 1
m . According to Theorem 2.2, we have

∣∣τx(χr)(y)
∣∣ ≤ ∥∥τx(χr)

∥∥
L∞
κ
� ‖χr‖L∞

κ
≤ 1 �

(
r
|x|

)2κ+ 1
m –1

.

2) Next, assume that |x| 1
m ≥ mr 1

m . We may choose y such that (|x| 1
m – |y| 1

m )m ≤ r; other-
wise, in view of the support of the translation operator τx, we have τx(χr)(y) = 0. We claim
that τx(χr � ht) and Fκ ,m(τ κ

x (χr � ht)) belong to L1(μk,m). Therefore, by the inversion for-
mula for Fk,m and Lemma 4.3, we obtain

τx(χr � ht)(y) = 2–2
(

m
2

)2κm–m

�

(
κm –

m
2

+ 1
)–1

×
∫
R

Eκ ,m
(
(–1)mx, z

)
Eκ ,m

(
(–1)my, z

)
Fk,m(χr)(z)e– m2

4 t|z| 2
m dμκ ,m(z)

=
∫

{z∈R:|z|≤ 1
r }

· · ·
︸ ︷︷ ︸

:=I1

+
∫

{z∈R:|z|≥ 1
r }

· · ·
︸ ︷︷ ︸

:=I2

. (4.7)

Now, let us prove the above claim. By Theorem 2.2, clearly the function χr � ht belongs
to L1(μκ ,m). Then, for all x ∈ R, τx(χr � ht) ∈ L1(μκ ,m) as ‖τx(χr � ht)‖L1

κ
≤ 4�(κm – m

2 +
1)–1‖χr � ht‖L1

κ
. Furthermore,

∣∣Fκ ,m
(
τx(χr � ht)

)
(y)

∣∣ =
∣∣Eκ ,m

(
(–1)mx, y

)∣∣∣∣Fκ ,m(χr � ht)(y)
∣∣

≤ ∣∣Fκ ,m(χr � ht)(y)
∣∣. (4.8)

Above we have used |Eκ ,m(x, y)| ≤ 1 for all x, y ∈ R (see [19, Lemma 2.9]). On the other
hand, Hölder’s inequality and the Plancherel formula imply

∥∥Fκ ,m(χr � ht)
∥∥

L1
κ

=
∥∥Fκ ,m(χr)Fκ ,m(ht)

∥∥
L1
κ
≤ ∥∥Fκ ,m(χr)

∥∥
L2
κ

∥∥Fκ ,m(ht)
∥∥

L2
κ

= ‖χr‖L2‖ht‖L2
κ

< ∞.

Thus, Fκ ,m(χr � ht) ∈ L1(μκ ,m). It follows from (4.8) that Fκ ,m(τ κ
x (χr � ht)) ∈ L1(μκ ,m).

This finishes the proof of the above claim.
Next let us estimate the integrals I1 and I2 in (4.7). From Lemma 4.1 and relation (4.2),

we find

|I1| ≤ 2–1
(

m
2

)2κm–m

�

(
κm –

m
2

+ 1
)–1 r2κ+ 2

m –1

|xy|κ– 1
2 + 1

2m

∫ 1
r

0
z

1
m –1 dz

=
(

m
2

)2κm–m+1

�

(
κm –

m
2

+ 1
)–1 r2κ+ 1

m –1

|xy|κ– 1
2 + 1

2m
.
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The assumptions |x| 1
m – |y| 1

m ≤ r 1
m and |x| 1

m ≥ mr 1
m lied to |y| 1

m ≥ m–1
m |x| 1

m . It follows

|I1| � r2κ+ 1
m –1

|x|2κ+ 1
m –1

. (4.9)

We claim that |I2| satisfies the same boundedness as in (4.9). Indeed, using Lemma 4.1 and
relation (4.3), we get

|I2| ≤ 2–1
(

m
2

)2κm–m

�

(
κm –

m
2

+ 1
)–1 rκ+ 1

2m – 1
2

|xy|κ+ 1
2m – 1

2

∫ ∞

1
r

z–κ– 1
2m – 1

2 dz

=
(

m
2

)2κm–m+1

�

(
κm –

m
2

+ 1
)–1 2

2κm + 1 – m
r2κ+ 1

m –1

|xy|κ+ 1
2m – 1

2
. (4.10)

As a consequence of (4.9) and (4.10), we obtain, for all t > 0 and y ∈R,

∣∣τx(χr � ht)(y)
∣∣�

(
r
|x|

)2κ+ 1
m –1

. (4.11)

Finally, by the Plancherel formula for Fκ ,m, the convolution product χr � ht goes to χr in
L2(μκ ,m) as t → 0. Further, the L2-boundedness of τx for every x ∈R implies τx(χr �ht) →
τx(χr) as t → 0 in L2(μκ ,m). Therefore, by a standard argument [9], inequality (4.11) leads
to

∣∣τx(χr)(y)
∣∣�

(
r
|x|

)2κ+ 1
m –1

.

This finishes the proof of Theorem 4.4. �

Now we are ready to state the main result of this section, i.e., a sharp estimate of
|τx(χr)(y)|.

Corollary 4.5 For every x, y ∈ R
∗, we have

∣∣τx(χr)(y)
∣∣� μκ ,m(]–r, r[)

μκ ,m(I(x, r))
.

Proof 1) Assume that |x| 1
m ≤ r 1

m . Then I(x, r) = ]0, (|x| 1
m + r 1

m )m[, and

μκ ,m
(
I(x, r)

)
=

∫ (|x| 1
m +r

1
m )m

0
dμκ ,m(z)

≤
∫ 2mr

0
z2κ+ 2

m –2 dz

=
22κm+2–mm

2κm + 2 – m
r2κ+ 2

m –1 = 22κm+1–mμκ ,m
(
]–r, r[

)
.

On the other hand,

∣∣τx(χr)(y)
∣∣ ≤ ∥∥τx(χr)

∥∥
L∞
κ
� ‖χr‖L∞

κ
= 1 � μκ ,m(]–r, r[)

μκ ,m(I(x, r))
.
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2) Assume that |x| 1
m ≥ r 1

m . Then I(x, r) = ](|x| 1
m – r 1

m )m, (|x| 1
m + r 1

m )m[, and

μκ ,n
(
I(x, r)

)
=

∫ (|x| 1
m +r

1
m )m

(|x| 1
m –r

1
m )m

dμκ ,m(z)

= m
∫ |x| 1

m +r
1
m

|x| 1
m –r

1
m

u2κm–m+1 du

≤ 2mr
1
m

(|x| 1
m + r

1
m

)2κm–m+1

≤ 22κm–m+2mr2κ–1+ 2
m

( |x|
r

)2κ–1+ 1
m

= 22κm–m+1(2km + 2 – m)
( |x|

r

)2κ–1+ 1
m
μk,m

(
]–r, r[

)
.

Thus

(
r
|x|

)2κ–1+ 1
m
� μκ ,m(]–r, r[)

μκ ,m(I(x, r))
.

Now, Theorem 4.4 finishes the proof in this case. �

5 Weak and strong type estimates
For a locally integrable function f on R with respect to the measure μκ ,m, we introduce
the maximal function

Mκ ,mf (x) = sup
r>0

1
μκ ,m(I(x, r))

∫
|y|∈I(x,r)

∣∣f (y)
∣∣dμκ ,m(y).

We claim that

Mκ ,mf (x) �Mκ ,mf (x) (5.1)

holds pointwise. Indeed, if x = 0, then τ0f ((–1)my) = �(κm – m
2 + 1)–1f ((–1)my) and

I(0, r) = ]0, r[. Thus, (5.1) holds when x = 0. Next, let us assume x 
= 0. Since |y| /∈ I(x, r)
implies τx(χr)((–1)my) = 0, it follows from Corollary 4.5

∣∣∣∣
∫
R

f (y)τx(χr)
(
(–1)my

)
dμκ ,m(y)

∣∣∣∣� μκ ,m(]–r, r[)
μκ ,m(I(x, r))

∫
{y∈R:|y|∈I(x,r)}

∣∣f (y)
∣∣dμκ ,m(y).

This finishes the proof of inequality (5.1).

Theorem 5.1 We have:
1) The maximal operator Mκ ,m is weak type (1, 1). That is, for every f ∈ L1(μκ ,m) and

λ > 0,

μκ ,m
({

x :
∣∣Mκ ,mf (x)

∣∣ > λ
})

�
‖f ‖L1

κ

λ
.
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2) For every 1 < p ≤ ∞, the maximal operator Mκ ,m is strong type (p, p). That is, for
every f ∈ Lp(μκ ,m),

‖Mκ ,mf ‖Lp
κ
� ‖f ‖Lp

κ
.

Proof It is obvious that Mκ ,m is bounded on L∞(μκ ,m) (indeed, it is a contraction on this
space). To prove that Mκ ,m is strong type (p, p) for 1 < p < ∞, it suffices by Marcinkiewicz’s
interpolation theorem [24, p. 21] to prove the weak type (1, 1) inequality. Thus, the proof
of the theorem reduces to the proof of the weak type (1, 1) inequality.

For λ > 0, consider the sets R+
λ = {x ∈R≥0 : Mκ ,mf (x) > λ} and R

–
λ = {x ∈R≤0 : Mκ ,mf (x) >

λ}. Then we have

μκ ,m
({

x ∈R : Mκ ,mf (x) > λ
}) ≤ μκ ,m

(
R

+
λ

)
+ μκ ,m

(
R

–
λ

)
.

Since Mκ ,mf (–x) = Mκ ,mf (x), we get

μκ ,m
({

x ∈R : Mκ ,mf (x) > λ
}) ≤ 2μκ ,m

(
R

+
λ

)
.

To prove that Mκ ,n is weak type (1, 1), it is enough to prove

μκ ,m
(
R

+
λ

)
�

‖f ‖L1
κ

λ
.

Fix f and λ. By the inner regularity of the weighted Lebesgue measure μκ ,m, it suffices to
show that for all compact K ⊂R

+
λ , we have

μκ ,m(K) � 1
λ

‖f ‖L1
κ
,

and then to take supremum over K . Hence, let K be arbitrary. By the definition of K , for
each x ∈ K , there exists rx > 0 such that

1
λ

∫
|y|∈I(x,rx)

∣∣f (y)
∣∣dμκ ,m(y) > μκ ,m

(
I(x, rx)

)
. (5.2)

Construct a collection I(x, rx)x∈K of such intervals with K ⊂ ∪x∈K I(x, rx). In other words,
I(x, rx)x∈K is an open cover of K . By compactness, we then must be able to find a finite
subcover I(xj, rj)1≤j≤N of I(x, rx)x∈K . Using the Vitali covering Lemma 3.2, there is a disjoint
subcover I(xjs , rjs )1≤s≤� of I(xj, rj)1≤j≤N , which still covers all of the K , such that

μκ ,m(K) �
�∑

s=1

μκ ,m
(
I(xjs , rjs )

)
.

Applying inequality (5.2) for x = xjs , we get

μκ ,m(K) � 1
λ

�∑
s=1

∫
|y|∈I(xjs ,rjs )

∣∣f (y)
∣∣dμκ ,m(y).
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Therefore

μκ ,m(K) � 1
λ

∫
|y|∈⋃�

s=1 I(xjs ,rjs )
|f (y)|dμκ ,m(y)

� 1
λ

‖f ‖L1
κ
.

This finishes the proof of the weak type (1, 1) inequality, and by consequence the proof of
Theorem 5.1. �

As an immediate consequence of the main result, we deduce the following Lebesgue
differentiation type theorem.

Corollary 5.2 If f ∈ L1
loc(μκ ,m), then

lim
r→0

1
μκ ,m(]–r, r[)

∫
R

f (y)τx(χr)
(
(–1)my

)
dμκ ,m = f (x) a.e.

Proof Since the statement is local in nature, we can assume that f ∈ L1(μκ ,m). Let Fr(x) =
1

μκ ,m(]–r,r[)
∫
R

f (y)τx(χr)((–1)my) dμκ ,m and define

�f (x) =
∣∣∣lim sup

r→0
Fr(x) – lim inf

r→0
Fr(x)

∣∣∣.

It suffices to prove that �f = 0 a.e. and that Fr → f in L1(μκ ,m). Indeed, the first property
means that Fr converges a.e. to a measurable function g , while the second one implies that
for a subsequence Fri → f a.e. and hence g = f a.e.

We have �f ≤ 2Mκ ,mf , and hence for any ε > 0, the weak (1, 1) estimate yields

μκ ,m
({

x : �f (x) > ε
})

�
‖f ‖L1

κ

ε
.

Let h be a compactly supported continuous function such that ‖f – h‖L1
κ

< ε2. The conti-
nuity of h implies �h = 0 everywhere, and hence

�f ≤ �(f – h) + �h = �(f – h),

so

μκ ,m
({

x : �f (x) > ε
}) ≤ μκ ,m

({
x : �(f – h)(x) > ε

})
�

‖f – h‖L1
κ

ε
< ε.

Since ε > 0 is arbitrary and small we conclude �f = 0 a.e. Now we turn our attention to
the proof of the convergence Fr → f in L1(μκ ,m). We have

∫
R

∣∣Fr(x) – f (x)
∣∣dμκ ,m(x)

=
∫
R

∣∣∣∣ 1
μκ ,m(]–r, r[)

∫ r

–r
τxf

(
(–1)my

)
– f (x) dμκ ,m(y)

∣∣∣∣dμκ ,m(x)
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≤ 1
μκ ,m(]–r, r[)

∫
R

(∫ r

–r

∣∣τ(–1)myf (x) – f (x)
∣∣dμκ ,m(y)

)
dμκ ,m(x)

≤ 1
μκ ,m(]–r, r[)

∫ r

–r
‖τ(–1)myf – f ‖L1

κ
dμκ ,m(y). (5.3)

By [8, Theorem 3.2], we have ‖τ(–1)myf – f ‖L1
κ

→ 0 as y → 0. Thus, the right-hand side of
(5.3) converges to 0 as r → 0. �
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