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Abstract
We study a “conjugate” transform on matrix spaces. For Laurent/Toeplitz operators
such a transform is a way of realizing the Hilbert transform on the torus. We establish
its operator norm on Schatten classes and discuss the possibility of its boundedness
upon permutations. Applications in the Rademacher–Menshov inequality and
iterative methods are also included.
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1 Motivation
We consider the following transform T̃ on matrix spaces:

T̃(H) = T ◦ H ,

where ◦ is the Hadamard product, H ∈C
n×n, and

T =

⎛
⎜⎜⎜⎝

. . . i
0

–i
. . .

⎞
⎟⎟⎟⎠ . (1)

If H = L + L∗ (∗ denotes the adjoint) with L being strictly lower triangular, then

L =
L + L∗

2
+ i · L – L∗

2i
=

1
2

H +
i
2

T̃(H),

thus T̃ simply takes the “real” part of L to its “imaginary” part, because of this it should be
reasonable to call T̃ the conjugate transform.

Another good reason for such a name is the connection of T̃ to the Hilbert transform
on the torus, which is defined as

f �→ f̃ (θ ) =
1

2π
p.v.

∫ 2π

0
f (t) cot

(
θ – t

2

)
dt,
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(p.v. stands for Cauchy principal value). The Fourier series of f and f̃ differ by a sign
depending on the frequency term, i.e., if f (θ ) =

∑
k∈Z f̂ (k)eikθ , then f̃ (θ ) =

–i
∑

k∈Z sgn(k)f̂ (k)eikθ [1, Chap. 6].
Take f ∈ L∞(T), it induces a bounded multiplication operator on L2(T) by g �→ fg . We

can expand f into Fourier series (recall that L∞(T) ⊂ L2(T), and by the Carleson theorem
the series also converges a.e. [2, 3]) and write it as a vector (. . . , f̂ (–1), f̂ (0), f̂ (1), . . .)T . In this
way the multiplication operator induced by f can be represented by a bi-infinite Toeplitz
matrix F (i.e., a Laurent operator) with Fij = f̂ (k) if j – i = k (alternatively see [4, Chap. 1] or
[5, Chap. 3]). It then follows that the multiplication operator g �→ f̃ g can be represented by
the matrix T̃(F), thus T̃ on matrix forms of Laurent/Toeplitz operators is a way of realizing
the Hilbert transform on L∞(T) (see also [6] for a different perspective where T̃ is viewed
as the bilinear Hilbert transform on Hankel operators).

Moreover, we have

1
2
(
f (θ ) + if̃ (θ ) – f̂ (0)

)
=

∑
k∈N

f̂ (k)eikθ .

The right-hand side is called the Riesz projection of f , on Toeplitz matrices it corresponds
to

1
2
(
A + iT̃(A) – D̃(A)

)
= L̃(A), (2)

where D̃ is the diagonal projection that maps A to its main diagonal, and L̃ is the triangu-
lar truncation that maps A to its strict lower triangular part. Since D̃ is for many norms
bounded, the boundedness of L̃ can then essentially be determined by inspecting T̃ .

The truncation L̃ appears at various places in mathematics, for example, in numerical
analysis, L̃ enters critically into the iteration matrix for the Gauss–Seidel method and the
Kaczmarz method, the error reduction rate with respect to the spectral condition number
can be estimated using the spectral operator norm of L̃ (see [7, 8]); In functional analysis,
L̃ on finite dimensional spaces is the explicit form of the projection that maps a Schatten
class to the subclass of Volterra operators in it (see [9, Chap. 3] or [10]); In harmonic
analysis, the norm of majorant function in the Rademacher–Menshov inequality [11, 12]
can be estimated by the norm L̃ (see [13]). Therefore, as simple as the form of T̃ (and L̃)
is, its rich and profound background intrigues us to understand its behavior on C

n×n.
To our interest is the Schatten class Sp, which consists of compact operators whose sin-

gular values are in �p. Sp is a Banach space equipped with the �p norm of its singular values.
S1, S2, S∞ norms are nuclear, Hilbert–Schmidt, and spectral norms respectively. We use
‖ · ‖p to denote the Sp norm of a matrix, if p = ∞, then the subscript is omitted.

For integral operators, it is known that if their symbol belongs to particular mixed norm
spaces Lp,q (p, q are Hölder conjugates with p ≥ 2), then they are in the Schatten class Sp

(see [14–16]). On the other hand, the Hilbert transform is bounded on Lp(T) for 1 < p < ∞
(known as the Marcel–Riesz inequality [1, Chap. 6.17]) and unbounded on L1(T) (thus also
unbounded on L∞(T) by duality and its anti-symmetry [17, Theorem 102]), an explicit
example of this unboundedness can be found in [18, p. 250].

Such insights suggest that T̃ acts on Sp the same way as the Hilbert transform behaves
on Lp, which brings us to the main result of this paper:
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Theorem 1
(i) The operator norm ‖T̃‖∞ of T̃ on C

n×n with respect to the S∞ norm is

‖T̃‖∞ =
1
n

‖T‖1 =
1
n

n–1∑
k=0

∣∣∣∣cot
(2k + 1)π

2n

∣∣∣∣ � 2
π

ln n.

(ii) The operator norm ‖T̃‖p of T̃ on C
n×n with respect to the Sp norm for 2 ≤ p < ∞

satisfies (regardless of the dimension n)

‖T̃‖p ≤ 4p.

(iii) The following holds regardless of the size of A:

sup
rank(A)=r

‖T̃(A)‖
‖A‖ ≤ 4e ln r.

(iv) For any A ∈ C
n×n, there exist a permutation matrix P and a constant C

independent of the dimension such that

∥∥T̃
(
PAP∗)∥∥ ≤ C‖A‖.

(v) There is a constant C independent of the dimension and the choice of A ∈Cn×n such
that

∥∥∥∥
1
n!

∑
P

T̃
(
PAP∗)

∥∥∥∥ ≤ C‖A‖,

where the summation is taken over all possible permutation matrices P.

2 Preliminaries
If x = (x1, x2, . . . , xn)T ∈C

n, then we write

Dx = diag(x1, x2, . . . , xn), Px = xx∗,

in particular, one may verify that

Px ◦ A = DxAD∗
x . (3)

Let

ζ = e
π i
n , ω = e

2π i
n = ζ 2, (4)

and denote W as the Fourier matrix whose ijth entry is Wij = ω(i–1)(j–1)/
√

n.

Lemma 1 T can be diagonalized as

T = D∗
ξ W ∗Dτ WDξ ,
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where

ξ =
(
1, ζ , ζ 2, . . . , ζ n–1)T , τ = (τ0, τ1, . . . , τn–1)T ,

with

τk = cot
(2k + 1)π

2n
.

Proof It is easy to verify that Dξ TD∗
ξ is circulant, thus it can be diagonalized by W , the

cotangent comes from further computation that

τk = –i
n–1∑
j=1

(zk)j = –i
(

1 – (zk)n

1 – zk
– 1

)
= –i

(
1 + zk

1 – zk

)
= –i

(
z– 1

2
k + z

1
2
k

z– 1
2

k – z
1
2
k

)
= cot

(2k + 1)π
2n

,

where zk = ζωk . �

Lemma 2 Let H be a Hermitian matrix with vanishing main diagonal, if

cp = sup
H

‖T̃(H)‖p

‖H‖p
,

with the supreme taken over all such matrices, then

cp ≤ p.

Proof The inequality is obvious for p = 2 since c2 = 1 < 2, now suppose it holds for p = k,
and we look at the case of p = 2k. Notice that the following holds:

HT̃(H) + T̃(H)H = –i(L + U)(L – U) – i(L – U)(L + U) = –2i
(
L2 – U2),

where L, U are respectively the strict lower and upper triangular part of H . It follows that

H2 + T̃
(
HT̃(H) + T̃(H)H

)
= (L + U)2 – 2

(
L2 + U2) = –(L – U)2 =

(
T̃(H)

)2,

thus

∥∥T̃(H)
∥∥2

2k =
∥∥(

T̃(H)
)2∥∥

k

≤ ∥∥H2∥∥
k +

∥∥T̃
(
HT̃(H) + T̃(H)H

)∥∥
k

≤ ‖H‖2
2k + 2ck‖H‖2k

∥∥T̃(H)
∥∥

2k ,

i.e.,

c2
2k ≤ 1 + 2ckc2k ,

which we may solve and get

c2k ≤ ck +
√

1 + c2
k .
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By induction it then leads to

c2n ≤ 2n.

For other values of p, simply apply the Riesz–Thorin interpolation theorem. �

3 Proof of the main theorem

Proof
(i) By (3) and Lemma 1, we have

∥∥T̃(A)
∥∥ ≤

n–1∑
k=0

∥∥τkDuk AD∗
uk

∥∥ =
1
n

n–1∑
k=0

|τk|‖A‖ =
1
n

‖T‖1‖A‖,

where uk is the k + 1st column in D∗
z W ∗. The equality is attainable at, e.g.,

A = W ∗Dsgn(τ )W ,

where

sgn(τ ) =
(
sgn(τ0), sgn(τ1), . . . , sgn(τn–1)

)T .

The asymptotic estimate follows by noticing that

π

2n

n–1∑
k=0

∣∣∣∣cot
(2k + 1)π

2n

∣∣∣∣ �
∫ 4n–1

4n

π
4n

| cot x|dx,

where the left-hand side can be viewed as a quadrature formula (e.g., middle point
rule) for the integral in the right-hand side, which grows like ln n.

(ii) Denote Ã = A – D(A), then apply Lemma 2 to get

∥∥T̃(A)
∥∥

p =
∥∥T̃(Ã)

∥∥
p

≤ 1
2
∥∥T̃

(
Ã + Ã∗)∥∥

p +
1
2
∥∥T̃

(
Ã – Ã∗)∥∥

p

≤ 2p‖Ã‖p ≤ 4p‖A‖p.

(iii) This is a direct consequence of (ii) since

∥∥T̃(A)
∥∥ ≤ ∥∥T̃(A)

∥∥
p ≤ 4p‖A‖p ≤ 4pr

1
p ‖A‖ ≤ 4e ln r‖A‖,

where the bound in the last inequality is attained at p = ln r (easily verifiable with
elementary calculus).

(iv) The proof critically relies on the following celebrated paving conjecture (now a
theorem) [19]:
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Paving: For every ε with 1 > ε > 0, there exists a number γε , which depends only on
ε , such that for any A ∈C

n×n with vanishing main diagonal, one can partition the
set {1, 2, . . . , n} into γε number of subsets �1,�2, . . . ,�γε with the property that

∥∥Q�i AQ∗
�i

∥∥ ≤ ε‖A‖, i = 1, 2, . . . ,γε ,

where Q�i is the orthogonal projection onto the space spanned by {�ek}k∈�i with �ek

being the kth standard Euclidean basis vector.
The paving conjecture is an equivalent formulation of the Kadison–Singer

problem [20], which was solved in [21]. It suffices to take γε to be (6/ε)4 for real
matrices and (6/ε)8 for complex matrices, see the exposition in [22].

Clearly, for our problem it suffices (since diagonal projections are bounded) to
consider only matrices with vanishing main diagonals. The existence of such a
permutation can then be established by induction, and we may take

C =
2(γε – 1)

1 – ε

for some properly chosen ε.
For n = 2, the statement is trivially true for, e.g., ε = 1/2. Suppose it holds for all

n ≤ m, and consider the case of m + 1. For a matrix A with vanishing main diagonal,
we pave A to get the partition �1,�2, . . . ,�γε and simultaneously permute (denote
the permutation as σ ) rows and columns of A so that {Q�i AQ∗

�i
}γε

i=1 now appears as
consecutive diagonal blocks of Pσ AP∗

σ . Denote Aσ = Pσ AP∗
σ .

Apply the induction assumption on each diagonal block Q�i Aσ Q∗
�i

to obtain a
permutation σi so that

∥∥T̃
(
Pσi Q�i Aσ Q∗

�i
P∗

σi

)∥∥ ≤ C
∥∥Q�i Aσ Q∗

�i

∥∥ ≤ Cε‖A‖

holds. We combine these permutations σ1,σ2, . . . ,σγε and σ together to get a new
matrix Ã. The strategy is best illustrated by Fig. 1. Each diagonal block of size
�i × �i is denoted as Ãi in the above figure. Away from these diagonal blocks Ã
consists of γε – 1 number of matrices (denoted as Bi in the above figure), each of
which consists of two rectangle matrices (both are submatrices of Ã) located in
symmetric (with respect to the main diagonal) positions. Consequently, applying
the induction assumption on the main diagonal blocks and the trivial estimate

Figure 1 The induction strategy
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‖Bi‖ ≤ 2‖A‖ elsewhere, we obtain

∥∥T̃(Ã)
∥∥ ≤ max

1≤k≤γε

∥∥T̃(Ãi)
∥∥ +

γε–1∑
i=1

‖Bi‖ ≤ Cε‖A‖ + 2(γε – 1)‖Ã‖ = C‖A‖.

(v) Consider the grand sum (i.e., the sum of all entries) of a matrix

gs(A) =
∑

j,k

Ajk . (5)

It has a trivial upper bound

∣∣gs(A)
∣∣ =

∣∣(A�1, �1)
∣∣ ≤ n‖A‖, (6)

where �1 is the all one vector. It is easy to see that for any matrix A we have

∑
σ

Pσ AP∗
σ = (n – 2)!

(
gs(A) – tr(A)

)
E0 + (n – 1)! tr(A)I,

where E0 = E – I with E being the all one matrix and I is the identity matrix, thus
straightforward estimate shows

1
n!

∥∥∥∥
∑

σ

Pσ AP∗
σ

∥∥∥∥ ≤ c‖A‖,

with c being an absolute constant independent of n and A, since both |gs(A)| and
| tr(A)| are trivially bounded by n‖A‖, while ‖E0‖ ≤ ‖E‖ + ‖I‖ ≤ n + 1. �

4 Applications
4.1 Optimal constants in Rademacher–Menshov inequality
The Rademacher–Menshov inequality [11, 12] states that if ϕ = {ϕk}k∈N is an orthonormal
system on some measure space (�,μ) and a = {ak}k∈N ∈ �2 is a scalar sequence, then

‖Ma,ϕ,n‖L2 ≤ C ln n

( n∑
k=1

|ak|2
) 1

2

, (7)

where C is independent of a, ϕ, n and

Ma,ϕ,n(x) = max
m≤n

∣∣∣∣∣
m∑

j=1

ajϕj(x)

∣∣∣∣∣

is often called the majorant function. With this inequality, one can further establish the
Rademacher–Menshov theorem, i.e., if

∑∞
k=1 |ak|2 ln2 k < ∞, then

∑∞
k=1 akϕk converges a.e.

for all orthonormal systems {ϕk}k∈N. That boundedness of the majorant function implies
a.e. convergence of the series is today a standard technique, see, e.g., the exposition in [23].

For convenience, let us denote

Rn =
1

ln n
sup
a,ϕ

‖Ma,ϕ,n‖L2

(
∑n

k=1 |ak|2) 1
2

. (8)
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For fixed n, Rn is the optimal constant in the right-hand side of (7) (while C in the right-
hand side of the Rademacher–Menshov inequality (7) upper bounds Rn for all n). With
the help of T̃ , Rn can be estimated as follows.

Corollary 1 For fixed n, the optimal constant Rn as defined in (8) in the Rademacher–
Menshov inequality (7) satisfies Rn → 1

π
as n → ∞.

Proof Denote

Ln = sup
A∈Cn×n

‖L̃(A)‖
‖A‖ , Tn = sup

A∈Cn×n

‖T̃(A)‖
‖A‖ .

That Rn ln n = Ln can be justified in the following way (see also [13] for a different approach
in probabilistic setting):

Let � = {�j}n
j=1 be a partition of � where each �j is μ measurable. Compose the matrix

A(�) whose elements are defined as

A(�)
ij = ϕj|�i ,

then A(�) is a unitary linear map from C
n to L2(�1) ⊕ L2(�2) ⊕ · · · ⊕ L2(�n) since if �a =

(a1, a2, . . . , an) ∈C
n and f = a1ϕ1 + a2ϕ2 + · · · + anϕn, then

‖f ‖2
L2 =

∥∥A(�)�a∥∥2
L2(�) = ‖�a‖2,

where L2(�) denotes L2(�1) ⊕ L2(�2) ⊕ · · · ⊕ L2(�n). Now take

g�a =
n∑

i=1

j∑
j=1

ajϕj|�i ,

then we have

‖g�a‖2
L2 =

∥∥L̃
(
A(�))�a∥∥2

L2(�),

consequently

Ln = sup
A(�)

‖L̃(A(�))‖
‖A(�)‖ = sup

A(�)
‖�a‖=1

‖L̃(A(�))�a‖2
L2(�)

‖A(�)‖ = sup
ϕ

‖�a‖=1

‖g�a‖L2 ≤ sup
ϕ

‖�a‖=1

‖Ma,ϕ,n‖L2 = Rn ln n.

On the other hand, consider the following particular partition:

�̃j =

{
x ∈ � : (i)

∣∣∣∣∣
j∑

i=1

aiϕi(x)

∣∣∣∣∣ >

∣∣∣∣∣
m∑

i=1

aiϕi(x)

∣∣∣∣∣,∀m ≤ n;

(ii) j < j′ if

∣∣∣∣∣
j∑

i=1

aiϕi(x)

∣∣∣∣∣ =

∣∣∣∣∣
j′∑

i=1

aiϕi(x)

∣∣∣∣∣

}
,
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i.e., x belongs to �̃j if j is the smallest index where the sum |∑j
i=1 aiϕi(x)| attains the value

of the majorant function Mn(x) at x. Each �̃j is also measurable, since it is the pre-image
of the measurable set range(Mn) under the function mapping x �→ |∑j

i=1 aiϕi(x)|, thus we
obtain that (with ‖a‖ = 1)

Rn ln n =
∥∥Mn(x)

∥∥2
L2 =

n∑
j=1

∥∥∥∥∥
j∑

i=1

aiϕi(x)

∥∥∥∥∥
2

L2(�̃j)

=
∥∥L̃

(
A(�̃))�a∥∥2

L2(�̃) ≤ Ln,

together we get that Rn = Ln. It then easily follows from (2) and Theorem 1 (i) that

Rn =
1

ln n
Ln � 1

2 ln n
Tn � 1

π
. �

4.2 Ordering in Gauss–Seidel type methods
Let A be positive definite with diagonal D and strict lower triangular part L, then the
error reduction matrix for applying the Gauss–Seidel method on a linear system Ax = b is
Q = I – (D + L)–1A, thus with Theorem 1 (i) we can conclude that the error reduction rate
per cycle is at least (see also [24])

1 –
1

cκ(A) ln n
, (9)

where κ(A) is the spectral condition number of A and the constant c is independent of n,
A and is approximately 1/π .

A similar result holds for the Kaczmarz method [25], an alternating projection method
also known as ART ([26]) whose randomized version has drawn much attention in recent
years since [27]. Running the Kaczmarz method on Ax = b is equivalent to running the
Gauss-Seidel method implicitly on AA∗y = b (see [28]). The Kaczmarz method converges
even for rank deficient A and inconsistent systems (see [29]), thus with Theorem 1 (iii), the
error reduction rate in (9) can be improved in the rank deficient case by replacing the ln n
factor with the ln r factor, the same also holds for the Gauss–Seidel method on positive
semi-definite matrices.

An often observed phenomena in reality is that rearranging the ordering of equations
may (though need not) accelerate the error reduction. Theorem 1 (iv) and (v) provides an
explanation: The linear system in natural ordering (given ordering) may converge slowly
in bad cases where the ln n factor in (9) may be active, but by (iv) there exists some good
ordering with which one can get rid of this ln n factor, while (v) shows that shuffling equa-
tions after each sweep will on average also remove it.

Acknowledgements
Not applicable.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The author declares that they have no competing interests.



Zhou Journal of Inequalities and Applications        (2022) 2022:126 Page 10 of 10

Author contribution
The author read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 6 October 2021 Accepted: 2 September 2022

References
1. King, F.: Hilbert Transform (Vol 1 and 2). Cambridge University Press, Cambridge (2009)
2. Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math. 116(1), 135–157 (1966)
3. Hunt, R.: On the convergence of Fourier series, orthogonal expansions and their continuous analogues. In:

Proceedings of the Conference at Edwardsville Ill, pp. 235–255 (1967)
4. Böttcher, A., Grudsky, S.: Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis. Springer, Berlin (2000)
5. Gohberg, I., Goldberg, S., Kaashoek, M.: Basic Classes of Linear Operators. Springer, Berlin (2012)
6. Gasch, J., Gilbert, J.: Triangularization of Hankel operators and the bilinear Hilbert transform. Contemp. Math. 247,

235–248 (1999)
7. Oswald, P., Zhou, W.: Convergence analysis for Kaczmarz-type methods in a Hilbert space framework. Linear Algebra

Appl. 478, 131–161 (2015)
8. Oswald, P., Zhou, W.: Random reordering in SOR-type methods. Numer. Math. 135(4), 1207–1220 (2017)
9. Gohberg, I., Krein, M.: Theory and Applications of Volterra Operators in Hilbert Space. Am. Math. Soc., Providence

(1970)
10. Davidson, K.: Nest Algebras. Longman, Harlow (1988)
11. Rademacher, H.: Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen. Math. Ann. 87(1–2), 112–138

(1922)
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