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Abstract
Recently, frame multipliers, pair frames, and controlled frames have been investigated
to improve the numerical efficiency of iterative algorithms for inverting the frame
operator and other applications of frames. In this paper, the concept of biframe is
introduced for a Hilbert space. A biframe is a pair of sequences in a Hilbert space that
applies to an inequality similar to a frame inequality. Also, it can be regarded as a
generalization of controlled frames and a special kind of pair frames. The basic
properties of biframes are investigated based on the biframe operator. Then, biframes
are classified based on the type of their constituent sequences. In particular, biframes
for which one of the constituent sequences is an orthonormal basis {ek}∞k=1 are
studied. Then, a new class of Riesz bases denoted by [{ek}] is introduced and is called
b-Riesz bases. An interesting result is also proved, showing that the set of all b-Riesz
bases is a proper subset of the set of all Riesz bases. More precisely, b-Riesz bases
induce an equivalence relation on [{ek}].
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1 Introduction
Many years after the advent of frame theory, its importance and applications in various
scientific fields have become clear to everyone. The aim of this theory, developed by Duffin
and Schaeffer in 1952 [16], was to solve some problems related to the nonharmonic Fourier
series. In fact, the frame theory developed Gabor’s studies in signal analysis in a pure form,
which was extensively studied by the fundamental paper of Daubechies, Grossmann, and
Meyer [14] in 1986. Many researchers in various fields of pure and applied mathematics,
engineering, medicine, etc. have studied frames. For more information on frame theory
and its applications, we refer the readers to [11, 13, 18, 22, 28].

To further apply this theory, many generalizations of frames have been proposed. For
example, generalized frames (g-frames), introduced by Sun [26, 27], generalize not only
the original concept of frame, but also other generalizations of frames, including bounded
quasi-projectors [20, 21], frames of subspaces [4, 10], pseudo-frames [24], oblique frames
[12, 17], and outer frames [1]. After that, Askarizadeh and Dehghan showed that every g-
frame is a special frame [5]. Also, frames and their generalization in Hilbert C∗-modules
and locally compact abelian groups have been studied in [2, 3, 6]. Controlled frames [8]
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provide another generalization of frames, actually developing theories related to this con-
cept which were previously introduced in [9] and used only as a tool for spherical wavelets.

Pair frames are a concept for a pair of sequences in a Hilbert space, introduced in [19],
and one of their important results is to obtain a new reconstruction formula for members
of the Hilbert space. The concept proposed in this paper aims at a different study of a
pair of sequences in a Hilbert space that is called a biframe. To define a frame, only one
sequence is used; but, to define a biframe, two sequences are needed. In fact, the concept
of biframe is proposed as a generalization of controlled frames and a special case of pair
frames. A biframe is a pair ({fk}∞k=1, {gk}∞k=1) of sequences in the Hilbert space H, if there
exist positive constants A and B such that

A‖f ‖2 ≤
∞∑

k=1

〈f , fk〉〈gk , f 〉 ≤ B‖f ‖2, ∀f ∈H.

An operator associated with a biframe is presented, which is a special case of multi-
plier operators [7]. In the simplest case, multiplier operators are well defined when the
sequences are Bessel sequences, which gives us Bessel multipliers. Also, the invertibil-
ity of this operator is obtained when the sequences are Riesz bases. But it is interesting
that the biframe operator has these properties for sequences that are not even Bessel se-
quences. Also, the biframe operator associated with a biframe has properties very close to
those of the frame operator. Therefore the reconstruction of the elements of the Hilbert
space, which is one of the important achievements of frame theory, is well done. Due to
the important role played by orthonormal bases in a Hilbert space, we are looking for se-
quences that form a biframe together with an orthonormal basis. This research leads us
to sets that are actually bases. The new set of all these bases has a place between the set of
all orthonormal bases and the set of all Riesz bases, but studying this topic in pair frames
does not have such an achievement for us.

This paper is organized as follows. Section 2 contains some preliminary results and no-
tations that are used throughout the paper. In Sect. 3, we introduce the new concept of
biframe for a Hilbert space, created by a pair of sequences, and we present several exam-
ples of biframes. In Sect. 4, by defining the biframe operator associated with a biframe, we
discuss the properties of biframes from the perspective of operator theory. Moreover, we
investigate those operators that preserve the biframe property. In Sect. 5, we classify the
biframes whose constituent sequences of them are Bessel sequences, frames, and Riesz
bases. Finally, in Sect. 6, we classify the biframes for which one of the constituent se-
quences is an orthonormal basis. This classification leads us to new sets, which are par-
titions of the set of all sequences with this property (namely, the property of forming a
biframe with an orthonormal basis). We obtain new bases which are closely related to
orthonormal bases and Riesz bases.

2 Notation and preliminaries
Throughout this paper, H denotes a separable Hilbert space. The notation B(H,K) de-
notes the set of all bounded linear operators from H to the Hilbert space K. If H = K, this
set is denoted by B(H) and I denotes the identity operator on H. Also, GL(H) is defined
as the set of all invertible, bounded linear operators on H, and GL+(H) denotes the subset
of GL(H) that consists of positive operators. Finally, B+

b.b.(H) is defined as the set of all
self-adjoint and positive operators on H which are bounded below.
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A sequence {fk}∞k=1 is called a frame for H if there exist positive constants A and B such
that

A‖f ‖2 ≤
∞∑

k=1

∣∣〈f , fk〉
∣∣2 ≤ B‖f ‖2, ∀f ∈H.

The constants A and B are known as lower and upper frame bounds, respectively. If A = B,
then the frame {fk}∞k=1 is called a tight frame; it is called a Parseval frame if A = B = 1. The
sequence {fk}∞k=1 is called a Bessel sequence if only the right inequality holds. An associated
operator to frame F = {fk}∞k=1 is a frame operator, defined by

SF : H −→H; SF (f ) =
∞∑

k=1

〈f , fk〉fk .

The frame operator SF is a self-adjoint operator that belongs to GL+(H).
Two Bessel sequences {fk}∞k=1 and {gk}∞k=1 are dual frames for H if one of the following

statements holds:
(i) f =

∑∞
k=1〈f , gk〉fk , ∀f ∈H.

(ii) f =
∑∞

k=1〈f , fk〉gk , ∀f ∈H.
(iii) 〈f , g〉 =

∑∞
k=1〈f , fk〉〈gk , g〉, ∀f , g ∈H.

A Riesz basis for H is a family of the form {Uek}∞k=1, where {ek}∞k=1 is an orthonormal
basis for H and the operator U belongs to GL(H).

Two sequences {fk}∞k=1 and {gk}∞k=1 in H are biorthogonal if 〈fk , gj〉 = δk,j. We refer the
readers to [11] for more details on frames and bases.

For U ∈ GL(H), a sequence {fk}∞k=1 in H is a U-controlled frame [8] if there exist positive
constants A and B such that

A‖f ‖2 ≤
∞∑

k=1

〈f , fk〉〈Ufk , f 〉 ≤ B‖f ‖2, ∀f ∈H.

For U and T in GL(H), a sequence {fk}∞k=1 in H is a (T , U)-controlled frame [25] if there
exist positive constants A and B such that

A‖f ‖2 ≤
∞∑

k=1

〈f , Tfk〉〈Ufk , f 〉 ≤ B‖f ‖2, ∀f ∈H.

A pair (F , G) = ({fk}∞k=1, {gk}∞k=1) of sequences in H is a pair frame for H if the pair frame
operator Sf =

∑∞
k=1〈f , fk〉gk is well defined and invertible for every f ∈H.

Proposition 2.1 ([25]) Let S1, S2 ∈ GL+(H). Then S2 = VS1U∗ if and only if U = Sr
2WS–p

1

and V = St
2TS–q

1 such that W and T are bounded operators on H such that TW ∗ = I,
p, q, r, t ∈ R, and r + t = 1, p + q = 1.

3 Biframes
In this section, we define the main concept of this paper, namely, the notion of biframe.
Next, we present some examples to illustrate the concept of biframes and their constituent
sequences more.
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Definition 3.1 A pair (F , G) = ({fk}∞k=1, {gk}∞k=1) of sequences in H is called a biframe for
H if there exist positive constants A and B such that

A‖f ‖2 ≤
∞∑

k=1

〈f , fk〉〈gk , f 〉 ≤ B‖f ‖2, ∀f ∈H. (3.1)

The numbers A and B are called lower and upper biframe bounds, respectively.
The biframe ({fk}∞k=1, {gk}∞k=1) is called Parseval if A = B = 1.

After defining the concept of biframes, its relation to the previously defined notions
must be examined. The following remark shows that biframes generalize ordinary frames
and controlled frames.

Remark 3.2 According to Definition 3.1, the following statements are true for a sequence
F = {fk}∞k=1 in H:

(i) If (F , F) is a biframe for H, then F is a frame for H.
(ii) If (F , UF) is a biframe for some U ∈ GL(H), then F is a U-controlled frame for H.

(iii) If (TF , UF) is a biframe for some T and U in GL(H), then F is a (T , U)-controlled
frame for H.

A biframe is a pair of sequences. Therefore the relationship between the two sequences
that form a biframe is very important. To investigate the relationship between these two
sequences, we try to answer the following questions:

(Q1) What kind of Bessel sequences make biframes? And how about frames, Riesz bases,
and orthonormal bases?

(Q2) Are there sequences that are not Bessel sequences, frames, Riesz bases, or orthonor-
mal bases but form a biframe?

(Q3) Are the types of sequences that form a biframe interdependent? For example, if one
of the sequences is a Bessel sequence, does it necessarily follow that the other one
is also a Bessel sequence? What about Riesz bases and orthonormal bases?

In the following sections, we will answer these questions. But before that, we present some
examples of biframes.

Example 3.3 Let {ek}∞k=1 be an orthonormal basis for H.
(i) A biframe may be constructed using two non-Bessel sequences.

It is clear that

{fk}∞k=1 =
{

e1, 2e2,
1
3

e3, 4e4,
1
5

e5, 6e6, . . .
}

,

{gk}∞k=1 =
{

2e1, e2, 4e3,
1
3

e4, 6e5,
1
5

e6 . . .
}

are not Bessel sequences. But the pair ({fk}∞k=1, {gk}∞k=1) is a biframe because for
f ∈H we can write

‖f ‖2 ≤
∞∑

k=1

〈f , fk〉〈gk , f 〉 =
∞∑

k=1

2k
2k – 1

(∣∣〈f , e2k–1〉
∣∣2 +

∣∣〈f , e2k〉
∣∣2) ≤ 2‖f ‖2.
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(ii) Two Bessel sequences may not form a biframe.
It is easy to see that

{fk}∞k=1 =
{

e1,
1
2

e2,
1
3

e3,
1
4

e4 . . .
}

,

{gk}∞k=1 =
{

0, e1, 0,
1
2

e2, 0,
1
3

e3, . . .
}

are Bessel sequences with bound 1. But the pair ({fk}∞k=1, {gk}∞k=1) is not a biframe
because for f ∈H we obtain

∞∑

k=1

〈f , fk〉〈gk , f 〉 = 〈f , e1〉〈0, f 〉 +
〈
f ,

1
2

e2

〉
〈e1, f 〉

+
〈
f ,

1
3

e3

〉
〈0, f 〉

〈
f ,

1
4

e4

〉〈
1
2

e2, f
〉

+ · · ·

=
1
2
〈f , e2〉〈e1, f 〉 +

1
8
〈f , e4〉〈e2, f 〉 + · · · .

Now, if we set f = e1, then the summation in the definition of biframe is equal to 0:

∞∑

k=1

〈f , fk〉〈gk , f 〉 = 0.

This shows that the summation does not have a nonzero lower bound.
(iii) Two frames may not form a biframe.

Consider the sequences

{fk}∞k=1 =
{

–
1
2

e1,
1
2

e1, e2, e3, . . .
}

,

{gk}∞k=1 = {e1, e1, e2, e3, . . .}.

The sequence {fk}∞k=1 is a frame with bounds 1
2 and 1, and the sequence {gk}∞k=1 is a

frame with bounds 1 and 2. But these frames cannot form a biframe because for
f ∈H we can write

∞∑

k=1

〈f , fk〉〈gk , f 〉 =
〈
f , –

1
2

e1

〉
〈e1, f 〉 +

〈
f ,

1
2

e1

〉
〈e1, f 〉

+ 〈f , e2〉〈e2, f 〉 + 〈f , e3〉〈e3, f 〉 + · · ·
= 〈f , e2〉〈e2, f 〉 + 〈f , e3〉〈e3, f 〉 + · · ·

=
∞∑

k=2

∣∣〈f , ek〉
∣∣2.

Now,
∑∞

k=1〈f , fk〉〈gk , f 〉 = 0 if we set f = e1. This implies that the summation does
not have a nonzero lower bound. Therefore the pair ({fk}∞k=1, {gk}∞k=1) is not a
biframe.
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(iv) Two Riesz bases may not form a biframe.
We consider the orthonormal basis {ek(x)}k∈Z = {e2π ikx}k∈Z for L2(0, 1).
T–1 and E1 are translation and modulation operators on L2(0, 1) respectively.

Because these operators are unitary, the following sequences are Riesz bases for
L2(0, 1):

{fk}k∈Z =
{

T–1
(
ek(x)

)}
k∈Z =

{
e2π ik(x+1)}

k∈Z,

{gk}k∈Z =
{

E1
(
ek(x)

)}
k∈Z =

{
e2π i(k+1)x}

k∈Z.

For f ∈ L2(0, 1), we have

∑

k∈Z
〈f , fk〉〈gk , f 〉 =

∑

k∈Z

〈
f , e2π ik(x+1)〉〈e2π i(k+1)x, f

〉

=
∑

k∈Z

(∫ 1

0
f (x)e–2π ik(x+1) dx

)(∫ 1

0
e2π i(k+1)xf (x) dx

)
.

Now, set f = e2π ix,

∑

k∈Z

〈
e2π ix, e2π ik(x+1)〉〈e2π i(k+1)x, e2π ix〉 =

∑

k∈Z

(∫ 1

0
e2π i(1–k)x dx

)(∫ 1

0
e2π ikx

)
= 0.

Therefore the summation does not have a nonzero lower bound, so the pair
({fk}k∈Z, {gk}k∈Z) is not a biframe for L2(0, 1).

(v) Two orthonormal bases may not form a biframe.
Let σ be a permutation of N other than the identity. Then the pair

({ek}∞k=1, {eσ (k)}∞k=1) is not a biframe. In fact, an easy calculation shows that the
summation in the definition of biframe is always equal to 0 for such sequences. If
we set f = ej for some j ∈N such that σ (j) �= j, then

∞∑

k=1

〈f , ek〉〈eσ (k), f 〉 =
∞∑

k=1

〈ej, ek〉〈eσ (k), ej〉 = 0.

A pair frame is a concept related to pair (F , G) of sequences in H. Although a biframe is
introduced as a pair of sequences with the same symbol, these two notions are not actually
the same. In fact, biframes are special types of pair frames, as we show in Corollary 4.3. In
Sect. 6, we focus on the differences between these concepts, where we specifically consider
one of their constituent sequences as the orthonormal basis.

The next example shows that a pair frame is not necessarily a biframe.

Example 3.4 Consider the Hilbert space R
2 and the sequences F = {fk}2

k=1 and G = {gk}2
k=1

defined as follows:

{fk}2
k=1 =

{
(1, 2),

(
8
7

, 4
)}

,

{gk}2
k=1 =

{(
–1,

175
2

)
,
(

7
4

,
–14

3

)}
.
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First, we show that (F , G) is a pair frame by considering the properties of the pair frame
operator S. For (x, y) ∈R

2, the definition of S is given by the following equalities:

S(x, y) =
〈
(x, y), (1, 2)

〉(
–1,

175
2

)
+

〈
(x, y),

(
8
7

, 4
)〉(

7
4

,
–14

3

)

= (x + 2y)
(

–1,
175
21

)
+

(
8
7

x + 4y
)(

7
4

,
–14

3

)

=
(

–(x + 2y),
175
21

x +
350
21

y
)

+
(

2x + 7y,
–112

21
x –

56
3

y
)

= (x + 5y, 3x – 2y).

The matrix associated with the operator S is

[S] =

[
1 5
3 –2

]
.

It is clear that this matrix is invertible (det(S) = –17 �= 0). So, the operator S is well defined
and invertible, and therefore (F , G) is a pair frame. But this pair is not a biframe. For (x, y) ∈
R

2,

〈
(x, y), (1, 2)

〉〈(
–1,

175
2

)
, (x, y)

〉
+

〈
(x, y),

(
8
7

, 4
)〉〈(

7
4

,
–14

3

)
, (x, y)

〉
= x2 – y2 + 8xy.

Now, if we set (x, y) = (–1+
√

6
2 , 1√

2 ), then x2 –y2 +8xy = 0. Hence this phrase has no nonzero
lower bound.

4 The biframe operator
Since finding the bounds of a biframe is not always easy in practice, to better understand
and be able to work with biframes, we need to introduce an operator similar to the frame
operator, one that has as many good and useful properties as the frame operator. In this
section, we introduce the biframe operator associated with a biframe, and we examine its
properties. Also, we characterize biframes based on the properties of this operator.

Definition 4.1 Let (F , G) = ({fk}∞k=1, {gk}∞k=1) be a biframe for H. The biframe operator SF ,G

is defined by

SF ,G : H −→H, SF ,G(f ) :=
∞∑

k=1

〈f , fk〉gk . (4.1)

In what follows, we present some properties of the biframe operator.

Theorem 4.2 Let (F , G) = ({fk}∞k=1, {gk}∞k=1) be a biframe for H with bounds A and B. Then
the following statements are true:

(i) The operator SF ,G is well defined, bounded, positive, and invertible.
(ii) (F , G) is a biframe if and only if (G, F) is a biframe.



Firouzi Parizi et al. Journal of Inequalities and Applications        (2022) 2022:104 Page 8 of 24

Proof (i) To prove that SF ,G is well defined, let f ∈H. For n ∈N, define

Snf =
n∑

k=1

〈f , fk〉gk .

The sequence {Sn}∞n=1 is a sequence of linear and bounded operators on H. Consider i, j ∈
N, i > j. Then

∣∣〈Sif , f 〉 – 〈Sjf , f 〉∣∣ =
∣∣〈(Sif – Sjf ), f

〉∣∣

=

∣∣∣∣∣

〈 i∑

k=j+1

〈f , fk〉gk , f

〉∣∣∣∣∣

≤
i∑

k=j+1

∣∣〈f , fk〉〈gk , f 〉∣∣.

By Definition 3.1, the series
∑∞

k=1〈f , fk〉〈gk , f 〉 converges in R. So, its associated sequence of
partial sums is a Cauchy sequence. Thus the sequence {〈Snf , f 〉}∞n=1 is Cauchy, and therefore
an operator S ∈ B(H) exists (see [23] for example) such that {Sn}∞n=1 converges to S weakly:

〈Sf , f 〉 = lim
n→∞〈Snf , f 〉 =

〈 ∞∑

k=1

〈f , fk〉gk , f

〉
= 〈SF ,Gf , f 〉.

By our definition of the biframe operator SF ,G and the uniqueness of limit, we conclude
that SF ,G = S, and therefore SF ,G is a well defined and bounded operator. By our definition
of SF ,G, for every f ∈H, we obtain

∑∞
k=1〈f , fk〉〈gk , f 〉 = 〈SF ,Gf , f 〉. Now, by Definition 3.1, we

simply observe that

A‖f ‖2 ≤ 〈SF ,Gf , f 〉 ≤ B‖f ‖2, (4.2)

which implies that SF ,G is a positive operator.
To prove that SF ,G is an invertible operator, we need to show that SF ,G and S∗

F ,G are in-
jective and have closed ranges [19].

For f , g ∈H,

〈SF ,Gf , g〉 =
∞∑

k=1

〈f , fk〉〈gk , g〉 = 〈f , SG,F〉.

Hence S∗
F ,G = SG,F . By the definition of biframe, SF ,G and SG,F are injective.

To prove that SF ,G has a closed range, let {hn}∞n=1 ⊂R(SF ,G) be a sequence that converges
to h ∈H. Then there exists a sequence {tn}∞n=1 in H such that SF ,G(tn) = hn for every n; this
means that the sequence {SF ,G(tn)}∞n=1 converges to h.

The sequence {hn} is convergent, so it is a Cauchy sequence. Let ε > 0 be given.
Then there exists N > 0 such that

‖hn – hm‖ =
∥∥SF ,G(tn) – SF ,G(tm)

∥∥ ≤ ε, ∀m, n ≥ N .
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Consider m, n ≥ N , n > m. Now, by (4.2) and the Cauchy–Schwarz inequality,

A‖tn – tm‖2 ≤ 〈
SF ,G(tn – tm), (tn – tm)

〉

≤ ∥∥SF ,G(tn) – SF ,G(tm)
∥∥‖tn – tm‖

≤ ε‖tn – tm‖.

Hence ‖tn – tm‖ ≤ ε
A , which implies that the sequence {tn}∞n=1 is a Cauchy sequence in H,

and so it converges to some t ∈H. Since SF ,G is bounded,

SF ,G(tn) −→ SF ,G(t), as n −→ ∞.

On the other hand,

SF ,G(tn) −→ h, as n −→ ∞.

Now, by the uniqueness of limit, we obtain SF ,G(t) = h. So, h ∈ R(SF ,G), and therefore
R(SF ,G) is closed. Thus R(S∗

F ,G) is closed.
(ii) Let (F , G) be a biframe with bounds A and B. Then, for every f ∈H,

A‖f ‖2 ≤
∞∑

k=1

〈f , fk〉〈gk , f 〉 ≤ B‖f ‖2.

Now, we can write

∞∑

k=1

〈f , fk〉〈gk , f 〉 =
∞∑

k=1

〈f , fk〉〈gk , f 〉 =
∞∑

k=1

〈f , gk〉〈fk , f 〉.

This implies that

A‖f ‖2 ≤
∞∑

k=1

〈f , gk〉〈fk , f 〉 ≤ B‖f ‖2.

So, (G, F) is a biframe with bounds A and B. The converse of this statement can be proved
similarly. �

Corollary 4.3 Every biframe (F , G) is a pair frame.

Proof Let (F , G) be a biframe. By Theorem 4.2, SF ,G is well defined and invertible. So, by
the definition of pair frames, (F , G) is a pair frame. �

Reconstruction of the elements of a Hilbert space from the frame coefficients is one
of the most important achievements of frame theory. The next theorem deals with this
reconstruction by using biframes.
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Theorem 4.4 Suppose that ({fk}∞k=1, {gk}∞k=1) is a biframe for H with biframe operator SF ,G.
Then, for every f ∈H, the following reconstruction formula holds:

f =
∞∑

k=1

〈
f , S–1

G,F fk
〉
gk =

∞∑

k=1

〈f , fk〉S–1
F ,Ggk . (4.3)

Moreover, in a complex Hilbert space, we can rewrite the first equation of (4.3) in the fol-
lowing form:

f =
∞∑

k=1

〈
f , S–1

G,F fk
〉
gk =

∞∑

k=1

〈
f , S–1

F ,Gfk
〉
gk . (4.4)

Proof We observed in the proof of Theorem 4.2 that SF ,G
∗ = SG,F . Let f ∈H. Then

f = SF ,GS–1
F ,Gf =

∞∑

k=1

〈
S–1

F ,Gf , fk
〉
gk =

∞∑

k=1

〈
f , S–1

G,F fk
〉
gk ,

and

f = S–1
F ,GSF ,Gf = S–1

F ,G

∞∑

k=1

〈f , fk〉gk =
∞∑

k=1

〈f , fk〉S–1
F ,Ggk .

For the final assertion, note that in a complex Hilbert space every positive operator is self-
adjoint. (The next example shows that this is not true in real Hilbert spaces.) So, we have
the self-adjointness property for the positive operator SF ,G in complex Hilbert spaces, and
therefore the result follows clearly by using SF ,G = SG,F in (4.3). �

The biframe decomposition stated in (4.3) is the reconstruction formula of biframe the-
ory. The sequence {〈f , S–1

F ,Gfk〉}∞k=1 is called the sequence of biframe coefficients.

Example 4.5 Consider the space R
2 as a real Hilbert space.

The matrix A =
[ 1 3

2 8

]
is positive because for

[ x
y
] ∈R

2,

〈[
1 3
2 8

][
x
y

]
,

[
x
y

]〉
=

〈[
x + 3y

2x + 8y

]
,

[
x
y

]〉
= x2 + 5xy + 8y2 =

(
x +

5
2

y
)2

+
7
4

y2 > 0.

Clearly, the adjoint of this matrix is A =
[ 1 2

3 8

]
, and this shows that A is not self-adjoint.

As mentioned at the beginning of this section, proving that two sequences form a
biframe by using the definition is by no means an easy task. Therefore we try to character-
ize biframes based on the properties of the biframe operator. The next theorem presents
these conditions.

Theorem 4.6 Let {fk}∞k=1 and {gk}∞k=1 be sequences in a complex Hilbert space H. Then
({fk}∞k=1, {gk}∞k=1) is a biframe for H if and only if SF ,G is a positive and bounded below oper-
ator.
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Proof Let ({fk}∞k=1, {gk}∞k=1) be a biframe for H. As we observed in Theorem 4.2, SF ,G is a
positive and invertible operator. Therefore it is bounded below, too. Conversely, suppose
that SF ,G is a positive and bounded below operator on H. Since SF ,G is a positive operator,
it is self-adjoint. For f ∈H,

∞∑

k=1

〈f , fk〉〈gk , f 〉 = 〈SF ,Gf , f 〉 =
∣∣〈SF ,Gf , f 〉∣∣ ≤ ‖SF ,G‖‖f ‖2.

To obtain the lower bound, by the positivity of SF ,G [23], we obtain the following inequality:

‖SF ,Gf ‖2 ≤ ‖SF ,G‖〈SF ,Gf , f 〉. (4.5)

On the other hand, SF ,G is bounded below with lower bound α:

∃α > 0, α‖f ‖ ≤ ‖SF ,Gf ‖. (4.6)

Using (4.5) and (4.6), we find that

α2‖f ‖2 ≤ ‖SF ,G‖〈SF ,Gf , f 〉, ∀f ∈H.

This implies that 〈SF ,Gf , f 〉 ≥ α2

‖SF ,G‖‖f ‖2, and so α2

‖SF ,G‖ is a lower bound for 〈SF ,Gf , f 〉. Thus,
({fk}∞k=1, {gk}∞k=1) is a biframe for H. �

To answer the questions we posed in the previous section about the structural relation-
ship between the two sequences that form a biframe, we establish the next theorem which
determines the dependency of two Riesz bases that form a biframe. First, we show by some
examples that this dependency is not necessarily true for Bessel sequences and frames.

Example 4.7 Let {ek}∞k=1 be an orthonormal basis for H.
(i) A biframe constructed by a frame and a nonframe

Consider the following sequences:

{fk}∞k=1 = {e1, e1, e1, e2, e2, e2, e3, e3, e3, . . .},

{gk}∞k=1 =
{

2e1, e1, –e1,
3
2

e2, e1, –e1,
4
3

e3, e1, –e1, . . .
}

.

For f ∈H,

∞∑

k=1

〈f , fk〉〈gk , f 〉 =
∞∑

k=1

k + 1
k

∣∣〈f , ek〉
∣∣2.

Also,

‖f ‖2 ≤
∞∑

k=1

k + 1
k

∣∣〈f , ek〉
∣∣2 ≤ 2‖f ‖2.

Therefore ({fk}∞k=1, {gk}∞k=1) is a biframe with bounds 1 and 2, although {fk}∞k=1 is a
frame and {gk}∞k=1 is not.
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(ii) A Parseval biframe constructed by a Bessel sequence and a non-Bessel sequence
Consider the following sequences:

{fk}∞k=1 =
{

e1,
1
2

e2, e3,
1
4

e4, e5, . . .
}

,

{gk}∞k=1 = {e1, 2e2, e3, 4e4, e5, . . .}.

For f ∈H, we obtain the following equalities:

∞∑

k=1

〈f , fk〉〈gk , f 〉 =
∞∑

k=1

∣∣〈f , ek〉
∣∣2 = ‖f ‖2.

Hence ({fk}∞k=1, {gk}∞k=1) is a Parseval biframe, although {fk}∞k=1 is a Bessel sequence and
{gk}∞k=1 is not.

Theorem 4.8 Suppose that ({fk}∞k=1, {gk}∞k=1) is a biframe for H. Then {fk}∞k=1 is a Riesz basis
for H if and only if {gk}∞k=1 is a Riesz basis for H.

Proof Let {fk}∞k=1 be a Riesz basis. Then there exists an operator V ∈ GL(H) such that
fk=Vek for all k ∈N, where {ek}∞k=1 is an orthonormal basis for H.

Define the operator

U : H →H, Uf = SF ,G
(
V ∗)–1f .

Clearly, U ∈ GL(H), and for k ∈N we obtain

Uek = SF ,G
(
V ∗)–1ek =

∞∑

i=1

〈(
V ∗)–1ek , fi

〉
gi

=
∞∑

i=1

〈(
V ∗)–1ek , Vei

〉
gi

=
∞∑

i=1

〈
V ∗(V ∗)–1ek , ei

〉
gi

=
∞∑

i=1

〈ek , ei〉gi = gk .

Hence gk = Uek for all k ∈ N. This means that {gk}∞k=1 is a Riesz basis for H.
Similarly, we can prove that {fk}∞k=1 is a Riesz basis if {gk}∞k=1 is a Riesz basis. �

Remark 4.9 As mentioned before, a positive operator in a complex Hilbert space is self-
adjoint. To use the self-adjointness property of the positive biframe operator SF ,G, from
now on we assume that the Hilbert space H is complex.

To investigate the operators that preserve the biframe property, since we deal with a
pair of sequences in the definition of a biframe, we can study the action of two different
operators on the sequences in a biframe. The next theorem presents some operators that
preserve the biframe property of a given biframe.
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Theorem 4.10 Suppose that (F , G) = ({fk}∞k=1, {gk}∞k=1) is a biframe for H with biframe op-
erator SF ,G. Then the following statements are true:

(i) ({Ufk}∞k=1, {Vgk}∞k=1) is a biframe for H, for some operators U and V in B(H) if and
only if there exist operators Q ∈ B+

b.b.(H) and T , W ∈ B(H) such that TW ∗ = I and
U = QrWS–p

F ,G , V = QtTS–q
F ,G, when p, q, r, t ∈R such that p + q = 1 and r + t = 1.

(ii) ({Ufk}∞k=1, {Vgk}∞k=1) is a Parseval biframe for H, for some operators U and V in B(H)
if and only if there exist operators T , W ∈ B(H) such that TW ∗ = I and
U = WS–p

F ,G , V = TS–q
F ,G, when p, q ∈R such that p + q = 1.

In particular, if ({fk}∞k=1, {gk}∞k=1) is a Parseval biframe, then ({Ufk}∞k=1, {Vgk}∞k=1) is a Parseval
biframe if and only if VU∗ = I.

Proof (i) Suppose that (UF , VG) = ({Ufk}∞k=1, {Vgk}∞k=1) is a biframe for H with biframe op-
erator SUF ,VG, when U , V ∈ B(H). For f ∈H,

SUF ,VGf =
∞∑

k=1

〈f , Ufk〉Vgk = V
∞∑

k=1

〈
U∗f , fk

〉
gk = VSF ,GU∗f . (4.7)

Since ({fk}∞k=1, {gk}∞k=1) and ({Ufk}∞k=1, {Vgk}∞k=1) are biframes, Theorem 4.6 allows us to con-
clude that the operators SF ,G and SUF ,VG are in B+

b.b.(H), and also are in GL+(H). By (4.7)
and Proposition 2.1, there exist operators T , W ∈ B(H) such that TW ∗ = I and

U = Sr
UF ,VGWS–p

F ,G, V = St
UF ,VGTS–q

F ,G. (4.8)

Conversely, let Q ∈ B+
b.b.(H), and let T and W be operators in B(H) such that TW ∗ = I and

U = QrWS–p
F ,G, V = QtTS–q

F ,G. (4.9)

Then, by Proposition 2.1, Q = VSF ,GU∗, which means that for every f ∈H,

Qf = VSF ,GU∗f = V

( ∞∑

k=1

〈
U∗f , fk

〉
gk

)
=

∞∑

k=1

〈f , Ufk〉Vgk .

Therefore Q is of the form of a biframe operator. By the assumption Q ∈ B+
b.b.(H), Theo-

rem 4.6 allows us to conclude that ({Ufk}∞k=1, {Vgk}∞k=1) is a biframe for H.
(ii) This part is a direct consequence of the previous part. �

Having in mind the final part of Theorem 4.10, we obtain some simple results for Par-
seval biframes.

Corollary 4.11 Suppose that U , V ∈ B(H). For sequences {fk}∞k=1 and {gk}∞k=1 in H, if each
of the following conditions holds, then ({Ufk}∞k=1, {Vgk}∞k=1) is a Parseval biframe if and only
if VU∗ = I.

(i) {fk}∞k=1 and {gk}∞k=1 are dual frames in H.
(ii) {fk}∞k=1 and {gk}∞k=1 are biorthogonal frames for H.

Moreover, if {ek}∞k=1 is an orthonormal basis for H, then ({Uek}∞k=1, {Vek}∞k=1) is a Parseval
biframe for H if and only if VU∗ = I.
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Proof Each of conditions (i) and (ii) implies that ({fk}∞k=1, {gk}∞k=1) is a Parseval biframe. The
proof of part (i) is clear. To see part (ii), if {fk}∞k=1, {gk}∞k=1 are biorthogonal frames, then for
f ∈H,

∞∑

k=1

〈f , fk〉〈gk , f 〉 =
∞∑

k=1

〈f , fk〉
〈

gk ,
∞∑

i=1

〈
f , S–1

F fi
〉
fi

〉

=
∞∑

k=1

∞∑

i=1

〈f , fk〉
〈
S–1

F fi, f
〉〈gk , fi〉

=
∞∑

k=1

∞∑

i=1

〈f , fk〉
〈
S–1

F fi, f
〉
δk,i

=
∞∑

k=1

〈f , fk〉
〈
S–1

F fk , f
〉

= ‖f ‖2.

Now, the desired result follows from the final assertion of Theorem 4.10.
Also, the pair ({ek}∞k=1, {ek}∞k=1) is a Parseval biframe, and again, by the final assertion of

Theorem 4.10, the statement is true. �

5 Characterization of biframes
In this section, we characterize the biframes whose constituent sequences are Bessel
sequences, frames, and Riesz bases. Also, we obtain some results concerning Parseval
biframes.

Theorem 5.1 Two Bessel sequences F = {fk}∞k=1 and G = {gk}∞k=1 form a biframe for H if
and only if there exist operators Q ∈ B+

b.b.(H) and T , W ∈ B(H) such that TW ∗ = I, fk =
QrWek , and gk = QtTek for all k ∈ N, whenever r, t ∈ R and r + t = 1 and E = {ek}∞k=1 is an
orthonormal basis for H.

Proof Let (F , G) = ({fk}∞k=1, {gk}∞k=1) be a biframe with biframe operator SF ,G, formed by
Bessel sequences {fk}∞k=1 and {gk}∞k=1. Since {fk}∞k=1 and {gk}∞k=1 are Bessel sequences, there
exist operators U , V ∈ B(H) and the orthonormal basis E = {ek}∞k=1 for H such that

F = fk = Uek = UE and G = gk = Vek = VE, ∀k ∈N. (5.1)

For the Parseval biframe ({ek}∞k=1, {ek}∞k=1), Theorem 4.10 gives us operators T , W ∈ B(H)
such that TW ∗ = I, and by (4.8),

U = Sr
UE,VEW , V = St

UE,VET ,

whenever r, t ∈R and r + t = 1. Now, by (5.1), we can write

fk = Uek = Sr
UE,VEWek = Sr

F ,GWek

and

gk = Vek = St
UE,VETek = St

F ,GTek , ∀k ∈N. (5.2)
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Conversely, suppose that there exist an orthonormal basis {ek}∞k=1 and operators Q ∈
B+

b.b.(H) and T , W ∈ B(H) such that TW ∗ = I, fk = QrWek , and gk = QtTek for k ∈N, when-
ever r, t ∈R and r + t = 1. For f ∈H, one obtains

∞∑

k=1

〈f , fk〉gk =
∞∑

k=1

〈
f , QrWek

〉
QtTek

= QtT
∞∑

k=1

〈
W ∗Qrf , ek

〉
ek

= QtTW ∗Qrf

= Qt+rf = Qf .

These relations and Theorem 4.6 show that ({fk}∞k=1, {gk}∞k=1) is a biframe for H. �

Corollary 5.2 Two Bessel sequences {fk}∞k=1 and {gk}∞k=1 form a Parseval biframe for H if
and only if there exist operators T , W ∈ B(H) such that TW ∗ = I, fk = Wek , and gk = Tek for
k ∈N, whenever {ek}∞k=1 is an orthonormal basis for H.

Furthermore, each of the above assertions implies that {fk}∞k=1 and {gk}∞k=1 are dual frames.

Here we recall the concept of generalized dual frames for H (g-dual frames). In 2013,
Dehghan and Hasankhani [15] introduced the concept of g-dual frames as follows.

A frame {gk}∞k=1 is a g-dual frame of frame {fk}∞k=1 for H if there exists an invertible op-
erator A ∈ B(H) such that, for all f ∈H, the equality f =

∑∞
k=1〈Af , gk〉fk is valid.

The reconstruction formula (4.4) for the members of a Hilbert space by a given biframe
({fk}∞k=1, {gk}∞k=1) for H and the concept of g-dual frames for H give us this idea of charac-
terizing the biframes that are formed by two frames by using the characterization of g-dual
frames.

Theorem 5.3 Let F = {fk}∞k=1 be a frame for H with frame operator SF . Then the following
statements are equivalent:

(i) The sequence {gk}∞k=1 is a Bessel for H and the pair ({fk}∞k=1, {gk}∞k=1) is a biframe for
H.

(ii) {gk}∞k=1 = {(SF Q)–1fk + hk –
∑∞

j=1〈S–1
F fk , fj〉hj}∞k=1 for some Q ∈ B+

b.b.(H), where {hk}∞k=1

is a Bessel sequence in H.
(iii) The sequence {gk}∞k=1 is a frame for H and the pair ({fk}∞k=1, {gk}∞k=1) is a biframe

for H.

Proof For the proof of (i) ⇒ (ii), suppose that {gk}∞k=1 is a frame for H and ({fk}∞k=1, {gk}∞k=1)
is a biframe for H with biframe operator SF ,G. By the reconstruction formula (4.4) and
according to this point that SF ,G = SG,F for f ∈H, we have

f =
∞∑

k=1

〈
S–1

F ,Gf , fk
〉
gk =

∞∑

k=1

〈
S–1

F ,Gf , gk
〉
fk .
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Therefore {fk}∞k=1 and {gk}∞k=1 are g-dual frames. By using the characterization of g-dual
frames presented in [15], every gk has the following form:

gk =
(
SF ,GS–1

F
)
fk + hk –

∞∑

j=1

〈
S–1

F fk , fj
〉
hj

=
(
SF S–1

F ,G
)–1fk + hk –

∞∑

j=1

〈
S–1

F fk , fj
〉
hj,

where the sequence {hk}∞k=1 is a Bessel sequence in H.
For the proof of (ii) ⇒ (i), assume that there exists an operator Q ∈ B+

b.b.(H) such that
{gk}∞k=1 = {(SF Q)–1fk + hk –

∑∞
j=1〈S–1

F fk , fj〉hj}∞k=1, where {hk}∞k=1 is a Bessel sequence in H. For
f ∈H, we have

∞∑

k=1

〈f , fk〉gk =
∞∑

k=1

〈f , fk〉
(

(SF Q)–1fk + hk –
∞∑

j=1

〈
S–1

F fk , fj
〉
hj

)

= Q–1S–1
F

∞∑

k=1

〈f , fk〉fk +
∞∑

k=1

〈f , fk〉hk –
∞∑

k=1

∞∑

j=1

〈f , fk〉
〈
S–1

F fk , fj
〉
hj

= Q–1f +
∞∑

k=1

〈f , fk〉hk –
∞∑

k=1

∞∑

j=1

〈f , fk〉
〈
S–1

F fk , fj
〉
hj

= Q–1f +
∞∑

k=1

〈f , fk〉hk –
∞∑

j=1

〈f , fj〉hj = Q–1f .

Since Q–1 ∈ B+
b.b.(H) gives the result that ({fk}∞k=1, {gk}∞k=1) is a biframe for H. Simple calcu-

lations show that the sequence {gk}∞k=1 is a Bessel sequence. The above calculations derive
that f =

∑∞
k=1〈Qf , fk〉gk . Then {gk}∞k=1 is a frame for H by ([15], Lemma 2.1).

(i) is an obvious consequence of (iii). �

Theorem 5.4 Let F = {fk}∞k=1 be a Riesz basis for H with frame operator SF . Then the fol-
lowing statements are equivalent:

(i) The pair ({fk}∞k=1, {gk}∞k=1) is a biframe for H.
(ii) {gk}∞k=1 = {(SF Q)–1fk} for some Q ∈ B+

b.b.(H).
In particular, each of conditions (i) and (ii) implies that {gk}∞k=1 is a Riesz basis for H.

Proof For the proof of (i) ⇒ (ii), let ({fk}∞k=1, {gk}∞k=1) be a biframe for H with biframe oper-
ator SF ,G. Since {fk}∞k=1 is a Riesz basis for H, there is an invertible operator V ∈ B(H) such
that fk = Vek for every k ∈N, where {ek}∞k=1 is an orthonormal basis for H. By Theorem 4.8,
the sequence {gk}∞k=1 is a Riesz basis for H, and for every k ∈N,

gk = SF ,GV ∗–1ek = SF ,GV ∗–1V –1fk

= SF ,G
(
VV ∗)–1fk = SF ,GSF

–1fk

=
(
SF SF ,G

–1)–1fk .

So {gk}∞k=1 is presented form in (ii) because SF ,G ∈ B+
b.b.(H).
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The proof of (ii) ⇒ (i) is easily obtained. �

6 B-Riesz bases
Since orthonormal bases are among the most important sequences in H, we study those
biframes for which one of the constituent sequences is an orthonormal basis. We will see
that these types of biframes have interesting properties that distinguish them from the
pair frames having a similar property. In fact, by collecting all the sequences that form a
biframe together with a given orthonormal basis in a set, new bases can be obtained that
find a special place between the set of all orthonormal bases and the set of all Riesz bases.
But such results cannot be established for pair frames. We begin our study of this subject
with a definition.

Definition 6.1 We consider an orthonormal basis {ek}∞k=1 for H and define the set [{ek}]
as follows:

[{ek}
]

=
{{fk}∞k=1|

({ek}∞k=1, {fk}∞k=1
)

is a biframe for H
}

.

The next proposition shows us the way the elements of the set [{ek}] can be represented.

Proposition 6.2 Let E = {ek}∞k=1 be an orthonormal basis for H. The sequence F = {fk}∞k=1

belongs to [{ek}] if and only if there exists an operator U ∈ B+
b.b.(H) such that fk = Uek for

all k ∈N.

Proof Let {fk}∞k=1 ∈ [{ek}]. Therefore the pair ({ek}∞k=1, {fk}∞k=1) is a biframe with biframe op-
erator SE,F . For k ∈N,

SE,F ek =
∞∑

i=1

〈ek , ei〉fi = fk ,

and hence fk = SE,F ek for all k ∈N.
Conversely, suppose that there exists U ∈ B+

b.b.(H) such that fk = Uek for all k ∈ N. For
f ∈H,

Uf =
∞∑

k=1

〈f , ek〉Uek =
∞∑

k=1

〈f , ek〉fk = Sf .

This means that S ∈ B+
b.b.(H), and by Theorem 4.6, ({ek}∞k=1, {fk}∞k=1) is a biframe for H with

biframe operator S. Hence {fk}∞k=1 ∈ [{ek}]. �

Proposition 6.3 Let {ek}∞k=1 be an orthonormal basis for H, and consider the sequence
{fk}∞k=1 ∈ [{ek}]. If there exists an orthonormal basis {δk}∞k=1 for H such that {fk}∞k=1 ∈ [{δk}],
then ek = δk for all k ∈N.

Proof Since the sequence {fk}∞k=1 belongs to [{ek}] and [{δk}], by Proposition 6.2, there exist
operators U , V ∈ B+

b.b.(H) such that fk = Uek and fk = Vδk for all k ∈N.
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On the other hand, the sequence F = {fk}∞k=1 is a frame for H with biframe operator SF ,
too. For f ∈H,

SF f =
∞∑

k=1

〈f , fk〉fk =
∞∑

k=1

〈f , Uek〉Uek = U2f ,

and also SF f = V 2f . These relations allow us to conclude that U2 = V 2, and so U = V . Now,
for k ∈N, one obtains

fk = Uek = Uδk .

Hence U(ek – δk) = 0, and so ek = δk . �

Here, a new class of sequences is introduced, and we study elements of it.

Definition 6.4 A sequence {fk}∞k=1 in H is called a biframe-Riesz basis, briefly b-Riesz
basis for H, if there is an orthonormal basis {ek}∞k=1 for H such that ({ek}∞k=1, {fk}∞k=1) is a
biframe for H.

Now, we can use Proposition 6.2 and Proposition 6.3 and give some equivalent condi-
tions for a sequence to be a b-Riesz basis.

Theorem 6.5 Let {fk}∞k=1 be a sequence in H. Then the following statements are equivalent:
(i) {fk}∞k=1 is a b-Riesz basis.

(ii) {fk}∞k=1 ∈ [{ek}] for an orthonormal basis {ek}∞k=1.
(iii) There exist an orthonormal basis {ek}∞k=1 and an operator U ∈ B+

b.b.(H) such that
{fk}∞k=1 = {Uek}∞k=1.

(iv) {fk}∞k=1 ∈ [{ek}] for precisely an orthonormal basis {ek}∞k=1.

If we denote the set of all orthonormal bases of H by O, the set of all Riesz bases by
R, and the set of all b-Riesz bases by E , then by Proposition 6.2 these sets are ordered as
O ⊂ E ⊂R. The following example illustrates that they are proper subsets.

Example 6.6
(i) We consider the Riesz basis {fk}2

k=1 = {(–1, 2), (1, 0)} for R2. Every orthonormal basis
for R2 is in the following form. For a ∈ [0, 1],

{
ea

k
}2

k=1 =
{(

a,
√

1 – a2
)
,
(
–
√

1 – a2, a
)}

.

If there exists a ∈ [0, 1] such that {fk}2
k=1 ∈ [{ea

k}], then there are positive numbers A
and B such that for every (x, y) ∈R

2

A
(
x2 + y2) ≤ 〈

(x, y),
(
a,

√
1 – a2

)〉〈
(–1, 2), (x, y)

〉

+
〈
(x, y),

(
–
√

1 – a2, a
)〉〈

(1, 0), (x, y)
〉

≤ B
(
x2 + y2),
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and then

A
(
x2 + y2) ≤ –

(
a +

√
1 – a2

)
x2 + 2

(√
1 – a2

)
y2 +

(
3a –

√
1 – a2

)
xy

≤ B
(
x2 + y2).

Now, set y = 1. We get a quadratic equation as follows:

–
(
a +

√
1 – a2

)
x2 +

(
3a –

√
1 – a2

)
x + 2

(√
1 – a2

)
= 0.

This equation has positive � = 2a
√

1 – a2 + 9 > 0. Hence there are none zero points
(x, y) in R

2 such that

〈
(x, y),

(
a,

√
1 – a2

)〉〈
(–1, 2), (x, y)

〉
+

〈
(x, y),

(
–
√

1 – a2, a
)〉

= 0.

So there is no orthonormal basis for R2 to form a biframe with {fk}2
k=1, that is,

{fk}2
k=1 does not belong to E , hence R �= E .

(ii) We consider the orthonormal basis {ek}2
k=1 = {(1, 0), (0, 1)} for R2 and the sequence

{fk}2
k=1 = {(3, –1), (–1, 2)}. The following calculations show that {fk}2

k=1 ∈ [{ek}].
For (x, y) ∈ R

2,

〈
(x, y), (1, 0)

〉〈
(3, –1), (x, y)

〉
+

〈
(x, y), (0, 1)

〉〈
(–1, 2), (x, y)

〉
= 3x2 – 2xy + 2y2.

Now we can see that

x2 + y2 ≤ 3x2 – 2xy + 2y2 ≤ 4
(
x2 + y2).

So ({ek}2
k=1, {fk}2

k=1) is a biframe for R2 with bounds 1 and 4. But it is clear that
{fk}2

k=1 is not an orthonormal basis for R2, so E �= O.

Proposition 6.3 shows that the subsets [{ek}] of E are distinct whenever {ek}∞k=1 is an or-
thonormal basis for H. Also, it is clear that E =

⋃
[{ek}], hence the collection � = {[{ek}] |

{ek} is an orthonormal basis for H} is a partition of E , and therefore induces an equiva-
lence relation ∼ on the set E , i.e., this result leads us to equivalence classes on E . This
is why we represented these subsets by the notation [{ek}]. In fact, we have the follow-
ing equivalence relation ∼ between sequences {fk}∞k=1 and {gk}∞k=1 in E . {fk}∞k=1 ∼ {gk}∞k=1 ⇔
there exists an orthonormal basis {ek}∞k=1 s.t. {fk}∞k=1, {gk}∞k=1 ∈ [{ek}].

In order to show another difference between biframes and pair frames, in what follows
we study a similar problem, and we observe that the results obtained for biframes do not
apply to pair frames.

Definition 6.7 Consider the set E ′ of sequences in H as follows:

E ′ =
{{fk}∞k=1 | ({ek}∞k=1, {fk}∞k=1

)
is a pair frame for some orthonormal basis {ek}∞k=1

}
.

For an orthonormal basis {ek}∞k=1, the subset [{ek}]′ of E ′ is considered as follows:

[{ek}
]′ =

{{fk}∞k=1 | ({ek}∞k=1, {fk}∞k=1
)

is a pair frame for H
}

.
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Proposition 6.8 The set E ′ is the set of all Riesz bases.

Proof Let {fk}∞k=1 ∈ E ′. Then there exists an orthonormal basis {ek}∞k=1 such that ({ek}∞k=1,
{fk}∞k=1) is a pair frame for H, that is, the pair frame operator S is a well-defined and invert-
ible operator. For j ∈N,

Sej =
∞∑

k=1

〈ej, ek〉fk = fj.

Therefore fk = Sek for all k ∈N. So, {fk}∞k=1 is a Riesz basis for H.
Conversely, suppose that the sequence {fk}∞k=1 is a Riesz basis for H. Then there exists

an invertible operator V ∈ B(H) such that fk = Vek for all k ∈N. For f ∈H,

Vf =
∞∑

k=1

〈f , ek〉Vek =
∞∑

k=1

〈f , ek〉fk .

This implies that ({ek}∞k=1, {fk}∞k=1) is a pair frame for H with the pair frame opera-
tor V . �

The next example shows that, unlike the subsets [{ek}] of E , the subsets [{ek}]′ of E ′ are
not distinct. Hence the collection of them cannot be a partition for the set E ′ = R.

Example 6.9 Consider the following orthonormal basis for R2:

{ek}2
k=1 =

{
(1, 0), (0, 1)

}
and {δk}2

k=1 =
{

(0, 1), (1, 0)
}

.

It is easy to check that the sequence {fk}2
k=1 = {(0, 1), (1, 1)} belongs to [{ek}]′ and [{δk}]′

because, for every k ∈N,

fk =

[
0 1
1 1

]
ek , fk =

[
1 0
1 1

]
δk .

In what follows, we examine the biframe property according to whether the constituent
sequences are b-Riesz bases or are not. In this regard, the following questions arise:

(Q4) Is it necessarily true that any two b-Riesz bases form a biframe?
(Q5) Is there a biframe for which none of the constituent sequences are b- Riesz bases?
(Q6) Is there a biframe for which just one of constituent sequences is a b- Riesz basis?

The next example shows that the answer to question (Q4) is negative. In Proposition 6.11,
we propose a necessary condition for such sequences to form a biframe. Also, we have a
positive answer to questions (Q5) and (Q6) that are illustrated in Example 6.12 and Exam-
ple 6.13.

Example 6.10 We consider the orthonormal {ek}2
k=1 = {(1, 0), (0, 1)} for R

2 and two se-
quences {fk}2

k=1 and {gk}2
k=1 as follows:

{fk}2
k=1 =

{
(3, 1), (1, 1)

}
, {gk}2

k=1 =
{

(2, –1), (–1, 1)
}

.
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Simple calculations show that ({ek}2
k=1, {fk}2

k=1) is a biframe for R
2 with bounds 1

2 and 4,
and ({ek}2

k=1, {gk}2
k=1) is a biframe for R2 with bounds 1

4 and 3. For (x, y) ∈R
2,

〈
(x, y), (3, 1)

〉〈
(2, –1), (x, y)

〉
+

〈
(x, y), (1, 1)

〉〈
(–1, 1), (x, y)

〉
= 5x2 – xy.

Now, set (x, y) = (1, 5), hence 5x2 – xy = 0, and this implies that the above summation does
not satisfy an upper and lower biframe bounds condition, and so ({fk}2

k=1, {gk}2
k=1) is not a

biframe for R2.

Proposition 6.11 Let {ek}∞k=1 be an orthonormal basis for H, and suppose that {fk}∞k=1 =
{Uek}∞k=1 and {gk}∞k=1 = {Vek}∞k=1 are in [{ek}]. If the operator VU is positive, then ({fk}∞k=1,
{gk}∞k=1) is a biframe for H.

Proof Since {fk}∞k=1 and {gk}∞k=1 are in [{ek}], by Theorem 6.5, U and V are in B+
b.b.(H). For

f ∈H,

VUf = VU

( ∞∑

k=1

〈f , ek〉ek

)
=

∞∑

k=1

〈f , Uek〉Vek =
∞∑

k=1

〈f , fk〉gk = Sf .

If the operator VU is positive, then S ∈ B+
b.b.(H), and so ({fk}∞k=1, {gk}∞k=1) is a biframe

for H. �

Example 6.12 Let {ek}∞k=1 be an orthonormal basis for H. We consider the sequences
{fk}∞k=1 and {gk}∞k=1 defined by

{fk}∞k=1 = {kek}∞k=1,

{gk}∞k=1 =
{

1
k

ek

}∞

k=1
.

The pair ({fk}∞k=1, {gk}∞k=1) is a Parseval biframe. Since for f ∈H,

∞∑

k=1

〈f , fk〉〈gk , f 〉 =
∞∑

k=1

〈f , kek〉
〈

1
k

ek , f
〉

=
∞∑

k=1

∣∣〈f , ek〉
∣∣2 = ‖f ‖2.

Of course, {fk}∞k=1 and {gk}∞k=1 are not in [{ek}] because the left summation in the equations

∞∑

k=1

〈f , ek〉〈fk , f 〉 =
∞∑

k=1

〈f , ek〉〈kek , f 〉 =
∞∑

k=1

k
∣∣〈f , ek〉

∣∣2

and

∞∑

k=1

〈f , ek〉〈gk , f 〉 =
∞∑

k=1

〈f , ek〉
〈

1
k

ek , f
〉

=
∞∑

k=1

1
k
∣∣〈f , ek〉

∣∣2

has no upper bound and lower bound, respectively.
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Example 6.13 We consider the orthonormal basis {ek}∞k=1 = {(1, 0), (0, 1)} for R
2 and the

sequences {fk}∞k=1 and {gk}∞k=1 as follows:

{fk}2
k=1 =

{
(3, –1), (–1, 2)

}
,

{gk}2
k=1 =

{(
0,

1
5

)
,
(

–1,
13
5

)}
.

We have seen in Example 6.6, part (ii) that {fk}2
k=1 ∈ [{ek}]. The following calculations show

that {gk}2
k=1 /∈ [{ek}]. For (x, y) ∈R

2,

〈
(x, y), (1, 0)

〉〈(
0,

1
5

)
, (x, y)

〉
+

〈
(x, y), (0, 1)

〉〈(
–1,

13
5

)
, (x, y)

〉
= –

4
5

xy +
13
5

y2.

Now, we set (x, y) = (1, 13
4 ), which gives the result – 4

5 xy + 13
5 y2 = 0, so ({ek}2

k=1, {fk}2
k=1) is not

a biframe for R2. Also, the following calculations show that ({fk}2
k=1, {gk}2

k=1) is a biframe
for R2 with bounds 1

6 and 7:

〈
(x, y), (3, –1)

〉〈(
0,

1
5

)
, (x, y)

〉
+

〈
(x, y), (–1, 2)

〉〈(
–1,

13
5

)
, (x, y)

〉
= x2 + 5y2 – 4xy,

and so

1
6
(
x2 + y2) ≤ x2 + 5y2 – 4xy ≤ 7

(
x2 + y2).

In the next theorem, we characterize those biframes for which one of the constituent
sequences is a b-Riesz basis for H.

Theorem 6.14 Let {fk}∞k=1 be a b-Riesz basis for H and {gk}∞k=1 be a sequence in H. Then
the following statements are equivalent:

(i) ({fk}∞k=1, {gk}∞k=1) is a biframe for H.
(ii) There exist U , Q ∈ B+

b.b.(H) such that fk = Uek and gk = QU–1ek for all k ∈N, where
{ek}∞k=1 is an orthonormal basis for H.

Proof For the proof of (i) ⇒ (ii), let ({fk}∞k=1, {gk}∞k=1) be a biframe with biframe operator
SF ,G ∈ B+

b.b.(H). {fk}k=1 is a b-Riesz basis, and by Theorem 6.5, there exist an orthonormal
basis {ek}∞k=1 for H and an operator U ∈ B+

b.b.(H) such that fk = Uek for all k ∈H. For f ∈H,
we obtain

SF ,Gf =
∞∑

i=1

〈f , fi〉gi =
∞∑

i=1

〈f , Uei〉gi =
∞∑

i=1

〈Uf , ei〉gi,

and so for k ∈ N,

SF ,GU–1ek =
∞∑

i=1

〈
UU–1ek , ei

〉
gi =

∞∑

i=1

〈ek , ei〉gi = gk .

This implies the desired result. Now, suppose that (ii) holds. For f ∈H,

∞∑

k=1

〈f , fk〉gk =
∞∑

k=1

〈f , Uek〉QU–1ek = QU–1
∞∑

k=1

〈Uf , ek〉ek = QU–1Uf = Qf .



Firouzi Parizi et al. Journal of Inequalities and Applications        (2022) 2022:104 Page 23 of 24

This equality implies that SF ,G = Q ∈ B+
b.b.(H), and ({fk}∞k=1, {gk}∞k=1) is a biframe by Theo-

rem 4.6. �

Corollary 6.15 Let {fk}∞k=1 be a b-Riesz basis for H and {gk}∞k=1 be a sequence in H. Then
the following statements are equivalent:

(i) ({fk}∞k=1, {gk}∞k=1) is a Parseval biframe for H.
(ii) There exists U ∈ B+

b.b.(H) such that fk = Uek and gk = U–1ek for all k ∈N, where
{ek}∞k=1 is an orthonormal basis for H.

The end corollary illustrates that, corresponding to every b-Riesz basis, there exist b-
Riesz bases for H.

Corollary 6.16 Let {fk}∞k=1 be a b-Riesz basis for H. Then the canonical dual of {fk}∞k=1, and
also every biorthogonal frame to {fk}∞k=1, are b-Riesz bases for H.

Proof Since {fk}∞k=1 is a Riesz basis, it only has one dual frame, the canonical dual frame.
Now, according to the proof of Lemma 4.11, every dual of {fk}∞k=1, and also every biorthog-
onal frame to {fk}∞k=1, form a Parseval biframe with {fk}∞k=1. Hence, by Corollary 6.15, they
are b-Riesz bases for H. �
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