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Abstract
In this paper, we completely characterize the boundedness and compactness of the
Volterra integration operators Jg acting from the Hardy-type tent spacesHT p

q,α (Bn) to
the Hardy spaces Ht(Bn) in the unit ball of Cn for all 0 < p,q, t <∞ and α > –n – 1. The
duality and factorization techniques for tent spaces of sequences play an important
role in the proof of the main results.
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1 Introduction
Let Bn be the open unit ball in C

n, and Sn the boundary of Bn. Denote by H(Bn) the space
of all holomorphic functions on Bn. A function g ∈ H(Bn) induces an integration operator
(or a Volterra operator) Jg given by the formula:

Jg f (z) =
∫ 1

0
f (tz)Rg(tz)

dt
t

, z ∈ Bn,

where f is holomorphic on Bn and Rg is the radial derivative of g , that is,

Rg(z) =
n∑

k=1

zk
∂g
∂zk

(z), z = (z1, . . . , zn) ∈ Bn.

In the one-dimensional case n = 1, the operator Jg was first studied in the setting of
the Hardy spaces by Pommerenke [22] related to the functions of bounded mean oscilla-
tion. Some important papers include the pioneering works of Aleman, Cima and Siskakis
[3, 5, 6], where they described the boundedness of the operators Jg acting on Hardy and
Bergman spaces in the unit disk. Since then, much research on the Volterra operator Jg act-
ing on many spaces of holomorphic functions has been carried out (see [2, 4, 10, 24] for
example). The higher-dimensional variant of Jg was introduced by Hu [12]. A fundamental
property of the operator Jg is the following basic formula involving the radial derivative R
and the operator Jg :

R(Jg f )(z) = f (z)Rg(z), z ∈ Bn.
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The boundedness and compactness of Jg have been extensively studied in many spaces
of holomorphic functions in the unit ball (see [20] for the corresponding study between
Hardy spaces, and [9, 19] from Bergman spaces to Hardy spaces, and others [16, 23, 25]
for example).

For 0 < t < ∞, the Hardy space Ht(Bn) consists of those holomorphic functions f on Bn

with

‖f ‖t
Ht (Bn) = sup

0<r<1

∫
Sn

∣∣f (rξ )
∣∣t dσ (ξ ) < ∞,

where dσ is the surface measure on the unit sphere Sn := ∂Bn normalized so that σ (Sn) = 1.
For 0 < p, q < ∞ and α > –n – 1, the weighted tent space T p

q,α(Bn) consists of all measur-
able functions f on Bn such that

‖f ‖p
T p

q,α (Bn)
=

∫
Sn

(∫
�(ξ )

∣∣f (z)
∣∣q(1 – |z|2)α dv(z)

) p
q

dσ (ξ ) < ∞,

where dv is the volume measure on Bn normalized so that v(Bn) = 1, and �(ξ ) = {z ∈ Bn :
|1 – 〈z, ξ 〉| < (1 – |z|2)} is the admissible approach region. In particular, for α = 0, we write
T p

q (Bn) instead of T p
q,α(Bn).

Analogously, T p
∞(Bn) consists of all measurable functions f on Bn such that

‖f ‖p
T p∞(Bn)

=
∫
Sn

(
ess sup

z∈�(ξ )

∣∣f (z)
∣∣)p

dσ (ξ ) < ∞,

and T ∞
q,α (Bn) consists of measurable functions f with

‖f ‖T ∞
q,α (Bn) = ess sup

ξ∈Sn

(
sup

w∈�(ξ )

1
(1 – |w|2)n

∫
Q(w)

∣∣f (z)
∣∣q(1 – |z|2)n+α dv(z)

) 1
q

< ∞,

where Q(w) = {z ∈ Bn : |1 – 〈z, w
|w| 〉| < 1 – |w|2} for w ∈ Bn\{0} and Q(0) = Bn.

For 0 < p, q < ∞ and α > –n – 1, the Hardy-type tent space HT p
q,α(Bn) consists of holo-

morphic functions on Bn that also belong to T p
q,α(Bn), with the same quasinorm, and

HT p
∞(Bn) consists of holomorphic functions on Bn that also belong to T p

∞(Bn). The space
CT q,α(Bn) consists of those holomorphic functions that belong to T ∞

q,α (Bn) that is endowed
with the same norm. We refer the reader to [21] for more details on Hardy-type tent spaces.

As useful tools, tent spaces play important roles in the study of harmonic analysis and
partial differential equations. By the nontangential maximal function characterization of
the Hardy space, HT p

∞(Bn) = Hp(Bn) ⊆HT p
q,α(Bn), see [26], and we can consider Hp(Bn)

as the limit of HT p
q,α(Bn) when q → ∞. Hence, we describe the boundedness and com-

pactness of Jg : HT p
q,α(Bn) → Ht(Bn) for all possible ranges 0 < p, q, t < ∞ and α > –n – 1.

Although only discrete characterizations are described in our theorems, continuous char-
acterizations also can be obtained from subsequent proofs.

Our main results are as follows.

Theorem 1.1 Let 0 < p, q, t < ∞, α > –n – 1. Then, the integration operator Jg :
HT p

q,α(Bn) → Ht(Bn) is bounded if and only if for any r ∈ (0, 1) and an r-lattice Z = {ak}
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in Bn, the sequence

u = {uk} =
{∣∣Rg(ak)

∣∣(1 – |ak|2
) q–(n+1+α)

q
}

satisfies one of the following conditions:

(a) If p > t and q > 2, then u belongs to T
pt

p–t
2q

q–2
(Z).

(b) If p > t and q ≤ 2, then u belongs to T
pt

p–t∞ (Z).
(c) If p = t and q > 2, then u belongs to T∞

2q
q–2

(Z).

(d) If p = t and q ≤ 2 or p < t, then {uk · (1 – |ak|2)n( 1
t – 1

p )} belongs to l∞.

Theorem 1.2 Let 0 < p, q, t < ∞, α > –n – 1. Then, the integration operator Jg :
HT p

q,α(Bn) → Ht(Bn) is compact if and only if for any r ∈ (0, 1) and an r-lattice Z = {ak} in
Bn, the sequence

u = {uk} =
{∣∣Rg(ak)

∣∣(1 – |ak|2
) q–(n+1+α)

q
}

satisfies one of the following conditions:
(a) If p > t and q > 2, then

∫
Sn

(
sup

ak∈�(ξ )

∣∣Rg(ak)
∣∣ 2q

q–2
(
1 – |ak|2

) q–(n+1+α)
q · 2q

q–2
) pt

p–t · q–2
2q dσ (ξ ) < ∞.

(b) If p > t and q ≤ 2, then

lim
ρ→1–

∫
Sn

(
sup

ak∈�(ξ )\D(0,ρ)

∣∣Rg(ak)
∣∣(1 – |ak|2

) q–(n+1+α)
q

) pt
p–t dσ (ξ ) = 0.

(c) If p = t and q > 2, then

lim|w|→1–

1
(1 – |w|2)n

∑
ak∈Q(w)

(∣∣Rg(ak)
∣∣(1 – |ak|2

) q–(n+1+α)
q

) 2q
q–2

(
1 – |ak|2

)n = 0.

(d) If p = t and q ≤ 2 or p < t, then

lim
k→∞

∣∣Rg(ak)
∣∣(1 – |ak|2

) q–(n+1+α)
q +n( 1

t – 1
p ) = 0.

This paper is organized as follows: Sect. 2 contains some background materials and the
tools used in the proofs. Theorems 1.1 and 1.2 are proved in Sect. 3 and Sect. 4, respec-
tively.

Throughout the paper, constants are used with no attempt to calculate their exact values,
and the value of a constant C may change from one occurrence to the next. We also use
the notion A � B to indicate that there is a constant C > 0 with A ≤ CB. The converse
relation A � B is defined in an analogous manner, and if A � B and A � B both hold, we
write A 
 B. Given p ∈ [1,∞], we will denote by p′ = p/(p – 1) its Hölder conjugate, and
we agree that 1′ = ∞ and ∞′ = 1 in this paper.
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2 Preliminaries
In this section, we introduce some basic results that will be used for the proofs of our main
theorems.

2.1 Area methods and equivalent norms
For ξ ∈ Sn and γ > 1, the admissible approach region �γ (ξ ) is defined as

�γ (ξ ) =
{

z ∈ Bn :
∣∣1 – 〈z, ξ 〉∣∣ <

γ

2
(
1 – |z|2)

}
.

In this paper we agree that �(ξ ) := �2(ξ ). It is known that for every δ > 1 and γ > 1, there
exists γ ′ > 1 so that

⋃
z∈�γ (ξ )

D(z, δ) ⊂ �γ ′ (ξ ).

We will write �̃(ξ ) to indicate this change of aperture. Given z ∈ Bn, we can define the
set I(z) = Sn for z = 0, and I(z) = {ξ ∈ Sn : z ∈ �(ξ )} ⊂ Sn for z = 0. Obviously, σ (I(z)) 

(1 – |z|2)n, and it follows from Fubini’s theorem that, for a positive measurable function ϕ,
and a finite positive measure ν , one has

∫
Bn

ϕ(z) dν(z) 

∫
Sn

(∫
�(ξ )

ϕ(z)
dν(z)

(1 – |z|2)n

)
dσ (ξ ).

We will need the following well-known Calderón’s area theorem [8], which will be very
important for our arguments, and the variant can be found in [1, 20].

Lemma A Let 0 < t < ∞. If f ∈ H(Bn) and f (0) = 0, then

‖f ‖t
Ht 


∫
Sn

(∫
�(ξ )

∣∣Rf (z)
∣∣2(1 – |z|2)1–n dv(z)

)t/2

dσ (ξ ).

Note that Lemma A shows that f ∈ H(Bn) belongs to Ht if and only if Rf ∈HT t
2,1–n. This

explains the special role of number 2 in Theorem 1.1 and Theorem 1.2.

2.2 Embedding theorems
We need the following embedding theorems for Hardy-type tent spaces, which are the
generalizations of Lemma 15 and Lemma 23 in [21]. We prove them by a similar method.

Lemma B Let 0 < t ≤ p < ∞, 0 < q ≤ s < ∞, α > –n – 1, and β = α + ( s
q – 1)(n + 1 + α).

Then,

HT p
q,α(Bn) ⊂HT t

s,β (Bn),

with bounded inclusion.
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Proof Let ξ ∈ Sn and r > 0. For any z ∈ �(ξ ) and f ∈ H(Bn), by the subharmonicity, we
have

∣∣f (z)
∣∣ � 1

(1 – |z|2)
n+1+α

q

(∫
D(z,r)

∣∣f (ω)
∣∣q(1 – |ω|2)α dv(ω)

) 1
q

� 1

(1 – |z|2)
n+1+α

q

(∫
�̃(ξ )

∣∣f (ω)
∣∣q(1 – |ω|2)α dv(ω)

) 1
q

.

Writing |f |s = |f |q|f |s–q and applying this estimate to the second factor gives

∫
�(ξ )

∣∣f (z)
∣∣s(1 – |z|2)β dv(z)

�
∫

�(ξ )

∣∣f (z)
∣∣q(1 – |z|2)α

(∫
�̃(ξ )

∣∣f (ω)
∣∣q(1 – |ω|2)α dv(ω)

)s/q–1

dv(z)

�
(∫

�̃(ξ )

∣∣f (z)
∣∣q(1 – |z|2)α dv(z)

) s
q

.

Then, for t ≤ p, we obtain HT p
q,α(Bn) ⊂HT p

s,β(Bn) ⊂HT t
s,β(Bn). �

Lemma C If 0 < p < t < ∞, 0 < q < ∞ and α > –n – 1, then

HT p
q,α(Bn) ⊂ At

η(Bn)

with bounded inclusion, where At
η(Bn) is the weighted Bergman space and η = ( t

p – 1)n –
1 + t(n+1+α)

q .

Proof First, recall that if p < t, then Hp(Bn) ⊂ At
( t

p –1)n–1(Bn) with bounded inclusion. Ap-

plying this to a fractional differential operator Rs, n+1+α
2 and according to [21, Theorem G],

we have

HT p
2,α(Bn) ⊂ At

( t
p –1)n–1+ t(n+1+α)

2
(Bn).

For any natural number k, we have f ∈HT p
2k,α(Bn) if and only if f k ∈HT

p
k
2,α(Bn), and then

HT p
2k,α(Bn) ⊂ At

( t
p –1)n–1+ t(n+1+α)

2k
(Bn).

Let k be large enough such that 2k > q. Then, by Lemma B, we have

HT p
q,α(Bn) ⊂HT p

2k,α+( 2k
q –1)(n+1+α)

(Bn) ⊂ At
η(Bn). �

We will also need the following Dirichlet-type embedding theorem, which can be found
in [7].
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Lemma D Assume that f ∈ H(Bn) with f (0) = 0. If 0 < p < q < ∞, then

‖f ‖Hq(Bn) � ‖Rf ‖Ap
p–n–1+np/q(Bn),

where ‖f ‖p
Ap

α (Bn)
=

∫
Bn

|f (z)|p(1 – |z|2)α dv(z).

2.3 Khinchine and Kahane inequalities
Let rk(u) be a sequence of Rademacher functions. We recall first the classical Khinchine’s
inequality (see [11, Appendix A] for example).

Khinchine’s inequality: Let 0 < p < ∞. Then, for any sequence {ck} ∈ l2, we have

(∑
k

|ck|2
)p/2



∫ 1

0

∣∣∣∣
∑

k

ckrk(u)
∣∣∣∣
p

dt.

The next result is known as Kahane’s inequality, see for instance Lemma 5 of Luecking
[18].

Kahane’s inequality: Let X be a Banach space, and 0 < p, q < ∞. For any sequence {xk} ⊂
X, one has

(∫ 1

0

∥∥∥∥
∑

k

rk(u)xk

∥∥∥∥
q

X
dt

)1/q



(∫ 1

0

∥∥∥∥
∑

k

rk(u)xk

∥∥∥∥
p

X
dt

)1/p

.

2.4 Separated sequences and lattices
A sequence of points {zj} ⊂ Bn is said to be separated if there exists δ > 0 such that
β(zi, zj) ≥ δ for all i and j with i = j, where β(z, w) denotes the Bergman metric on Bn. This
implies that there is δ > 0 such that the Bergman metric balls Dj = {z ∈ Bn : β(z, zj) < δ} are
pairwise disjoint.

We need a well-known result on decomposition of the unit ball Bn. By Theorem 2.23 in
[26], there exists a positive integer N such that for any 0 < r < 1 we can find a sequence
{ak} in Bn with the following properties:

(i) Bn =
⋃

k D(ak , r).
(ii) The sets D(ak , r/4) are mutually disjoint.

(iii) Each point z ∈ Bn belongs to at most N of the sets D(ak , 4r).
Any sequence {ak} satisfying the above conditions is called an r-lattice (in the Bergman
metric). Obviously any r-lattice is a separated sequence.

2.5 Tent spaces of sequences
Let Z = {ak} be an r-lattice. We consider the complex-valued sequences enumerated by
this lattice: λk = f (ak). For 0 < p, q < ∞, the tent space Tp

q (Z) consists of those sequences
λ = {λk} satisfying

‖λ‖Tp
q (Z) =

(∫
Sn

( ∑
ak∈�(ξ )

|λk|q
) p

q
dσ (ξ )

) 1
p

< ∞.

Analogously, the tent space Tp
∞(Z) consists of λ with

‖λ‖Tp∞(Z) =
(∫

Sn

sup
ak∈�(ξ )

|λk|p dσ (ξ )
) 1

p
< ∞.
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Another tent space T∞
q (Z) consists of λ such that

‖λ‖T∞
q (Z) = ess sup

ξ∈Sn

(
sup

w∈�(ξ )

1
(1 – |w|2)n

∑
ak∈Q(w)

|λk|q
(
1 – |ak|2

)n
) 1

q
< ∞.

We will need the following duality results for the tent spaces of sequences. The proof
can be found in [13, 14, 17].

Lemma E Let 1 ≤ p < ∞ and Z = {ak} be an r-lattice. If 1 < q < ∞, then the dual of Tp
q (Z)

is isomorphic to Tp′
q′ (Z) under the pairing

〈c, d〉T2
2 (Z) =

∑
k

ckdk
(
1 – |ak|2

)n, c = {ck} ∈ Tp
q (Z), d = {dk} ∈ Tp′

q′ (Z).

If 0 < q ≤ 1, then the dual of Tp
q (Z) is isomorphic to Tp′

∞(Z) under the pairing above.

The following result originates from [20], which will be used to construct our test func-
tions.

Lemma F Let 0 < p, q < ∞ and Z = {ak} be an r-lattice. If θ > n max(1, q
p , 1

p , 1
q ), then the

operator

SZ{λk}(z) =
∞∑

k=1

λk
(1 – |ak|2)θ

(1 – 〈z, ak〉)θ+ n+1+α
q

is bounded from Tp
q (Z) to HT p

q,α(Bn).

We will also need the following result concerning factorization of sequence tent spaces,
which can be found in [19].

Theorem G Let 0 < p, q < ∞ and Z = {ak} be a δ-lattice. If p < p1, p2 < ∞, q < q1, q2 < ∞
and satisfying

1
p1

+
1
p2

=
1
p

and
1
q1

+
1
q2

=
1
q

,

then

Tp
q (Z) = Tp1

q1 (Z) · Tp2
q2 (Z).

2.6 Discretization
We will use Khinchine’s and Kahane’s inequalities throughout the proof of our main re-
sults. These tools provide discrete version of the conditions we really need, hence, we need
to obtain the continuous characterizations from the discrete ones. The following two re-
sults can be found in [19].
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Lemma H Let 0 < p, q < ∞ and α > –n – 1. There exist r0 ∈ (0, 1) so that if 0 < r < r0 and
Z = {ak} is an r-lattice, then

∫
Sn

(∫
�(ξ )

∣∣f (z)
∣∣q(1 – |z|2)α dv(z)

)p/q

dσ (ξ )

�
∫
Sn

( ∑
ak∈�(ξ )

∣∣f (ak)
∣∣q(1 – |ak|2

)n+1+α

)p/q

dσ (ξ ),

whenever f is holomorphic on Bn and in Tp
q,α .

Lemma I Let 0 < p < ∞ and α ≥ 0. There exist r0 ∈ (0, 1) so that if 0 < r < r0 and Z = {ak}
is an r-lattice, then

∫
Sn

sup
z∈�(ξ )

∣∣f (z)
∣∣p(1 – |z|2)α dσ (ξ ) �

∫
Sn

sup
ak∈�(ξ )

∣∣f (ak)
∣∣p(1 – |ak|2

)α dσ (ξ ),

whenever f is holomorphic on Bn such that the left-hand side is finite.

We also need the following similar result.

Lemma J Let 0 < p < ∞, and α > –n – 1, β > 0. There exist r0 ∈ (0, 1) so that if 0 < r < r0

and Z = {ak} is an r-lattice, then for any a ∈ Bn, we have

∫
Bn

(1 – |a|2)β

|1 – 〈a, z〉|n+β

∣∣f (z)
∣∣p(1 – |z|2)α dv(z)

�
∑

k

(1 – |a|2)β

|1 – 〈a, ak〉|n+β

∣∣f (ak)
∣∣p(1 – |ak|2

)n+1+α ,

whenever f is holomorphic on Bn such that the left-hand side is finite.

Proof For any a ∈ Bn and β > 0, note that

∫
Bn

(1 – |a|2)β

|1 – 〈a, z〉|n+β

∣∣f (z)
∣∣p(1 – |z|2)α dv(z)



∑

k

∫
D(ak ,r)

(1 – |a|2)β

|1 – 〈a, z〉|n+β

∣∣f (z)
∣∣p(1 – |z|2)α dv(z)

�
∑

k

∫
D(ak ,r)

(1 – |a|2)β

|1 – 〈a, z〉|n+β

∣∣f (z) – f (ak)
∣∣p(1 – |z|2)α dv(z)

+
∑

k

∫
D(ak ,r)

(1 – |a|2)β

|1 – 〈a, z〉|n+β

∣∣f (ak)
∣∣p(1 – |z|2)α dv(z).

By [15, Lemma 2.2], there exist r0 ∈ (r, 4r), such that for any z ∈ D(ak , r),

∣∣f (z) – f (ak)
∣∣p � rp

(1 – |ak|2)n+1

∫
D(ak ,r0)

∣∣f (ω)
∣∣p dv(ω).
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Thus, we deduce that

∫
Bn

(1 – |a|2)β

|1 – 〈a, z〉|n+β

∣∣f (z)
∣∣p(1 – |z|2)α dv(z)

� rp
∑

k

∫
D(ak ,r)

(1 – |a|2)β

|1 – 〈a, z〉|n+β

1
(1 – |ak|2)n+1

∫
D(ak ,r0)

∣∣f (ω)
∣∣p dv(ω)

(
1 – |z|2)α dv(z)

+
∑

k

(1 – |a|2)β

|1 – 〈a, ak〉|n+β

∣∣f (ak)
∣∣p(1 – |ak|2

)n+1+α

� rp
∑

k

∫
D(ak ,4r)

(1 – |a|2)β

|1 – 〈a,ω〉|n+β

∣∣f (ω)
∣∣p(1 – |ω|2)α dv(ω)

+
∑

k

(1 – |a|2)β

|1 – 〈a, ak〉|n+β

∣∣f (ak)
∣∣p(1 – |ak|2

)n+1+α

� rp
∫
Bn

(1 – |a|2)β

|1 – 〈a,ω〉|n+β

∣∣f (ω)
∣∣p(1 – |ω|2)α dv(ω)

+
∑

k

(1 – |a|2)β

|1 – 〈a, ak〉|n+β

∣∣f (ak)
∣∣p(1 – |ak|2

)n+1+α .

Since the constants in “�” do not depend on r, we can find the desired r0, which completes
the proof. �

3 Proof of Theorem 1.1
3.1 Necessity
Suppose that the integration operator Jg : HT p

q,α(Bn) → Ht(Bn) is bounded. We consider
first the case p = t, q ≤ 2 or p < t. In this case, for any a ∈ Bn and θ > 0, consider the test
functions

Fa(z) =
(1 – |a|2)θ

(1 – 〈z, a〉)θ+ n+1+α
q + n

p
, z ∈ Bn. (1)

By the standard estimate for Ht(Bn) functions, we have

∣∣Rg(z)
∣∣∣∣Fa(z)

∣∣� ‖Jg(Fa)‖Ht (Bn)

(1 – |z|2) n+t
t

� ‖Jg‖ · ‖Fa‖HT p
q,α (Bn)

(
1 – |z|2)– n

t –1.

Replacing z by a in the inequality above, we obtain

∣∣Rg(a)
∣∣(1 – |a|2) q–(n+1+α)

q +n( 1
t – 1

p ) � ‖Jg‖ < ∞.

In particular, we deduce that supk |Rg(ak)|(1 – |ak|2)
q–(n+1+α)

q +n( 1
t – 1

p ) < ∞ as desired.
Finally, it remains to deal with the other cases. Let Z = {ak} be an r-lattice and r be small

enough. Consider the test functions

FZ(z) =
∞∑

k=1

λk
(1 – |ak|2)θ rk(x)

(1 – 〈z, ak〉)θ+ n+1+α
q

,
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where λ = {λk} ∈ Tp
q (Z), rk(x) are the Rademacher functions, and θ is large enough such

that Lemma F holds. Then, by Lemma A and Lemma F, we have

∥∥Jg(FZ)
∥∥t

Ht 

∫
Sn

(
∫

�(ξ )
|R(

Jg(FZ)
)|2(1 – |z|2)1–n dv(z)

)t/2 dσ (ξ )

� ‖Jg‖t‖FZ‖t
HT p

q,α (Bn) � ‖Jg‖t‖λ‖t
Tp

q (Z),

which is equivalent to

∫
Sn

(∫
�(ξ )

∣∣∣∣∣Rg(z)
∞∑

k=1

λkrk(x)(1 – |ak|2)θ

(1 – 〈z, ak〉)θ+ (n+1+α)
q

∣∣∣∣∣
2(

1 – |z|2)1–n dv(z)

)t/2

dσ (ξ )

� ‖Jg‖t‖λ‖t
Tp

q (Z).

Integrating with respect to x from 0 to 1, and using Fubini’s theorem, Khinchine’s inequal-
ity, and Kahane’s inequality as in the proof of Theorem 7 in [19], we obtain

∫
Sn

( ∞∑
k=1

|λk|2
∫

�(ξ )

(1 – |ak|2)2θ

|1 – 〈z, ak〉|2θ+ 2(n+1+α)
q

∣∣Rg(z)
∣∣2(1 – |z|2)1–n dv(z)

)t/2

dσ (ξ )

� ‖Jg‖t‖λ‖t
Tp

q (Z).

Write u = {uk} and uk = |Rg(ak)|(1 – |ak|2)
q–(n+1+α)

q . Using subharmonicity and bearing in
mind

⋃
z∈�(ξ ) D(z, 4r) ⊂ �̃(ξ ), we obtain

∫
Sn

( ∑
ak∈�(ξ )

|λk|2
∣∣Rg(ak)

∣∣2(1 – |ak|2
) 2q–2(n+1+α)

q

)t/2

dσ (ξ )

�
∫
Sn

( ∑
ak∈�(ξ )

|λk|2
∫

D(ak ,4r)

∣∣Rg(z)
∣∣2 (1 – |z|2)1–n(1 – |ak|2)2θ

|1 – 〈z, ak〉|2θ+ 2(n+1+α)
q

dv(z)
)t/2

dσ (ξ )

�
∫
Sn

[∫
�̃(ξ )

∞∑
k=1

|λk|2 (1 – |ak|2)2θ

|1 – 〈z, ak〉|2θ+ 2(n+1+α)
q

∣∣Rg(z)
∣∣2(1 – |z|2)1–n dv(z)

]t/2

dσξ )

� ‖Jg‖t‖λ‖t
Tp

q (Z).

Therefore,

∫
Sn

( ∑
ak∈�(ξ )

|λk|2|uk|2
)t/2

dσ (ξ ) � ‖Jg‖t‖λ‖t
Tp

q (Z). (2)

(a) If p > t and q > 2, for some s large enough such that 2s > 1 and ts > 1, we want to prove

u1/s ∈ T
pts
p–t
2qs
q–2

(Z), which is equivalent to u ∈ T
pt

p–t
2q

q–2
(Z). By the factorization result in Lemma G,

we have

T
pts
p–t
2qs
q–2

(Z) =
(
T

pts
pts–p+t

2qs
2qs–q+2

(Z)
)∗ =

(
T

ts
ts–1
2s

2s–1
(Z) · Tps

qs (Z)
)∗.
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Take any v = {vk} ∈ T
pts

pts–p+t
2qs

2qs–q+2
(Z) and factor it as vk = ρk · λ1/s

k , where ρ = {ρk} ∈ T
ts

ts–1
2s

2s–1
(Z),

λ = {λk} ∈ Tp
q (Z). Then, by (2) and Hölder’s inequalities, we obtain

∑
k

∣∣vku1/s
k

∣∣(1 – |ak|2
)n



∫
Sn

( ∑
ak∈�(ξ )

|ρk| · |λk|1/s · |uk|1/s
)

dσ (ξ )

�
∫
Sn

( ∑
ak∈�(ξ )

|ρk| 2s
2s–1

) 2s–1
2s

( ∑
ak∈�(ξ )

|λk|2|uk|2
) 1

2s
dσ (ξ )

�
(∫

Sn

( ∑
ak∈�(ξ )

|ρk| 2s
2s–1

) 2s–1
2s · ts

ts–1
dσ (ξ )

) ts–1
ts

(∫
Sn

( ∑
ak∈�(ξ )

|λk|2|uk|2
) t

2
dσ (ξ )

) 1
ts

� ‖ρ‖
T

ts
ts–1
2s

2s–1
(Z)

‖Jg‖1/s‖λ‖1/s
Tp

q (Z)


 ‖Jg‖1/s‖v‖
T

pts
pts–p+t

2qs
2qs–q+2

(Z)
.

By the duality of tent spaces of sequences given in Lemma E, we have that u belongs to

T
pt

p–t
2q

q–2
(Z).

(b) If p > t and q ≤ 2, it is sufficient to show that u1/s ∈ T
pts
p–t∞ (Z) for some s large enough

such that 2s > 1 and ts > 1. By Lemma E and Lemma G, we have

T
pts
p–t∞ (Z) =

(
T

ts
ts–1
2s

2s–1
(Z) · Tps

qs (Z)
)∗.

Note that if q ≤ 2, then 2s–1
2s + 1

qs = 1
δ

for some δ ≤ 1. Thus, making some adjustments to

the arguments in the proof of (a), we obtain that u belongs to T
pt

p–t∞ (Z).
(c) If p = t and q > 2, it suffices to prove u1/s ∈ T∞

2qs
q–2

(Z) for some s large enough such that

2s > 1 and ts > 1. An appeal to Lemma G gives that

T∞
2qs
q–2

(Z) =
(
T1

2qs
2qs–q+2

(Z)
)∗ =

(
T

ps
ps–1
2s

2s–1
(Z) · Tps

qs (Z)
)∗.

Proceeding with the argument as above again, we have that u belongs to T∞
2q

q–2
(Z), which

finishes the proof of necessity.

3.2 Sufficiency
To prove the sufficiency of Theorem 1.1, we split it into four cases.

(a) If p > t, q > 2 and u ∈ T
pt

p–t
2q

q–2
(Z), let η = (1 – n – 2α

q ) q
q–2 . By considering the dilated

functions Rgρ(z) = Rg(ρz) (0 < ρ < 1), an approximation argument (see [21, Lemma 7])
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shows that according to Lemma H, we have

∫
Sn

(∫
�(ξ )

∣∣Rg(z)
∣∣ 2q

q–2
(
1 – |z|2)η dv(z)

) q–2
2q

pt
p–t

dσ (ξ )

�
∫
Sn

( ∑
ak∈�(ξ )

∣∣Rg(ak)
∣∣ 2q

q–2
(
1 – |ak|2

)n+1+η

) q–2
2q

pt
p–t

dσ (ξ )

= ‖u‖
pt

p–t

T
pt

p–t
2q

q–2
(Z)

< ∞,

which means Rg ∈HT
pt

p–t
2q

q–2 ,η
(Bn). Then, by Lemma A and Holder’s inequalities, we have

‖Jg f ‖t
Ht (Bn)



∫
Sn

(∫
�(ξ )

∣∣f (z)
∣∣2∣∣Rg(z)

∣∣2(1 – |z|2)1–n dv(z)
) t

2
dσ (ξ )

�
∫
Sn

(∫
�(ξ )

∣∣f (z)
∣∣q(1 – |z|2)α dv(z)

) t
q
(∫

�(ξ )

∣∣Rg(z)
∣∣ 2q

q–2
(
1 – |z|2)η dv(z)

) t(q–2)
2q

dσ (ξ )

�
(∫

Sn

(∫
�(ξ )

∣∣f (z)
∣∣q(1 – |z|2)α dv(z)

) p
q

dσ (ξ )
) t

p

·
(∫

Sn

(∫
�(ξ )

∣∣Rg(z)
∣∣ 2q

q–2
(
1 – |z|2)η dv(z)

) t(q–2)
2q

p
p–t

dσ (ξ )
) p–t

p

� ‖f ‖t
HT p

q,α (Bn) · ‖Rg‖t

HT
pt

p–t
2q

q–2 ,η
(Bn)

.

(b) If p > t and q ≤ 2 and u ∈ T
pt

p–t∞ (Z), define

Ug(ξ ) = sup
z∈�(ξ )

∣∣Rg(z)
∣∣(1 – |z|2) q–(n+1+α)

q , ξ ∈ Sn.

Using the approximation argument with Lemma I, we obtain

∫
Sn

∣∣Ug(ξ )
∣∣ pt

p–t dσ (ξ ) �
∫
Sn

sup
ak∈�(ξ )

|uk|
pt

p–t dσ (ξ ) = ‖u‖
pt

p–t

T
pt

p–t∞ (Z)
< ∞,

which means Ug belongs to L
pt

p–t (Sn). Let β = α + ( 2
q – 1)(n + 1 + α). Then, applying

Lemma A, Hölder’s inequality, and Lemma B, we have

‖Jg f ‖t
Ht (Bn)



∫
Sn

(∫
�(ξ )

∣∣f (z)
∣∣2∣∣Rg(z)

∣∣2(1 – |z|2)1–n dv(z)
)t/2

dσ (ξ )

�
∫
Sn

sup
z∈�(ξ )

∣∣Rg(z)
∣∣t(1 – |z|2) (1–n–β)t

2 ·
(∫

�(ξ )

∣∣f (z)
∣∣2(1 – |z|2)β dv(z)

)t/2

dσ (ξ )
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�
(∫

Sn

(∫
�(ξ )

∣∣f (z)
∣∣2(1 – |z|2)β dv(z)

)p/2

dσ (ξ )
)t/p

·
(∫

Sn

sup
z∈�(ξ )

∣∣Rg(z)
∣∣ pt

p–t
(
1 – |z|2) q–(n+1+α)

q
pt

p–t dσ (ξ )
) p–t

p

= ‖f ‖t
HT p

2,β (Bn) · ‖Ug‖t

L
pt

p–t (Sn)
� ‖f ‖t

HT p
q,α (Bn) · ‖Ug‖t

L
pt

p–t (Sn)
.

(c) If p = t, q > 2 and u ∈ T∞
2q

q–2
(Z), by Lemma J, we can obtain

sup
w∈Bn

1
(1 – |w|2)n

∫
Q(w)

∣∣Rg(z)
∣∣ 2q

q–2
(
1 – |z|2) q–(n+1+α)

q
2q

q–2 –1 dv(z) � ‖u‖
2q

q–2
T∞

2q
q–2

(Z) < ∞,

which means Rg ∈ CT 2q
q–2 ,η(Bn), where η = (1 – n – 2α

q ) q
q–2 . Applying the embedding theo-

rem for Hardy spaces, we obtain that for any ξ ∈ Sn,

∫
�(ξ )

∣∣Rg(z)
∣∣ 2q

q–2
(
1 – |z|2)η dv(z) �

∫
Bn

χ�(ξ )(z)
|1 – 〈z, ξ 〉|n

∣∣Rg(z)
∣∣ 2q

q–2
(
1 – |z|2)n+η dv(z)

� ‖Rg‖
2q

q–2
CT 2q

q–2 ,η
(Bn) sup

0<ρ<1

∥∥∥∥ χ�(ξ )(·)
(1 – 〈·, ξ 〉)n

∥∥∥∥
L1(ρSn)

� ‖Rg‖
2q

q–2
CT 2q

q–2 ,η
(Bn),

where χ�(ξ ) is the characteristic function of �(ξ ). Then, Lemma A and Hölder’s inequality
give that

‖Jg f ‖t
Ht (Bn)



∫
Sn

(∫
�(ξ )

∣∣f (z)
∣∣2∣∣Rg(z)

∣∣2(1 – |z|2)1–n dv(z)
) t

2
dσ (ξ )

�
∫
Sn

(∫
�(ξ )

∣∣f (z)
∣∣q(1 – |z|2)α dv(z)

) t
q
(∫

�(ξ )

∣∣Rg(z)
∣∣ 2q

q–2
(
1 – |z|2)η dv(z)

) t(q–2)
2q

dσ (ξ )

� sup
ξ∈Sn

∫
�(ξ )

∣∣Rg(z)
∣∣ 2q

q–2
(
1 – |z|2)η dv(z) · ‖f ‖t

HT p
q,α (Bn)

� ‖Rg‖
2q

q–2
CT 2q

q–2 ,η
(Bn) · ‖f ‖t

HT p
q,α (Bn).

(d) First, the case for p = t, q ≤ 2 is particularly simple. Indeed, in this case, Lemma B
implies that HT p

q,α(Bn) ⊂ HT p
2,β (Bn), where β = α + ( 2

q – 1)(n + 1 + α). Since uk(1 –

|ak|2)n( 1
t – 1

p ) ∈ l∞, we can obtain

sup
z∈Bn

∣∣Rg(z)
∣∣(1 – |z|2) q–(n+1+α)

q +n( 1
t – 1

p ) < ∞.

Then, we have

‖Jg f ‖t
Ht (Bn) � ‖f ‖t

HT t
2,β (Bn) · sup

z∈Bn

∣∣Rg(z)
∣∣t(1 – |z|2) q–(n+1+α)

q ·t � ‖f ‖t
HT p

q,α (Bn).



Hu et al. Journal of Inequalities and Applications         (2022) 2022:99 Page 14 of 19

Next, for the remaining case p < t, there exists some r such that p < r < t and denote that
η = ( r

p – 1)n – 1 + r(n+1+α)
q . Then, according to Lemma D and Lemma C, we have

‖Jg f ‖t
Ht (Bn) �

∥∥R(Jg f )
∥∥t

Ar
r–n–1+ nr

t
(Bn)

=
(∫

Bn

∣∣f (z)
∣∣r∣∣Rg(z)

∣∣r(1 – |z|2)r–n–1+ nr
t dv(z)

)t/r

�
(∫

Bn

∣∣f (z)
∣∣r(1 – |z|2)η dv(z)

)t/r

· sup
z∈Bn

∣∣Rg(z)
∣∣t(1 – |z|2) q–(n+1+α)

q ·t+nt( 1
t – 1

p )

� ‖f ‖t
Ar

η(Bn) � ‖f ‖t
HT p

q,α (Bn).

Theorem 1.1 is now proven.

4 Proof of Theorem 1.2
4.1 Necessity
Suppose Jg : HT p

q,α(Bn) → Ht(Bn) is compact. It is obvious that (a) holds by Theorem 1.1,
so we only need to prove (b), (c), and (d). Denote

E =
{
λ = {λk} ∈ Tp

q (Z) : ‖λ‖Tp
q (Z) = 1

}

to be the unit sphere of Tp
q (Z), and let

SZ(λ)(z) =
∞∑

k=1

λk
(1 – |ak|2)θ

(1 – 〈z, ak〉)θ+ n+1+α
q

, z ∈ Bn

be the bounded operator defined in Lemma F, where Z = {ak} is an r-lattice and r is small
enough. Since SZ(E) is a bounded set and Jg is compact, the set Jg ◦ SZ(E) is relatively
compact in Ht(Bn). It is well known that a relatively compact set must be a totally bounded
set, and then for any ε > 0, there exist a finite number of functions h1, . . . , hN , such that
Jg ◦ SZ(E) ⊂ ⋃N

i=1 B(hi, ε
2 ), where B(h, ε

2 ) := {f ∈ Jg ◦ SZ(E) : ‖f – h‖Ht (Bn) < ε
2 }. Observing

that supi=1,...,N ‖hi‖Ht (Bn) < ∞, for the above ε > 0, there exists ρ0 ∈ (0, 1) such that

sup
i=1,...,N

(∫
Sn

(∫
�(ξ )\D(0,ρ)

∣∣Rhi(z)
∣∣2(1 – |z|2)1–n dv(z)

)t/2

dσ (ξ )
)1/t

<
ε

2

whenever ρ > ρ0. Thus, for any λ ∈ E, there exists some i0 ∈ {1, . . . , N} such that Jg ◦SZ(λ) ∈
B(hi0 , ε

2 ), and we can deduce that

(∫
Sn

(∫
�(ξ )\D(0,ρ)

∣∣Rg(z)SZ(λ)(z)
∣∣2(1 – |z|2)1–n dv(z)

)t/2

dσ (ξ )
)1/t

�
(∫

Sn

(∫
�(ξ )\D(0,ρ)

∣∣Rg(z)SZ(λ)(z) – Rhi0 (z)
∣∣2(1 – |z|2)1–n dv(z)

)t/2

dσ (ξ )
)1/t

+
(∫

Sn

(∫
�(ξ )\D(0,ρ)

∣∣Rhi0 (z)
∣∣2(1 – |z|2)1–n dv(z)

)t/2

dσ (ξ )
)1/t

�
∥∥Jg ◦ SZ(λ) – hi0

∥∥
Ht (Bn) +

ε

2
< ε
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whenever ρ > ρ0, which is the same as

∫
Sn

(∫
�(ξ )\D(0,ρ)

∣∣∣∣∣
∞∑

k=1

λk
(1 – |ak|2)θ

(1 – 〈z, ak〉)θ+ n+1+α
q

∣∣∣∣∣
2∣∣Rg(z)

∣∣2(1 – |z|2)1–n dv(z)

)t/2

dσ (ξ )

� εt‖λ‖t
Tp

q (Z)

for any λ ∈ Tp
q (Z) and ρ > ρ0. Let rk(x) be the Rademacher functions. Replacing λk by

λkrk(x), and utilizing the same method as in the proof of the corresponding case in Theo-
rem 1.1, we obtain that

∫
Sn

( ∑
ak∈�(ξ )

|λk|2
∣∣Rg(ak)

∣∣2(1 – |ak|2
) 2q–2(n+1+α)

q · χ{|z|≥ρ}(ak)
)t/2

dσ (ξ ) � εt‖λ‖t
Tp

q (Z)

for ρ > ρ ′
0 := inf{|ak| : D(ak , δ) ⊂ {|z| ≥ ρ0}}, where χ{|z|≥ρ} is the characteristic function.

Denote

uρ = {uρ,k} =
{∣∣Rg(ak)

∣∣(1 – |ak|2
) q–(n+1+α)

q · χ{|z|≥ρ}(ak)
}

.

Then, we have

∫
Sn

( ∑
ak∈�(ξ )

|λk|2|uρ,k|2
)t/2

dσ (ξ ) � εt‖λ‖t
Tp

q (Z) for any ρ > ρ ′
0. (3)

(b) If p > t and q ≤ 2, applying the duality and factorization of sequence tent spaces as
in the proof of Theorem 1.1, we can obtain the desired result. To this end, it is sufficient to
prove that for some s large enough such that 2s > 1 and ts > 1, ‖u1/s

ρ ‖
T

pts
p–t∞ (Z)

� εt whenever

ρ > ρ ′
0, i.e.,

sup
ρ>ρ′

0

(∫
Sn

sup
ak∈�(ξ )\D(0,ρ)

∣∣Rg(ak)
∣∣ pt

p–t
(
1 – |ak|2

) q–(n+1+α)
q

pt
p–t dσ (ξ )

) p–t
pts

� εt .

By Lemma E and Lemma G, we have

T
pts
p–t∞ (Z) =

(
T

pts
pts–p+t
δ (Z)

)∗ =
(
T

ts
ts–1
2s

2s–1
(Z) · Tps

qs (Z)
)∗.

Note that if q ≤ 2, then 2s–1
2s + 1

qs = 1
δ

for some δ ≤ 1. Take v = {vk} ∈ T
pts

pts–p+t
δ (Z) and factor

it as vk = lk ·λ1/s
k , where l = {lk} ∈ T

ts
ts–1
2s

2s–1
(Z), λ = {λk} ∈ Tp

q (Z). Then, using Hölder’s inequal-
ities, we obtain

∣∣∣∣
∑

k

vku1/s
ρ,k

(
1 – |ak|2

)n
∣∣∣∣�

∫
Sn

( ∑
ak∈�(ξ )

|lk| · |λk|1/s · |uρ,k|1/s
)

dσ (ξ )

�
∫
Sn

( ∑
ak∈�(ξ )

|lk| 2s
2s–1

) 2s–1
2s

( ∑
ak∈�(ξ )

|λk|2|uρ,k|2
) 1

2s
dσ (ξ )



Hu et al. Journal of Inequalities and Applications         (2022) 2022:99 Page 16 of 19

� ‖l‖
T

ts
ts–1
2s

2s–1
(Z)

(∫
Sn

( ∑
ak∈�(ξ )

|λk|2|uρ,k|2
) t

2
dσ (ξ )

) 1
ts

.

Combining this with (3), we establish that

∣∣∣∣
∑

k

vku1/s
ρ,k

(
1 – |ak|2

)n
∣∣∣∣� ‖l‖

T
ts

ts–1
2s

2s–1
(Z)

ε1/s‖λ‖1/s
Tp

q (Z)

whenever ρ > ρ ′
0. Considering all possible factorizations yields

∣∣∣∣
∑

k

vku1/s
ρ,k

(
1 – |ak|2

)n
∣∣∣∣� ε1/s‖v‖

T
pts

pts–p+t
δ (Z)

whenever ρ > ρ ′
0. By the duality of tent spaces of sequences given in Lemma E, we have

‖u1/s
ρ ‖

T
pts
p–t∞ (Z)

� εt whenever ρ > ρ ′
0.

(c) If p = t and q > 2, observing that

lim|w|→1–

1
(1 – |w|2)n

∑
ak∈Q(w)

(∣∣Rg(ak)
∣∣(1 – |ak|2

) q–(n+1+α)
q

) 2q
q–2

(
1 – |ak|2

)n = 0,

is equivalent to

lim
ρ→1–

sup
w∈Bn

1
(1 – |w|2)n

∑
ak∈Q(w)

|uρ,k|2q/(q–2)(1 – |ak|2
)n = 0,

it suffices to prove for some s large enough such that 2s > 1 and ts > 1, ‖u1/s
ρ ‖T∞

2q/(q–2)(Z) � εt

whenever ρ > ρ ′
0. An appeal to Lemma G gives that

T∞
2qs
q–2

(Z) =
(
T1

2qs
2qs–q+2

(Z)
)∗ =

(
T

ps
ps–1
2s

2s–1
(Z) · Tps

qs (Z)
)∗.

Proceeding with the similar argument as above, we can obtain the desired result.
(d) If p = t, q ≤ 2 or p < t, note that |Fa(z)| → 0 uniformly on any compact subsets of Bn,

as |a| → 1–, where Fa are defined in (1). The compactness of Jg implies that

lim|a|→1–
‖JgFa‖Ht = 0.

By the standard pointwise estimate for the derivative of Ht(Bn) functions, and replacing z
by a, we obtain

lim|a|→1–

∣∣Rg(a)
∣∣(1 – |a|2) q–(n+1+α)

q +n( 1
t – 1

p ) = 0,

which is the same as

lim
k→∞

∣∣Rg(ak)
∣∣(1 – |ak|2

) q–(n+1+α)
q +n( 1

t – 1
p ) = 0.

Then, the proof of necessity is complete.
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4.2 Sufficiency
To prove the compactness of Jg : HT p

q,α(Bn) → Ht(Bn), let {fk}∞k=1 ⊂ HT p
q,α(Bn) and sat-

isfy supk ‖fk‖HT p
q,α (Bn) < ∞. Then, {fk} is uniformly bounded on compact subsets of Bn,

and hence {fk} forms a normal family by Montel’s theorem. Therefore, we can extract
a subsequence {fnk }∞k=1 that converges uniformly on compact subsets of Bn to a holo-
morphic function f . Fatou’s Lemma shows that f ∈ HT p

q,α(Bn). Denote hk = fnk – f , then
hk ∈ HT p

q,α(Bn). We just need to prove that limk→∞ ‖Jghk‖Ht = 0, which can yield that
Jg : HT p

q,α(Bn) → Ht(Bn) is compact.
(a) If p > t and q > 2 with

∫
Sn

(
sup

ak∈�(ξ )

∣∣Rg(ak)
∣∣ 2q

q–2
(
1 – |ak|2

) q–(n+1+α)
q · 2q

q–2
) pt

p–t · q–2
2q dσ (ξ ) < ∞,

according to the proof of Theorem 1.1, we have Rg ∈ HT
pt

p–t
2q

q–2 ,η
(Bn), where η = (1 – n –

2α
q ) q

q–2 . Thus, by the dominated convergence theorem, for any ε > 0, there exists ρ0 ∈ (0, 1)
such that

sup
ρ≥ρ0

(∫
Sn

(∫
�(ξ )\D(0,ρ0)

∣∣Rg(z)
∣∣ 2q

q–2
(
1 – |z|2)η dv(z)

) pt
p–t

q–2
2q

dσ (ξ )
) p–t

pt
< ε.

Observing that |hk(z)| → 0 uniformly on any compact subsets of Bn, we can choose k0

large enough such that |hk(z)| < ε for any k ≥ k0 and |z| ≤ ρ0, and then we have

‖Jghk‖t
Ht (Bn)



∫
Sn

(∫
�(ξ )∩{|z|≤ρ0}

∣∣hk(z)
∣∣2∣∣Rg(z)

∣∣2(1 – |z|2)1–n dv(z)
)t/2

dσ (ξ )

+
∫
Sn

(∫
�(ξ )\D(0,ρ0)

∣∣hk(z)
∣∣2∣∣Rg(z)

∣∣2(1 – |z|2)1–n dv(z)
)t/2

dσ (ξ )

� εt + ‖hk‖t
HT p

q,α (Bn)

(∫
Sn

(∫
�(ξ )\D(0,ρ0)

∣∣Rg(z)
∣∣ 2q

q–2
(
1 – |z|2)η dv(z)

) pt
p–t

q–2
2q

dσ (ξ )
) p–t

p

� εt .

(b) If p > t and q ≤ 2, the assumption

lim
ρ→1–

∫
Sn

(
sup

ak∈�(ξ )\D(0,ρ)

∣∣Rg(ak)
∣∣(1 – |ak|2

) q–(n+1+α)
q

) pt
p–t dσ (ξ ) = 0

implies that for any ε > 0, there exists ρ0 ∈ (0, 1) such that

sup
ρ≥ρ0

(∫
Sn

(∫
�(ξ )\D(0,ρ0)

∣∣Rg(z)
∣∣(1 – |z|2) q–(n+1+α)

q dv(z)
) pt

p–t
dσ (ξ )

) p–t
pt

< ε.
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Choose k0 such that supk≥k0,|z|≤ρ0 |hk(z)| < ε. By a similar argument as the previous case,
we have

‖Jghk‖t
Ht (Bn)

� εt + ‖hk‖t
HT p

q,α (Bn)

(∫
Sn

(
sup

z∈�(ξ )\D(0,ρ0)

∣∣Rg(z)
∣∣(1 – |z|2) q–(n+1+α)

q
) pt

p–t dσ (ξ )
) p–t

p

� εt .

(c) If p = t and q > 2, the assumption

lim|w|→1–

1
(1 – |w|2)n

∑
ak∈Q(w)

(∣∣Rg(ak)
∣∣(1 – |ak|2

) q–(n+1+α)
q

) 2q
q–2

(
1 – |ak|2

)n = 0

implies that

lim
ρ→1–

sup
w∈Bn

1
(1 – |w|2)n

∫
Q(w)\D(0,ρ)

∣∣Rg(z)
∣∣ 2q

q–2
(
1 – |z|2)n+η dv(z) = 0,

where η = (1 – n – 2α
q ) q

q–2 . Thus, for any ε > 0, there exists ρ0 ∈ (0, 1) such that

sup
w∈Bn ,ρ≥ρ0

1
(1 – |w|2)n

∫
Q(w)\D(0,ρ)

∣∣Rg(z)
∣∣ 2q

q–2
(
1 – |z|2)n+η dv(z) < ε.

Then, we can obtain ‖Jghk‖t
Ht � ε by a similar technique as the proof of Theorem 1.1.

(d) If p = t and q ≤ 2 or p < t, the assumption implies that

lim|z|→1–

∣∣Rg(z)
∣∣(1 – |z|2) q–(n+1+α)

q +n( 1
t – 1

p ) = 0.

Then, we can complete the proof of Theorem 1.2 by following the standard modifying
arguments as in the proof of Theorem 1.1.
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