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Abstract
This paper uses a novel numerical approach to approximate the coupled
Cahn–Hilliard equations, which are a highly nonlinear system depicting the phase
separation of the homopolymer and copolymer mixtures. The new method is named
3S-IEQ, and its construction and calculation are more straightforward than the
invariant energy quadratization and scalar auxiliary variable methods. Notably, we
only need to solve two linear decoupled constant-coefficient equations at each time
step. Numerical simulations are shown

Keywords: Coupled Cahn–Hilliard equations; Unconditionally energy stable;
Lagrange multiplier approach

1 Introduction
The phase field model is a mathematical method used to solve interface problem. It is
mainly applied to solidification dynamics, but it has also been applied to other situa-
tions, such as viscous fingering, crack dynamics, vesicle dynamics, etc. In this method,
the boundary conditions at the interface are replaced with partial differential equations
to obtain the evolution of the auxiliary field (phase field) as an ordered parameter. The
typical phase field models include Allen–Cahn equation, Cahn–Hilliard equation, phase
field crystal equation, and Ohta–Kawasaki equation [1–4]. There are many works devoted
to approximating phase field models, such as the nonlinear convex splitting method, the
linear stabilized semi-implicit method, the invariant energy quadratization (IEQ) method,
and the scalar auxiliary variable (SAV) method [5–8].

The coupled Cahn–Hilliard equations are a highly nonlinear system depicting the phase
separation of the homopolymer and copolymer mixtures [9]. Avalos [10] et al. have intro-
duced two phase variables to describe the macro phase separation between homopolymer
and copolymer as well as micro phase separation between two components of diblock
copolymers, respectively. The authors [11] have designed two efficient, decoupled, and
second-order unconditionally energy stable numerical schemes for this system by utiliz-
ing the SAV method.
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In this paper, we apply the 3S-IEQ method, which stands for a step-by-step solving ap-
proach based on IEQ and constructed by Liu and Chen in [12], to design three linear,
decoupled, and unconditionally energy stable numerical schemes for the coupled Cahn–
Hilliard system. The IEQ method sometimes requires specific matrix solvers, such as iter-
atively solving the elliptic equations with complex variable coefficients at each time step.
Although the SAV method does not suffer such a requirement, it is still necessary to solve
four fourth-order linear equations at each time step, while we only solve two fourth-order
linear equations by 3S-IEQ in terms of the coupled Cahn–Hilliard system.

2 Governing equations
We first give some notations, which will be used later. For every k ≥ 0, denote (·, ·)k and
‖·‖k to be the Hk(�) inner product and norm, separately. In particular, we abbreviate the
L2 inner product (·, ·)0 and norm ‖·‖0 as (·, ·) and ‖·‖, separately. We further define some
Sobolev spaces L2

0(�) = {u ∈ L2(�)|(u, 1) = 0}, L2
per(�) = {u ∈ L2(�)|u is periodic on ∂�},

Hk
per(�) = {u ∈ Hk(�)|u is periodic on ∂�}. H–k

per(�) is the dual space of Hk
per(�). For every

u ∈ L2(�), the average value of u in � is defined by ū = 1
|�|

∫
�

u dx. Assuming f ∈ L2
0(�),

ψf ∈ L2
0(�) ∩ H2

per(�) is the unique solution of the following elliptic problem:

–�ψf = f in �. (2.1)

Consequently, we define ψf := (–�)–1f . Assuming f , g ∈ L2
0(�), the H–1

per(�) inner product
and norm can be written as

(f , g)–1 := (∇ψf ,∇ψg), ‖f ‖–1 :=
√

(f , f )–1.

Integrating by parts with periodic boundary condition, one has

(f , g)–1 =
(
(–�)–1f , g

)
=

(
(–�)– 1

2 f , (–�)– 1
2 g

)
=

(
(–�)–1g, f

)
= (g, f )–1.

Next, we provide a brief description of the coupled Cahn–Hilliard equations proposed
in [9, 10], which depict the phase transition of the mixture of a homopolymer and a copoly-
mer. Consider the following Swift–Hohenberg type free energy function:

E(u, v) =
∫

�

(
ε2

u
2

|∇u|2 +
ε2

v
2

|∇v|2 + A(u, v) +
σ

2
∣
∣(–�)– 1

2 (v – v̄)
∣
∣2

)

dx, (2.2)

where � is a smooth, open, bounded, connected domain in R
d (d = 1, 2, 3), εu and εv are

two real coefficients, proportional to the thickness of the interface between macro phase u
and micro phase v. A(u, v) = 1

4 (u2 – 1)2 + 1
4 (v2 – 1)2 + αuv + βuv2, α and β are two coupled

parameters. As a consequence, the coupled Cahn–Hilliard equations can be derived by
taking the variational derivative of (2.2) in H–1(�) with respect to u and v, separately.

⎧
⎨

⎩

ut = Mu�(–ε2
u�u + f (u, v)),

vt = Mv(�
(
–ε2

v�v + g(u, v)
)

– σ (v – v̄)),
(2.3)

where Mu and Mv are the motion parameters controlling the moving speed, f (u, v) = u3 –
u + αv + βv2 and g(u, v) = v3 – v + αu + 2βuv. Throughout this paper, we assume that all
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variables satisfy the periodic boundary condition on ∂�. Suppose that there is no external
forcing other than gravity, and the coupled Cahn–Hilliard equations satisfy the following
energy dissipation law and mass conservation law:

d
dt

E(u, v) = –
1

Mu
‖ut‖2

–1 –
1

Mv
‖vt‖2

–1 ≤ 0, (2.4)

d
dt

∫

�

u dt =
d
dt

∫

�

v dt = 0. (2.5)

Before providing the discrete formulations, we let N > 0 be a positive integer. For n ≤ N ,
set δt = T/N , tn = nδt, un denotes the numerical approximation of u(tn) and un+ 1

2 = un+1+un

2 .

3 Numerical schemes
In this section, we apply the 3S-IEQ method, which was first introduced by Liu and Chen
in [12], to design linear, decoupled, and unconditionally energy stable numerical schemes
for the coupled Cahn–Hilliard system. Both the first-order backward Euler (BDF1), the
second-order Crank–Nicolson (CN), and the second-order backward differentiation for-
mula (BDF2) methods can be successfully applied to this system. Without losing generality,
we mainly focus on the second-order CN scheme. We introduce an auxiliary variable η as
follows:

η := η(u, v) = F(u, v) + C = A(u, v) –
S
2

u2 –
S
2

v2 + C, (3.1)

where S ≥ 0 is a stable constant, and C is a real constant to impose F(u, v) + C �= 0. It is
obvious to see that F(u, v) + C �= 0 is more effective than F(u, v) + C ≥ 0. Then, we define
the following new functions H(u, v,η) and G(u, v,η) which are equivalent to the nonlinear
functional f (u, v) and g(u, v).

H(u, v,η) =
η

F(u, v) + C
f (u, v), G(u, v,η) =

η

F(u, v) + C
g(u, v). (3.2)

Thus, the original coupled Cahn–Hilliard system (2.3) can be rewritten as

ut = Mu�
(
–ε2

u�u + Su + H(u, v,η)
)
, (3.3a)

vt = Mv
(
�

(
–ε2

v�v + Sv + G(u, v,η)
)

– σ (v – v̄)
)
, (3.3b)

ηt = H(u, v,η)ut + G(u, v,η)vt . (3.3c)

By taking the L2 inner product of (3.3a) and (3.3b) with (–�)–1ut and (–�)–1vt , we can
obtain the following modified energy dissipation law:

d
dt
E(u, v,η) = –

1
Mu

‖ut‖2
–1 –

1
Mv

‖vt‖2
–1 ≤ 0, (3.4)

where

E(u, v,η) =
∫

�

(
εu

2
|∇u|2 +

εv

2
|∇v|2 +

S
2
|u|2 +

S
2
|v|2

+
σ

2
∣
∣(–�)– 1

2 (v – v̄)
∣
∣2 + η – C

)

dx. (3.5)
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Scheme 1 (CN) Assuming that (un–1, vn–1,ηn–1) and (un, vn,ηn) are already calculated
with n ≥ 1, we then update (un+1, vn+1,ηn+1) as follows:

un+1 – un

Muδt
= �

(
–ε2

u�un+ 1
2 + Sun+ 1

2 + H∗,n+ 1
2
)
, (3.6a)

vn+1 – vn

Mvδt
= �

(
–ε2

v�vn+ 1
2 + Svn+ 1

2 + G∗,n+ 1
2
)

– σ
(
vn+ 1

2 – v̄n+ 1
2
)
, (3.6b)

ηn+1 – ηn = H∗,n+ 1
2
(
un+1 – un) + G∗,n+ 1

2
(
vn+1 – vn), (3.6c)

where

H∗,n+ 1
2 = H

(
u∗,n+ 1

2 , v∗,n+ 1
2 ,η∗,n+ 1

2
)
, G∗,n+ 1

2 = G
(
u∗,n+ 1

2 , v∗,n+ 1
2 ,η∗,n+ 1

2
)
,

u∗,n+ 1
2 =

3un – un–1

2
, v∗,n+ 1

2 =
3vn – vn–1

2
, η∗,n+ 1

2 =
3ηn – ηn–1

2
.

Theorem 3.1 Scheme (3.6a)–(3.6c) is unconditionally energy stable satisfying the following
discrete energy dissipation law:

En+1
cn – En

cn = –
1

Muδt
∥
∥un+1 – un∥∥2

–1 –
1

Mvδt
∥
∥vn+1 – vn∥∥2

–1 ≤ 0, (3.7)

where

En
cn =

1
2
(
ε2

u
∥
∥∇un∥∥2 + ε2

v
∥
∥∇vn∥∥2 + S

∥
∥un∥∥2 + S

∥
∥vn∥∥2 + σ

∥
∥vn – v̄n∥∥2

–1

)

+
∫

�

ηn dx – C|�|. (3.8)

Proof Firstly, applying �–1 to (3.6a) and (3.6b), we have

�–1 un+1 – un

Muδt
= –ε2

u�un+ 1
2 + Sun+ 1

2 + H∗,n+ 1
2 (3.9)

and

�–1 vn+1 – vn

Mvδt
= –ε2

v�vn+ 1
2 + Svn+ 1

2 + G∗,n+ 1
2 – σ�–1(vn+ 1

2 – v̄n+ 1
2
)
. (3.10)

Secondly, taking the L2 inner product of the above two equations with un+1 – un and vn+1 –
vn, one has

–
1

Muδt
∥
∥un+1 – un∥∥2

–1 =
1
2
ε2

u
(∥∥∇un+1∥∥2 –

∥
∥∇un∥∥2) +

S
2
(∥∥un+1∥∥2 –

∥
∥un∥∥2)

+
(
H∗,n+ 1

2 , un+1 – un) (3.11)
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and

–
1

Mvδt
∥
∥vn+1 – vn∥∥2

–1 =
1
2
ε2

v
(∥
∥∇vn+1∥∥2 –

∥
∥∇vn∥∥2)

+
S
2
(∥∥vn+1∥∥2 –

∥
∥vn∥∥2) +

(
G∗,n+ 1

2 , vn+1 – vn)

+ σ
(
(–�)–1(vn+ 1

2 – v̄n+ 1
2
)
, vn+1 – vn). (3.12)

Thirdly, integrating (3.6c) once, we derive that

∫

�

ηn+1dx –
∫

�

ηndx =
(
H∗,n+ 1

2 , un+1 – un) +
(
G∗,n+ 1

2 , vn+1 – vn). (3.13)

Moreover, by integrating (3.10) once, we obtain the mass conservation law for v which
reads

∫
�

vn+1dx =
∫
�

vndx. Thus, we can split vn+1 – vn as (vn+1 – v̄n+1) – (vn – v̄n). On the
other hand,

∫
�

(vn+ 1
2 – v̄n+ 1

2 )dx = 0, vn+ 1
2 – v̄n+ 1

2 ∈ L2
0(�), so we derive that

σ
(
(–�)–1(vn+ 1

2 – v̄n+ 1
2
)
, vn+1 – vn) =

σ

2
(∥
∥vn+1 – v̄n+1∥∥2

–1 –
∥
∥vn – v̄n∥∥2

–1

)
. (3.14)

Finally, combining (3.11), (3.12), (3.13), and (3.14), we obtain

–
1

Muδt
∥
∥un+1 – un∥∥2

–1 –
1

Mvδt
∥
∥vn+1 – vn∥∥2

–1

=
1
2
ε2

u
(∥
∥∇un+1∥∥2 –

∥
∥∇un∥∥2) +

S
2
(∥
∥un+1∥∥2 –

∥
∥un∥∥2) +

∫

�

ηn+1dx –
∫

�

ηndx

+
1
2
ε2

v
(∥∥∇vn+1∥∥2 –

∥
∥∇vn∥∥2) +

S
2
(∥∥vn+1∥∥2 –

∥
∥vn∥∥2)

+
σ

2
(∥
∥vn+1 – v̄n+1∥∥2

–1 –
∥
∥vn – v̄n∥∥2

–1

)
,

which directly complete this proof. �

Scheme 2 (BDF2) Assuming that (un–1, vn–1,ηn–1) and (un, vn,ηn) are already calculated
with n ≥ 1, we then update (un+1, vn+1,ηn+1) as follows:

3un+1 – 4un + un–1

2Muδt
= �

(
–ε2

u�un+1 + Sun+1 + H∗∗,n+1), (3.15a)

3vn+1 – 4vn + vn–1

2Mvδt
= �

(
–ε2

v�vn+1 + Svn+1 + G∗∗,n+1) – σ
(
vn+1 – v̄n+1), (3.15b)

3ηn+1 – 4ηn + ηn–1

= H∗∗,n+1(3un+1 – 4un + un–1) + G∗∗,n+1(3vn+1 – 4vn + vn–1), (3.15c)

where

H∗∗,n+1 = H
(
u∗∗,n+1, v∗∗,n+1,η∗∗,n+1), G∗∗,n+1 = G

(
u∗∗,n+1, v∗∗,n+1,η∗∗,n+1),

u∗∗,n+1 = 2un – un–1, v∗∗,n+1 = 2vn – vn–1, η∗∗,n+1 = 2ηn – ηn–1.
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Theorem 3.2 Scheme (3.15a)–(3.15c) is unconditionally energy stable satisfying the fol-
lowing discrete energy dissipation law:

En+1,n
bdf 2 – En,n–1

bdf 2 = –
1

2Muδt
∥
∥3un+1 – 4un + un–1∥∥2

–1 –
1

2Mvδt
∥
∥3vn+1 – 4vn + vn–1∥∥2

–1

≤ 0, (3.16)

where

En,n–1
bdf 2 =

ε2
u

4
(∥
∥∇un∥∥2 +

∥
∥∇(

2un – un–1)∥∥2) +
S
4
(∥
∥un∥∥2 +

∥
∥2un – un–1∥∥2)

+
ε2

v
4

(∥∥∇vn∥∥2 +
∥
∥∇(

2vn – vn–1)∥∥2) +
S
4
(∥∥vn∥∥2 +

∥
∥2vn – vn–1∥∥2)

+
σ

4
(∥
∥vn – v̄n∥∥2

–1 +
∥
∥2

(
vn – v̄n) –

(
vn–1 – v̄n–1)∥∥2

–1

)

+
σ

2

∫

�

(
3ηn – ηn–1)dx – C|�|. (3.17)

Proof The proof of this theorem is similar to Theorem 3.1. Indeed, we rely on the identity
2a(3a – 4b + c) = a2 – b2 + (2a – b)2 – (2b – c)2 + (a – 2b + c)2. So we omit the proof. �

Theorem 3.3 The second-order Scheme 1 and Scheme 2 are uniquely solvable. (un+1, vn+1,ηn+1)
can be solved step by step, the fast Fourier transform is highly efficient for solving the fully
discrete schemes.

Proof Taking the second-order CN Scheme 1 as an example, the proof of BDF2 Scheme 2
is similar. We rewrite Scheme 1 as the following formulations:

(

1 +
1
2
δtMuε

2
u�

2 –
1
2
δtMuS�

)

un+1

= un –
1
2
δtMuε

2
u�

2un +
1
2
δtMuS�un + δtMu�H∗,n+ 1

2 ,
(

1 +
1
2
δtMvε

2
v�

2 –
1
2
δtMvS� +

1
2
δtMvσ

)

vn+1

= vn –
1
2
δtMvε

2
v�

2vn +
1
2
δtMvS�vn

+ δtMv�G∗,n+ 1
2 –

1
2
δtMvσvn + δtMvσ v̄n.

(3.18)

The two linear systems are uniquely solvable because the coefficient matrices are not sym-
metric positive definite but constant coefficient matrices. Meanwhile, un+1, vn+1, and ηn+1

can be solved totally decoupled. We can first calculate un+1, vn+1, then ηn+1 can be updated
by

ηn+1 = ηn + H∗,n+ 1
2
(
un+1 – un) + G∗,n+ 1

2
(
vn+1 – vn). �

Remark 3.1 In [11], the authors proposed two time second-order schemes based on the
CN and the BDF2 methods. Although the second-order schemes derived by SAV are de-
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coupled and unconditionally energy stable, the authors need to solve four fourth-order lin-
ear equations with constant coefficients at each time step. Here we only solve two fourth-
order linear equations that significantly improve the efficiency.

Remark 3.2 Both the second-order Scheme 1 and Scheme 2 include three time levels, and
(un+1, vn+1,ηn+1) can be updated recursively by the recurrence relation as long as the initial
values (u0, v0,η0) and (u1, v1,η1) have been calculated. The former is directly derived by
initial conditions, and the latter is computed by BDF1.

Scheme 3 (BDF1) Assuming that (un, vn,ηn) are already calculated with n ≥ 0, we then
update (un+1, vn+1,ηn+1) as follows:

un+1 – un

Muδt
= �

(
–ε2

u�un+1 + Sun+1 + H
(
un, vn,ηn)), (3.19a)

vn+1 – vn

Mvδt
= �

(
–ε2

v�vn+1 + Svn+1 + G
(
un, vn,ηn)) – σ

(
vn+1 – v̄n+1), (3.19b)

ηn+1 – ηn = H
(
un, vn,ηn)(un+1 – un) + G

(
un, vn,ηn)(vn+1 – vn). (3.19c)

Here, the corresponding discrete energy is denoted by

En
bdf 1 =

1
2
(
ε2

u
∥
∥∇un∥∥2 + ε2

v
∥
∥∇vn∥∥2 + S

∥
∥un∥∥2 + S

∥
∥vn∥∥2 + σ

∥
∥vn – v̄n∥∥2

–1

)

+
∫

�

ηndx – C|�|. (3.20)

4 Numerical experiments
We now present various two-dimensional numerical simulations for the coupled Cahn–
Hilliard equations. Usually, the proposed time discretization schemes can be combined
with any spatial discretization, provided the spatial discretization reaches the desired tol-
erance error. In this paper, we assume that all variables satisfy the periodic boundary con-
dition and merely focus on time discretization. Therefore, we can apply the Fourier spec-
tral method for spatial discretization, and the fast Fourier transform is easy to solve the
fully discrete schemes.

4.1 Temporal convergence test
We test the convergence rates of the three proposed schemes. The parameters are ε2

u =
ε2

v = 0.1, Mu = Mv = 1, α = 2, β = 3, σ = 50, S = 0. We choose suitable exact solution

u(x, y, t) = v(x, y, t) = 0.25 sin(x) sin(y) cos(t) + 0.1. (4.1)

The computational domain is � = [–3 ∗ π ,π ]2, and we use 128 × 128 Fourier modes. In
Table 1 and Table 2, we list the L2 errors for u and v at final time T = 0.05 with differ-
ent time step sizes δt = 0.005/2k , k = 0, 1, . . . , 5. These exact solutions and parameters are
completely consistent with those in [11] for convenient comparison.

From Table 1 and Table 2, we can observe that all schemes reach the desired order of
accuracy in time. BDF1 is first-order accurate in time, while CN and BDF2 are second-
order accurate in time. Compared with the results of [11], the error is a little bit bigger
because 3S-IEQ is a total explicit method.
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Table 1 The L2 errors and orders at T = 0.05 for u that are computed by BDF1, CN, and BDF2 schemes

δt BDF1 Order CN Order BDF2 Order

0.00500000 1.1251e–04 – 1.1339e–05 – 1.7578e–05 –
0.00250000 5.6168e–05 1.00 2.8323e–06 2.00 4.4314e–06 1.99
0.00125000 2.8061e–05 1.00 7.0745e–07 2.00 1.1121e–06 1.99
0.00062500 1.4025e–05 1.00 1.7676e–07 2.00 2.7854e–07 2.00
0.00031250 7.0109e–06 1.00 4.4176e–08 2.00 6.9696e–08 2.00
0.00015625 3.5051e–06 1.00 1.1042e–08 2.00 1.7432e–08 2.00

Table 2 The L2 errors and orders at T = 0.05 for v that are computed by BDF1, CN, and BDF2 schemes

δt BDF1 Order CN Order BDF2 Order

0.00500000 4.1100e–05 – 1.8068e–06 – 1.9312e–06 –
0.00250000 2.0715e–05 0.99 4.6180e–07 1.97 4.5096e–07 2.10
0.00125000 1.0399e–05 0.99 1.1654e–07 1.99 1.0960e–07 2.04
0.00062500 5.2100e–06 1.00 2.9259e–08 2.00 2.7044e–08 2.02
0.00031250 2.6076e–06 1.00 7.3294e–09 2.00 6.7187e–09 2.01
0.00015625 1.3045e–06 1.00 1.8341e–09 2.00 1.6745e–09 2.00

Table 3 The CPU times compared with SAV method in [11]

δt BDF1 CN BDF2

SAV 3S-IEQ SAV 3S-IEQ SAV 3S-IEQ

0.05 6.4169 4.9585 8.5656 6.3193 7.0054 6.3995
0.005 12.9170 9.1015 16.5923 12.0941 14.0333 13.0141
0.001 76.3671 47.2736 99.6308 68.8753 78.6086 64.0254
0.0005 159.6048 92.6264 201.6058 141.2049 78.6085 132.0207
0.0001 909.1568 491.2776 1030.4299 815.3919 1025.0683 727.2657

4.2 Energy stability test and phase transition
We select the following smooth initial conditions to demonstrate the energy stability of
the proposed schemes:

u(x, y, 0) = sin
(
2x(x – 1)y(y – 1)

)
, v(x, y, 0) = cos

(
10x(x – 1)

)
y(y – 1), (4.2)

where � = [0, 1]2, and we use 128 × 128 Fourier modes for spatial discretization. From
Fig. 1, the original energy E, the modified energy E , the discrete energies Ebdf 1, Ecn, and
Ebdf 2 are nonincreasing in time. In Fig. 2, we plot the evolution curves of modified discrete
energies Ebdf 1, Ecn, and Ebdf 2, which are calculated by BDF1, CN, and BDF2 for various time
steps. Overall, the schemes developed in this paper are unconditionally energy stable. For
the same time step, the discrete energy of CN scheme can obtain a better approximation,
especially δt = 0.001, 0.0005, 0.0001, which is consistent with the results in [11]. Moreover,
Fig. 2 provides a basis for us to select an appropriate time step when simulating the long-
term phase transition process, that is, δt ≤ 0.001. Figure 3 displays the snapshots of the
phase variables u and v at different times. Moreover, we can see that u describes a macro
phase separation between homopolymer and copolymer, while v describes a micro phase
separation that occurs within the separate domain. Significantly, we choose the same pa-
rameters and initial data as [11] to demonstrate the consistent snapshots of u and v.

In Table 3, we give the CPU time consumed by 3S-IEQ compared with the SAV method
in [11]. The three schemes of the former method take significantly less time than the latter,
especially for the minimal time step simulation δt = 0.0001, because the authors in [11]
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Figure 1 Evolution of energy E defined in (2.2), pseudo energy E defined in (3.5), and modified discrete
energies Ebdf1, Ecn , and Ebdf2, which are calculated by BDF1, CN, and BDF2, respectively. The parameters are
εu = εv = 0.05, Mu =Mv = 1, α = β = 0.01, σ = 100, S = 10, T = 10, δt = 0.001

Figure 2 Evolution of modified discrete energies Ebdf1, Ecn , and Ebdf2, which are calculated by BDF1, CN, and
BDF2 for various time steps. The parameters are εu = εv = 0.05, Mu =Mv = 1, α = β = 0.01, σ = 100, S = 10,
T = 10, δt = 0.01, 0.005, 0.001, 0.0005, 0.0001

Figure 3 The evolution of the phase transition u and v with initial data (4.2). From left to right:
t = 0, 0.2, 0.3, 0.8, 50. The parameters are εu = 0.05, εv = 0.05, Mu = 1, Mv = 0.05, α = 0.01, β = –0.9, σ = 100,
S = 10, T = 50, δt = 0.001

needed to solve four fourth-order linear equations with constant coefficient at each time
step. Here we only solve two fourth-order linear equations, which greatly improves the
efficiency.

5 Conclusions
This paper applies the 3S-IEQ method to design three linear, decoupled, and uncondi-
tionally energy stable numerical schemes for the coupled Cahn–Hilliard system. Numer-
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ical simulations are shown to demonstrate the time accuracy and unconditional energy
stability. The most significant advantage of this method is that we only solve two fourth-
order linear equations, which dramatically improves the efficiency, and it can be applied to
various gradient flows, including L2 and H–1 gradient flows. However, the error and con-
vergence analysis of the proposed schemes is still an open challenge due to the coupling
and nonlocality. We will carefully consider the bottleneck in the future.
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