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Abstract

In this paper, we introduce an inertial Halpern-type iterative algorithm for
approximating a zero of the sum of two monotone operators in the setting of real
Banach spaces that are 2-uniformly convex and uniformly smooth. Strong
convergence of the sequence generated by our proposed algorithm is established by
means of some new geometric inequalities proved in this paper that are of
independent interest. Furthermore, numerical simulations in image restoration and
compressed sensing problems are also presented. Finally, the performance of the
proposed method is compared with that of some existing methods in the literature.
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1 Introduction
Let H be a real Hilbert space. Let A : H — H and B: H — 2 be single- and multi-valued
monotone operators, respectively. Consider the problem:
findue H with0e€ (A + B)u. (1)
The vast applicability of the monotone inclusion problem (1) in solving problems such as
convex minimization, variational inequality, image restoration, and signal processing has
made it a problem of contemporary interest (see, e.g., [1-5]). Many mathematical algo-
rithms have been developed for solving problem (1). Early methods include, for example,
the forward-backward algorithm (FBA) of Passty [6], the Peaceman-Rachford algorithm
[7], and the Douglas-Rachford algorithm [8] to mention but a few. However, these methods

do not guarantee strong convergence to a solution of problem (1). The FBA is an iterative
procedure that starts at a point x; € H, and generates a sequence {x,} C H by:

Xp1 = (L + 2, B) M = Ay A)xy,
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where {1,} is a sequence of positive real numbers. Due to the nonexpansive nature of
the resolvent operator (I + A,,B)~! appearing in the backward step in the FBA, the algo-
rithm has been studied extensively by many authors. Over the years, modified versions of
the FBA using the idea of Halpern-type or viscosity-type approximation technique have
been proposed to obtain strong convergence. For example, in 2012, Takahashi et al. [9]
introduced and studied a Halpern-type modification of the FBA in real Hilbert spaces and
proved strong convergence of the sequence generated by their algorithm to a solution of
(1). Also, in 2020, using the idea of viscosity approximation, Kitkuan et al. [10] introduced
and studied a viscosity-type algorithm for approximating solutions of problem (1) and
proved a strong convergence theorem in the setting of real Hilbert spaces.

It is well known that iterative methods involving monotone operators have slow conver-
gence properties. In the literature, the study of convergence properties of iterative algo-
rithms has become an area of contemporary interest (see, e.g., [11-17]). One method that
is now studied enormously is the inertial extrapolation technique which dates back to the
early result of Polyak [18] in the context of convex minimization. An algorithm of inertial
type is an iterative procedure in which subsequent terms are obtained using the preceding
two terms. Many authors have shown numerically that adding the inertial extrapolation
term in an existing algorithm improves its performance (see, e.g., [19-24]). The inertial
technique has successfully been employed as an acceleration process for the FBA and its
modifications. For example, in [25], Lorenz and Pock introduced and studied an inertial
version of the FBA in the setting of real Hilbert spaces and proved weak convergence.
Later, Cholamjiak et al. [26] introduced and studied an inertial Halpern-type FBA and
proved strong convergence in the setting of real Hilbert spaces. Recently, in 2021, Adamu
et al. [27] used the idea of viscosity approximation technique to introduce a three-step in-
ertial modified viscosity-type FBA in the setting of a real Hilbert space and proved strong
convergence.

It is worthy of mentioning that all the results mentioned above owe their validity to the
setting of real Hilbert spaces. However, the following indicates that some real-life prob-
lems do not reside only in Hilbert spaces. Consider the 3D Navier-Stokes equation:

osu+(u-Vu—vAu+Vp=0;

V.-u=0,

where u denotes the velocity of a fluid, p denotes the scalar pressure, and v > 0 denotes
velocity. In 1933, Leray [28] proved the existence of a weak solution to the corresponding
Cauchy problem with initial data from L,(R?). Unfortunately, the well-posedness of the
problem still remains a major open problem to date. On the other hand, Miyakawa [29]
showed that if the initial data is taken from L,(IR?), 3 < p < 00, there exists a unique solu-
tion to the 3D Navier-Stokes equation (which is known to exist locally in time). In order
to approximate the solution guaranteed by Miyakawa of the 3D Navier-Stokes equation,
algorithms in L,(R?) may be needed. It, perhaps, can serve as a motivation for introduc-
ing and studying iterative algorithms in real Banach spaces more general than real Hilbert
spaces.

The concept of monotonicity defined on Hilbert spaces can be extended to Banach
spaces in either of the following sense. When the operator is a self map on a Banach space,
E and satisfies some property, it is called accretive. However, if the operator maps E to
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its dual space, E* and satisfies the same property as in the setting of real Hilbert spaces,
the name monotone is retained. In the literature, extensions of the inclusion problem (1)
involving accretive operators have been studied by many authors (see, e.g., [30—35]). How-
ever, there are only a few results in the monotone sense. It is worthy of mentioning that
a motivation for the study of monotone operators on real Banach spaces stems mainly
from their firm connection with optimization problems (see, e.g., [36]). Some early re-
sults concerning extensions of the inclusion problem (1) involving monotone operators
on real Banach spaces in the literature include, for example, the result of Shehu [37]. He
proved the following theorem:

Theorem 1.1 Let E be a uniformly smooth and 2-uniformly convex real Banach space.
Let A : E — E* be a monotone and L-Lipschitz continuous mapping and B : E — 25 be
a maximal monotone mapping. Suppose the solution set (A + B)™10 is nonempty and the
normalized duality mapping on E is weakly sequentially continuous. Let {x,} be a sequence
defined by:

X1 € E,
Yn = g+ )”nB)_l(]xn = LuAxy,), (2)
Xn+l :]_l(Jyn - )\n(Ayn - Axy)),

where {\,} satisfies the following condition: 0 < a < 1, < ﬁ, WL is the 2-uniform convexity
constant of E; k is the 2-uniform smoothness constant of E*; and L is the Lipschitz constant
of A. Then, the sequence {x,} generated by (2) converges weakly to a solution of problem (1).

Also, in the same year, Kimura and Nakajo [38] proved the following strong convergence

theorem:

Theorem 1.2 Let C be a nonempty closed and convex subset of a uniformly smooth and
2-uniformly convex real Banach space E. Let A : C — E* be an a-inverse strongly monotone
mapping and B : E — 2F" be a maximal monotone mapping. Suppose the solution set (A +
B)710 is nonempty. Let u € E and {x,,} C C be a sequence defined by:

xleC,

3)
Xner = e + )LnB)_l(yn]M + (1= yu)Jxn — LuAx,),
where I1 is the generalized projection, ., C (0,00) and y, C [0,1] such that lim,_, y, =0
and ) .| yn = 0. Then, the sequence {x,} generated by (3) converges strongly to a solution
of problem (1).

Our main interest in this work is to introduce a new inertial Halpern-type FBA involv-
ing monotone operators in the setting of 2-uniformly convex and uniformly smooth real
Banach spaces and prove strong convergence of the sequence generated by our algorithm
to a solution of the inclusion problem (1). The strong convergence was achieved by means
of some new geometric inequalities we establish here, which are of independent interest.
Furthermore, some interesting numerical implementations of our proposed method in

solving image restoration and compressed sensing problems are also presented.



Adamu et al. Journal of Inequalities and Applications (2022) 2022:70 Page 4 of 20

2 Preliminaries

Let E be a real normed space and let J : E — 2F" be the normalized duality map (see,
e.g., [39] for the explicit definition of / and its properties on certain Banach spaces). The
following functional ¢ : E x E — R defined on a smooth real Banach space by

d(x,y) = x> = 2(x, Jy) + |yl Vx5 €E, (4)

will be needed in our estimations in the sequel. It was introduced by Alber [40] and studied
by many authors (see, e.g., [41-43]). For any x,y,z € E and t € [0, 1] using the definition
of ¢, one can easily deduce the following (see, e.g., Nilsrakoo and Saejung, [41]):

PL: (lxll = Iy1D* < (x,3) < (]l + llyID?,

P2 ¢(x,J Ml + (1-1)2) < th(x,y) + (1 - 1) (,2),

P3: ¢(x,9) = p(x,2) + ¢(2,y) + 2(z -, Jy - J2),
where J and /7! are the duality maps on E and E*, respectively.

We shall use interchangeably ¢ and V : E x E* — R defined by

V(% y*) = Ixll* = 2{x,9*) + IIyI>,  Vx€E, y* € E¥,

since V(x,5%) = ¢(x, ] 1y%).

Definition 2.1 Let E be a reflexive, strictly convex, and smooth real Banach space and let
B:E — 2% be a maximal monotone operator. Then for any A > 0 and u € E, there exists a
unique element u; € E such that Ju € (Ju; + ABu;). The element u, is called the resolvent
of B, and it is denoted by Ju. Alternatively, J2 = (/ + AB)~1/, forall A > 0. It is easy to verify
that B0 = F(JB), VA > 0, where F(J?) denotes the set of fixed points of JZ.

Lemma 2.2 ([39]) Let C be a nonempty closed and convex subset of a smooth, strictly con-
vex, and reflexive real Banach space E and let Tlc : E — C be the generalized projection.
Foranyx e Eandye C,x=Icx ifand only if (x —y,Jx = Jx) > 0, forall y € C.

Lemma 2.3 ([40]) Let E be a reflexive strictly convex and smooth Banach space with E* as
its dual. Then,

V(u, u*) + 2(]’1u* —u, v*) < V(u,u*+v"), (5)
forallu € E and u*,v* € E*.

Lemma 2.4 ([44]) Let E be a 2-uniformly smooth real Banach space. Then, there exists a
constant y > 0 such that Vx,y € E

ll+ y11 < ll%l1* + 20y, Jx) + v IylI>.
In a real Hilbert space, y = 1.

Lemma 2.5 ([45]) Let E be a uniformly convex and smooth real Banach space, and let
{u,} and {v,} be two sequences of E. If either {u,} or {v,} is bounded and ¢(u,,v,) — 0
then ||u, — v,|| — 0.
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Lemma 2.6 ([41]) Let E be a uniformly smooth Banach space and r > 0. Then, there exists
a continuous, strictly increasing, and convex function g : [0,2r] — [0, 1) such that g(0) = 0

and
¢(w) " [Blx+ (1= B)y]) < B(u,x) + (1= Bp(u,9) — B(L = B)g(Ix ~ ¥l

forall B €[0,1], u € E and x,y € B,.

Lemma 2.7 ([46]) Let {a,} be a sequence of nonnegative numbers satisfying the condition
ani1 < (L= ap)ay + oy +cuy n>0,

where {a,}, {B,} and {c,} are sequences of real numbers such that

(i) {a,}cl0,1] and Zan = 00;
n=0

(if) limsup B, <0;

n—00

o0
(iii) ¢, >0, ch < 00.
n=0

Then, lim,,_, o @, = 0.

Lemma 2.8 ([47]) Let I, be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {1",,1. }i=0 of {T's}, which satisfies F,,/. < F,,/.+1 for

all j > 0. Also, consider the sequence of integers {t(n)},>,, defined by
t(n) = max{k <n| g <1}

Then, {t(n)}y>n, is a nondecreasing sequence verifying lim,_, o, T(n) = 0o, and, for all n >
no, it holds that v () < I'v(s)41, and we have

Fn = 1—‘1:(r1)+1'
Lemma 2.9 ([48]) Let {T',}, {8,,} and {«,} be sequences in [0, 00) such that
Fn+1 < Fn + an(rn - 1—171—1) + 8n:

foralln=>1, Z:il 8, < +00, and there exists a real number o« with 0 <o, <a <1, for all
n € N. Then, the following hold:

(i) X =1[0n = Tuials < +00, where [t], = max{z,0};

(ii) there exists T'* € [0,00) such that lim,_, o, I, = T*.

Lemma 2.10 ([38]) Let E be a 2-uniformly convex and uniformly smooth real Banach space
with dual space, E*. Let A : E — E* be an a-inverse strongly monotone and B : E — 2F" be
a maximal monotone. Let T)x = /'){3]‘1 (Jx — AAx), for all A > 0 and x € E. Then, the following
hold:
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(i) F(T) = (A +B)™'0 and (A + B)™0 is closed and convex.
(ii) ¢, Thx) < ¢, ) = (v = 2B)llx = Tox|l” = A2 = 5)|Ax — Aul?,
for all B >0, where y is the constant appearing in Lemma 2.4.

Remark 1 Observe that given « > 0, there exists Ao > 0 such that % > % Thus, one can
choose 8 > 0 such that zi < B < L. Hence, from (ii) we have
o )

o, Tox) < ¢p(u,x), VxeEuc(A+B)lo.

3 Main result
The following lemmas will play a crucial role in the proof of our main Theorem.

Lemma 3.1 Let E be a uniformly smooth real Banach space, and let u,x,y,z € E, and let
a,b,ce(0,1)witha+b+c=1. Then

6 (1) (@ + bJy + cJ2)) < ad(u,x) + b (u,y) + cp(1, 2). ©)

Proof Using P2, we estimate as follows:
¢ (u,) N a)x + bly + cJ2)) = ¢ (u,ll ((1 -0 [&]x + %]y] + c]z))

<(1-0¢ (u,rl (fo . i}y)) + cp(u,2)
1-c¢ 1-c¢
<ad(u,x) + bd(u,y) + cp(u,z),
establishing the Lemma. O

Lemma 3.2 Let E be a uniformly smooth Banach space and r > 0. Then, there exists a
continuous, strictly increasing, and convex function g : [0,2r] — [0, 1) such that g(0) = 0
and

¢ (u,] " (aJx + bJy + J2)) < ad(u,x) + b (u,y) + cp(u,2) — beg(|lJy - Jzl)»

foralla,b,ce (0,1) witha+b+c=1,u€E and x,y,z € B,.

Proof Observe that forany x,y € B, and a,b,c € (0,1) witha+b+c=1, (5% + &y) € B,.

Using Lemma 2.6, we estimate as follows:
¢ (u,J N a)x + bly + cJ2)) = ¢ (u,ll ((1 -0 [ﬁ]x + %]y] + c]z))

<(1-0¢ (u,rl (ifx . L,y» +plu2)
1-c¢ 1

-c
< ag(u,x) + b (u,y) + cp(u, 2) — abg(|[fx - Jyll),
establishing the Lemma. O

Theorem 3.3 Let E be a 2-uniformly convex and uniformly smooth real Banach space
with dual space, E*. Let A : E — E* be an a-inverse strongly monotone and B: E — 25" be
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a maximal monotone. Assume that the solution set Q = (A + B)™10 # @, given wy,v € E, let
{w,} be a sequence in E defined by:

Yn = ]71(]Wn + Wy —JWy_1)),
Zn =ffn]_l(]yn - )\nAyn)r (7)

Wyl = ]_1(61;1]1/ + bn]yn + Culzn),

where 0 <, < [L, and

: o O
/In = mln{p,, wn—Iwp_1112” $Wn,wp_1) }’ Wn #Wn—l!
W, otherwise,

w € (0,1) and {9,} C (0,1) such that y -, ¥, < 00, 0 < Ay < 2y, {@u}, {bu}, {c} C (0,1)
with a, + b, + ¢, = 1 and lim,_, , a, = 0. Then, {w,} converges strongly to w € Q.

Proof First, we show that the sequence {w,} is bounded. To prove this, we start by esti-
mating the inertial term y, using property P3.

¢(W¢yn) = ¢(W, Wn) + ¢(Wn:yn) + 2(Wn - W¢]yn _]Wn>
=p(w,w,) + ¢(Wn:yn) + 2 Wy — W, Jwy, = Jwy,_1) (8)

= ¢(W, Wn) + ¢(Wn’yn) + Mn¢(wnx Wn—l) + Mn¢(W; Wn) - Mn¢(W» Wn—1)~ (9)
Also, by Lemma 2.4, one can estimate y, as follows:
¢, yn) = (W, ] (W + tin Wi — IWn_1)))
= WI + W + 1n G =) |* = 2w, W + T = Jw1)

— Wl + [T + 1T = T 1) |* = 200, W) = 20w, Jw,, = 1)

< W, wy) + ¥ LWy — Wit 1% + 2180 (W = W, Wy, — Jwy_1). (10)
Putting together equation (8) and inequality (10), we get
Wi Yn) < ¥ Wi — I ||

From (9), this implies that

dW,3) < dW, W) + ¥ 2 1Wy — W1 1> + pn (W, W1)
T Un (¢(W: Wy) — (W, Wn—l))' (11)

Having obtained this estimate of ¢(w,y,), we can now use it to prove the boundedness of
{w,}. By Lemmas 3.1 and 2.10, and inequality (11), we get
W, Wii1) = d(W, ] (@nJv + buJyn + culzn))
<a,p(w,v) + bn¢(w,yn) + ¢, p(w, z,,)
< andw,v) + (by + cn) (W, yn)
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< anpw,v) + (1 = a,) (dw, wy) + (W, W) — p(w, wy1))
+ Ln® Wiy W1) + ¥ iy W = JW1 %)
< max{(w, u), p(w, w,) + n (W, W) — P(W, w,,_1))
+ Y ol W = W |+ 10 (Wi W) }
(12 < w, since w, € (0,1)). (12)
Suppose the maximum is ¢(w, u). Then the conclusion follows trivially. Otherwise, there
exists an 7y € N such that for all n > ny,
dW, Wpi1) < d(w, wy) + Wy (¢(W; W) — (W, Wn—l))
+ Y o llTWi = W1 12 + pn Wiy W)
By Lemma 2.9, this implies that {¢(w,w,)} is convergent. Moreover, by property P1, we
deduce that {w,} is bounded. Thus, {w,}, {y,}, {z.} and {u,} are bounded.

Having established the boundedness of {w,}, the next task is to prove that the sequence
{w,} converges to the point w = [1gv. Now, using Lemmas 3.2 and 2.10,

d(wW, Wyi1) < andw,v) + byp(w, y,,) + cnp(w, z,,) — bncng(”]yn _]Zn”)

<a,p(w,v) + bn¢(wryn) +Cy <¢(W’yn) -(y- )Ln,B)”yn - Zn||2

1
- )"n (20[ - E) ”Ayn —AW||2) - bncng(”]yn _]Zn”)

=a,p(w,v)+(1 - ﬂn)¢(w:yn) —caly - )‘nﬂ)”yn - Zn||2

1
- Cn)\n (20{ - B) ”Ayn _AW||2 - bncng(”]yn _]Zn”)' (13)

Setting dy = u(y = 2uB)|yn = 2ull, €n = cudon(20 = )| Ay, — Awll and L = bcug(yn — J2u ),
we deduce from inequality (13) that
A+ en+ 1y < an(w,v) — oW, yn)) + D (W, ¥,) — p(W, Wy 11)
S ﬂy,(¢(W, V) - ¢(W,yn)) + ¢(Wr Wn) + ,an (d)(W, Wn) - ¢(W1 Wn—l))
+ Ln® Wois Wie1) + ¥ LW = W |1 = S(w, Win1)
=dn ((,b(W, V) - ¢(W’yn)) + ¢(W: Wn) - ¢(W’ WVI+1) + /‘Lnd)(wm Wn—l)
+ Un (¢(W, W) — (W, Wn—l)) + J/Mi W = Jwn_1 ”2 (14)
To complete the proof, it is important to consider the following cases:

Case 1. Assume that for some 7y € N, the following inequality holds:

dW, Wyi1) < o(w,w,), V> ng.

Then, by the boundedness of {w,}, this implies that lim,_, o, ¢(w, w,) exists. Thus, from
inequality (14), we obtain that

Iim [lys -z I*=0,  lim [|Aw, - Aw|* =0,  lim g(Iyn — Jeull)-
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Furthermore, we deduce that lim,, o ||y, — Jz,||. Also,

”]yn _]Wn” = /'Ln”]Wn _]Wn—l” = nlirgo ”]yn _]Wn” =0.
Hence, it is not difficult to establish that

lim ||Jw, —Jz,|l = 0.

n— o0
In addition, observe that

Wi = Iwall = llanJv + bn]yn + CuJzy — Jwi|
= an”]‘/ _]Wn” + bn”]yn _]Wn” + Cn”]Zn _]Wn”
= nliglo l/Wni1 = Jwnll = 0. (15)
As usual, the next thing to show now is that the set of all weak subsequential limits of {w,,}
is contained in (A + B)™'0, which is a standard proof (see, e.g., [38] for this proof).

Now we have all the tools to prove that {w,} converges strongly to w = I1gv. Let w* be a
weak limit of {w,,}. Then, there exists a subsequence {w,, } C {w,} such that

limsup(w, —w,Jv — Jw) = klim Wiy =W, Jv = Jw) = <w* -w,Jv —]w).

n— 00

Since w = IIgv and w* € €, this implies that
(w* - w,]v—]w) <0.
Thus, by (15), we deduce that

lim sup(wy.1 —w, Jv = Jw) <O0.

n—00

Finally, we conclude Case 1 using Lemma 2.3, and what we have established so far.

W, Wya1) = d(w, ] (@nlv + bufyu + CuJzn))
=V(w,auv + buJyu + cuJzn)
< V(W,anJv + buJyu + cuJzn — an(Jv = JW)) + 2, (W1 = W, Jv — Jw)
= (W, ] (@nIw + buJyu + CuJzn)) + 25 (W1 — W, Jv — Jw)
< andW, w) + bud(W, yn) + cap(W, 21) + 26, (W1 — W, Jv — Jw)
< (1=an)pW,yn) + 2an(Wni1 —w,Jv = Jw)
< (1= an) (6w, W) + (D (W, W) = p(w, Wy1)) + ¥ iy W = Wi |1
+ n@ Wiy Wn1)) + 26, (Wyiy1 — W, Jv = Jw) (16)
< (L= an)pw,ws) + ¥ tn Wy = W1 > + pnp(Wy, Wy1)

+2a, (Wyi1 — W, Jv — Jw). (17)



Adamu et al. Journal of Inequalities and Applications (2022) 2022:70 Page 10 of 20

By Lemma 2.7, we deduce from (17) that lim,_, . ¢(w,w,) = 0, which implies that
lim,,_, o W, = w as a consequence of Lemma 2.5.

Case 2. If the hypothesis of Case 1 fails, since every sequence in R has a monotone
subsequence, one can construct a subsequence {Wim;} C {wn} that will satisfy

o(w, w,,,/,+1) > p(w, w,,,}.), VjeN.
By Lemma 2.8, we have that

dW, W) < oW, Wy 1) and  p(w,wy) < p(w,wy,, ), VkelN.
From inequality (14), using this index {m;} C N, we have

Ay + €y + by < W (BW, V) = d(W, V) + (W, W)
= (W, Wins1) + L @ Woyor W —1)
+ Ly (BW, W) = S(W, Wy 1))
+ Y2 Wi, = W1 |12
< Ay (BW, V) = d(W, Ymy)) + D(W, W)
— QW Wiy 1) + Mo @ Wi Wi —1)

Y o Wi, = Wi 1|1
Following a similar argument as in Case 1, one can establish the following

klingo ||ymk = Zmy =0, klingo ”]ka _]ka =0,

klim IWpps1 = Wi [l =0 and  limsup(w,,, .1 — w,Jv —Jw) < 0.
—00

k— 00

Furthermore, from (16), we have

W, Win1) < (1= ) (OOW, W) + i (W, i) = (W, Wiy 1))
+ ¥ i W = I 2 1> + 1 @ Wiy W 1))
+ 2 (W1 = W, Jv = Jw)
< (1= @)W, i) + (0w, W) — (W, Wy 1))
+ ¥ Lo Wi, = W1 |1

+ Mmk¢(ka’ ka—l) + 20y (Wi =W, Jv = Jw). (18)
By Lemma 2.7, we deduce from (18) that limy_, .. ¢(w, w,,, ) = 0. Thus,

limsup ¢(w, wy) < lim ¢p(w,wy,, ) = 0.
k— 00 k— o0

Therefore, limsup;_, ., ¢(w, wi) = 0 and so, by Lemma 2.5, limy_, o wx = w. O
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Remark 2 The following results can be deduced from Theorem 3.3.
« In Theorem 3.3, setting i, = 0, one gets the unaccelerated version of our proposed
algorithm (7).
+ One can also get an alternated inertial version of our proposed algorithm (7) by
modifying the inertial term in the following way:

Wy if m is even;

J Y 0w, + o (wy, — Jw,,_1))  if mis odd;

In =

and then replace y, by ¥, in algorithm (7) to get the following algorithm:

Zy = ]fn]_l(]};n - )\nAJ;n)’

(19)
Wis1 = HanJv + buJYn + culzn),

which is the so-called alternated inertial algorithm. This simple modification was first
considered for the case of the proximal point algorithm by Mu and Peng [49]. For
motivation and relevance of the alternated inertial algorithm, interested readers may
see [49].

4 Applications and numerical illustrations
4.1 Application to convex minimization problem
Consider the structured nonsmooth convex minimization problem:

glelg {f®) +gx)}, (20)

where E is a real Banach space, f : E — R U {+00} is proper, convex and lower semi-
continuous (Isc) and g : E — R is smooth and convex with gradient Vg, which is L-
Lipschitz continuous. As we shall see in Sects. 4.2 and 4.3, problem (20) is suitable for
modeling problems coming from image deblurring and denoising, and compressed sens-
ing.

Observe that a solution of problem (20) is equivalent to a solution of the following in-
clusion problem:

findu € E suchthatOe (af(u) + Vg(u)). (21)

Since 9f is maximal monotone, imposing the condition that Vg is a-inverse strongly
monotone, then the FBA and its modifications can be used to approximate solutions of
(21), which are minimizers of (20). Just as in the case of arbitrary monotone operators,
the acceleration process has been an active topic of nonsmooth convex minimization. In
this context, the inertial extrapolation technique by Ployak [18] has been employed as an
acceleration process. A particular case of the inertial FBA introduced by Lorenz and Pock
[25] that captured the attention of many authors is the fast iterative shrinkage-thresholding
algorithm (FISTA) developed by Beck and Teboulle [50]. The algorithm is defined by:

p oL
n - 2 ’ n - tn ’
Yn = Xn + Au(Xy — Xp_1), (22)

Xntl = (1 + )\af)il()’n - )\Vg()/n))v
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where tp =1, A = %, x0 =x1 € H and, f and g are as defined in problem (20) in the setting
of real Hilbert spaces. Beck and Teboulle [50] proved weak convergence of the sequence

generated by (22) to a solution of the inclusion problem (21) in real Hilbert spaces.

Remark 3 The literature on the modifications of the {¢,} in FISTA to take care of the oscil-
latory behavior of the scheme abound. Interested readers may see, for example, [51] what

has been.

Setting A = Vg and B = 9f in our proposed algorithm (7), one gets an algorithm for
solving problem (20).

4.2 Application to image restoration problems

Images are produced to record or display useful information. Due to imperfections that
may occur in the capturing process, the recorded images may invariably represent a de-
graded version of the original scene. The aim of image restoration techniques is to restore
the original image from a degraded observation of it. The convex optimization problem

in image restoration is modeled as

findu € H such that u € argmin Fx, (23)
xeH

where F is a convex differentiable functional on a real Hilbert space H. Since the solution
may not be unique for any degraded image, problem (23) inherits ill-posedness. To restore
well-posedness, regularization techniques are employed. That is, a stable solution can be

obtained by recasting problem (23) as

findu € H such that u € argmin(Fx + AGx),
xeH

where A > 0 is a regularization parameter and G is a regularization function that may be
smooth or nonsmooth. In the literature, the /;-regularization is usually used for image

denoising and deblurring problems. The model is given by:

1
argmin = ||Lx — b||® + Al|x|l1, (24)
xeH 2

where b is an observed image, x is an unknown image, y is noise, and L is a linear oper-
ator that depends on the concerned image recovery problem, || - || denotes the Euclidean
norm, A is a positive regularization parameter, and || - ||; is the /;-regularization term. By
setting Ax := V(3 || Lx — b||*) = L (Lx — b) and Bx := 9(A||x]1), one can use the FBA and its
modifications to find an equivalent solution of (24).

In our numerical experiments, we used the MATLAB blur function “P=fspecial('motion,
20,30)” and added random noise. We initialize the vectors xy and u to be zeros and x; to
be ones in R”. In algorithm (2) of Shehu [37], we set A = 0.0001; in algorithm (3) of Kimura
and Nakajo [38], we set 1 = 0.00001, y, = - and C = R?*®. In the FISTA (22), we set £ = 1
and XA = 0.03, and in our proposed algorithm (7), we choose a,, = 0, b, = 0.75, ¢, = 0.25 and
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\

(d) restored image with algorithm (2)

Figure 1 Restoration process via algorithms (3) and (2)

My = 0.95 and A, = 0.00001. Finally, we used a tolerance of 10~* and a maximum number
of iterations (n) to be 100 for all the algorithms. The original test images (Abubakar, Bar-
bra, Duangkamon and peppers) their degradation and restoration are presented in Figs. 1
and 2.

The signal-to-noise ratio (SNR) is a performance metric used to measure the perfor-

mance algorithms in the restoration of degraded images. It is defined as:

]I

SNR:=10log
[l —

’

where x and x,, are the original and estimated image at iteration n, respectively. Using
this performance metric, the higher the SNR value for a restored image, the better the
restoration process via the algorithm. In Fig. 3, we present a chart to show the perfor-
mances of algorithms (2), (3), (22) and our proposed algorithm (7) in restoring the test

images.
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(b) restored images with our algorithm (7)

Figure 2 Restoration process via algorithms (22) and (7)
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(a) Graph of SNR values of the restored images in columns 1 and 2 in Figure 1
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Figure 3 Graphical presentation of the SNR values of the restored images in Fig. 1
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(b) Graph of SNR values of the restored images in columns 3 and 4 in Figure 1)

4.3 Application to signal processing

In this subsection, we give an application of our method to compressed sensing, which is
an aspect of signal processing that has to do with reconstructing a sparse signal from mea-
sured data. Precisely, our goal here is to recover a sparse signal x € RN from the following

Page 14 of 20
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Original signal (N= 4096, M= 2048, 50 spikes)
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(b) Restored signal via (3) for 100 spikes

Figure 4 Restored signal via algorithm (3)

observation model:
y=Lx+z, (25)

where L is an M x N sensing matrix with Gaussian entries and M < N, and z € RM is a
Gaussian noise, and y € RM is the observed or measured data. Since the system (25) is
undetermined and noisy, regularization methods are used to recover x. The approach is
similar to that of the image restoration we introduced in Sect. 4.2.

Just like we did for the image restoration, here we also compared the performance of
algorithms (3), (2), (22), and (7) in the recovery process of the sparse vector x € RN with
m nonzero entries. We considered a signal of length N = 4096 and M = 2048 observations.
Also, we study the behavior of the algorithms and their mean square errors (MSE) as we
vary m = 50 and m = 100. In the experiment, for algorithm (3) of Kimura and Nakajo,
we choose y, = ﬁ and X, = 0.001; in algorithm (2) of Shehu, we choose 1, = 0.001; in
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Original signal (N= 4096, M= 2048, 50 splkes)

[ 1 IH 1 ] [ !
NOI T O 11 1 |.||u||| [T )|
0 500 1000 1500 2000 2500 3000 3500 4000
Measurement
oQWWWWWWWW
500 1000 1500 2000
algorlthm (2) (MSE = 1. 177008e 06, 187 iterations)
1 [I m ': T HW I 'm 1 IHH : 'llf. lll :IIII LI

0 500 1000 1500 2000 2500 3000 3500 4000

(a) Restored signal via (2) shown for 50 spikes
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Figure 5 Restored signal via algorithm (2)

the FISTA (22) of Beck and Teboulle, we choose A = 0.03 and £, = 1, and in our proposed
algorithm (7), we choose p,, = 0.95,4,, =0, b,, = 0.75, ¢, = 0.25 and A,, = 0.019, and we used
stopping criteria of 10~* for all the algorithms. The numerical results of the simulations
are presented in Figs. 4, 5, 6, and 7.

4.4 Discussion of the numerical simulations and conclusion
Discussion
« For the test images considered in the image restoration problem, as shown in Figs. 1,
2, and 3, our proposed algorithm (7) outperforms algorithms (3), (2), and (22) in the
restoration process. Furthermore, as we can see clearly from the SNR plots in Fig. 3,
our proposed algorithm (7) restored the test images with the highest quality (highest
SNR value).
« For the recovery process of the sparse vector in the compressed sensing problem, for
algorithm (3) of Kimura and Nakajo, for the first case when the number of spikes was

Page 16 of 20



Adamu et al. Journal of Inequalities and Applications (2022) 2022:70 Page 17 of 20

Original signal (N= 4096, M= 2048, 50 spikes)
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Figure 6 Restored signal via algorithm (22)

50, it took their algorithm 181 iterations to recover the signal, and when we increased
the number of spikes to 100, their algorithm required 271 iterations to restore the
signal. Also, for algorithm (2) of Shehu, for the first case when the number of spikes
was 50, it took 187 iterations to restore the signal, and as the number was increased to
100, it took 272 iterations. Furthermore, the FISTA algorithm also required 117
iterations for 50 spikes and 143 iterations for 100 spikes. This is indeed an
improvement in the recovery compared to that of the algorithms of Kimura and
Nakajo [38] and Shehu [37]. However, our proposed algorithm outperforms the
FISTA algorithm in the recovery process since it took just 83 iterations for 50 spikes
and 94 iterations for 100 spikes.

Conclusion This paper presents some new geometric inequalities in some real Banach
spaces. The new inequalities were used to prove the strong convergence of a sequence
generated by an inertial Halpern-type algorithm to a solution of a monotone inclusion
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Original signal (N= 4096, M= 2048, 50 spikes)
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Figure 7 Restored signal via algorithm (7)

problem. Furthermore, some interesting applications of the theorem to convex minimiza-
tion, image restoration, and signal processing problems were presented. Finally, some nu-
merical simulations to restore some test images degraded by random noise and motion
blur and to recover a sparse signal were presented. From the results of the experiment, the

proposed method, algorithm (7) appears to be competitive and promising.
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