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Abstract
Let (Fn)n be the Fibonacci sequence defined by Fn+2 = Fn+1 + Fn with F0 = 0 and F1 = 1.
In this paper, we prove that for any integerm ≥ 1 there exists a positive constant Cm
for which

lim
n→∞

{( ∞∑
k=n

1

F2mk

)–1

– (F2mn – F
2
m(n–1) + (–1)mnCm)

}
= 0.

Furthermore, we show that Cm tends to 2/5 asm → ∞ (indeed, we provide
quantitative versions of the previous results as well as an explicit form for Cm). This
confirms some questions proposed by Lee and Park [J. Inequal. Appl. 2020(1):91 2020].
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1 Introduction
It is well known that if a series

∑
k≥1 ak is convergent, then its “tail” (

∑∞
k=n ak)n tends to 0

as n → ∞. In particular,

lim
n→∞

( ∞∑
k=n

ak

)–1

= ∞.

In the past years, many mathematicians have been interested in studying the properties
and forms of the reciprocal tails (as above) of the convergent series, where an is related to
some recurrence sequences. Here, we restrict ourselves only to cases in which an is related
to the Fibonacci sequence (Fn)n≥0 which is defined by the binary recurrence

Fn+2 = Fn+1 + Fn,
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with initial values, F0 = 0 and F1 = 1. In 2008, Ohtsuka and Nakamura [11] studied the
partial infinite sums of reciprocal Fibonacci numbers and showed that

⌊( ∞∑
k=n

1
Fk

)–1⌋
=

⎧⎨
⎩

Fn–2, if n is even, n ≥ 2;

Fn–2 – 1, if n is odd, n ≥ 1;

and

⌊( ∞∑
k=n

1
F2

k

)–1⌋
=

⎧⎨
⎩

Fn–1Fn – 1, if n is even, n ≥ 2;

Fn–1Fn, if n is odd, n ≥ 1.
(1)

In the same year, Choi and Choo [2] provided formulas related to the sums of reciprocals
of the products of Fibonacci and Lucas numbers, namely

⌊( ∞∑
k=n

1
FkLk+m

)–1⌋
and

⌊( ∞∑
k=n

1
LkFk+m

)–1⌋

(recall that the Lucas sequence (Ln)n satisfies the same recurrence as Fibonacci numbers,
but with initial values L0 = 2 and L1 = 1). For more facts in this topic, we recommend to
the reader the papers [1, 3–6, 10, 12, 13].

To study the analytic behavior of these sequences, one introduces another (more qual-
itative) definition. We then say that fn ∼ gn if fn – gn tends to 0 as n → ∞. Very recently,
motivated by this definition, Lee and Park [8, 9] proved, among other things, that

( ∞∑
k=n

1
Fk

)–1

∼ Fn–2,

( ∞∑
k=n

1
F2

k

)–1

∼ F2
n – F2

n–1 +
2
3

(–1)n

and
( ∞∑

k=n

1
F2

3k

)–1

∼ F2
3n – F2

3n–3 +
4
9

(–1)n.

Moreover, as formula (5.1) of [8, Sect. 5], they stated (without proof ) the following ex-
pected general formula:

( ∞∑
k=n

1
F2

mk

)–1

∼ F2
mn – F2

m(n–1) + (–1)mnCm, (2)

which should hold for any positive integer m, where Cm is a positive constant. Addition-
ally, they remarked that “it looks not easy to find the explicit values of Cm satisfying (2)
except for m = 1 and 3 (for which C1 = 2/3 and C3 = 4/9). By using computer software
programs (Maple 17 and wolframalpha.com), they estimated this constant for m ∈ [1, 9].
These computations suggest (as written by them): “We might expect that Cm tends to 2/5
as m → ∞”.

The aim of this paper is to confirm the expectation by proving these facts (indeed, we
provide quantitative versions for them as well as a completely explicit formula for Cm).
More precisely, we have the following.

http://wolframalpha.com
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Theorem 1 For any integer m ≥ 1, there exists a positive constant Cm such that

∣∣∣∣∣
( ∞∑

k=n

1
F2

mk

)–1

–
(
F2

mn – F2
m(n–1) + (–1)mnCm

)∣∣∣∣∣ <
9.83

α2m(n–1) (3)

for all n ≥ max{ 4
m , 2} (where, as usual, α = (1 +

√
5)/2 denotes the golden ratio). In partic-

ular,

( ∞∑
k=n

1
F2

mk

)–1

∼ F2
mn – F2

m(n–1) + (–1)mnCm. (4)

Moreover, for all m ≥ 1,

Cm =
2
5

(
1 +

rm + βsm

2 – (–1)mL4m

)
, (5)

where β = (1 –
√

5)/2,

rm :=
(
1 – (–1)m)

L2m + 5
(
1 + (–1)m)

Fm–1FmF2m,

and

sm :=
(
1 + (–1)m)

F2m(L2m – 2).

Furthermore, the estimate

|Cm – 2/5| < 1.2/α2m (6)

holds for all m ≥ 1, and so Cm tends to 2/5 as m → ∞.

Now, we shall present two interesting consequences of the previous result. First, observe
that it is immediate, after a standard calculation, that Cm in formula (5) agrees with values
C1 = 2/3 and C3 = 4/9 (provided in [8]). Moreover, the first 10 values of Cm for m odd are
as follows:

2
3

,
4
9

,
50

123
,

338
843

,
1156
2889

,
15,842
39,603

,
108,578
271,443

,
372,100
930,249

,
5,100,818

12,752,043
,

34,961,522
87,403,803

,

which are rational numbers. However,

C2 =
2

15
(1 – 2β), C4 =

6
35

(1 – 2β), C6 =
8

45
(1 – 2β),

C8 =
42

235
(1 – 2β), C10 =

22
123

(1 – 2β), C12 =
144
161

(1 – 2β),

which (since 1 – 2β =
√

5) is the same list as

C2 =
2
√

5
15

, C4 =
6
√

5
35

, C6 =
8
√

5
45

,
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C8 =
42

√
5

235
, C10 =

22
√

5
123

, C12 =
144
805

√
5

are irrational numbers.
This suggests that C2m–1 ∈Q>0 and C2m ∈ √

5 ·Q>0 for all m ≥ 1. Indeed, the next result
confirms this fact by providing a cleaner formula for Cm depending on the parity of m.
More precisely,

Corollary 1 Let m be a positive integer. We have
(i) If m is even, then

Cm =
2(L2m – 2)

25F2m

√
5.

(ii) If m is odd, then

Cm =
2(L2m + 2)

5L2m
.

In particular, Cm is a rational number if and only if m is odd.

The previous explicit formulas for Cm provide better bounds to Cm – 2/5 which together
with Theorem 1 allows to prove the following.

Corollary 2 We have that
(i) Let m be an even positive integer. Then

⌊( ∞∑
k=n

1
F2

mk

)–1⌋
= F2

mn – F2
m(n–1)

holds for all n ≥ 3.
(ii) Let m be an odd positive integer. Then

⌊( ∞∑
k=n

1
F2

mk

)–1⌋
=

⎧⎨
⎩

F2
mn – F2

m(n–1), if n is even;

F2
mn – F2

m(n–1) – 1, if n is odd,

holds for all n ≥ 3.

The proofs of these results combine several estimates, properties of Fibonacci and Lucas
numbers as well as some facts about the convergence of series. The computations in this
work were performed with Mathematica software.

2 Auxiliary results
In this section, we present a few auxiliary facts which will be very useful in all proofs.

Lemma 1 Let (Fn)n and (Ln)n be the Fibonacci and Lucas sequences, respectively, and α =
(1 +

√
5)/2 and β = (1 –

√
5)/2. We have
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(i) (Binet’s formula for Fn) formula

Fn =
αn – βn

√
5

holds for all n ≥ 1.
(ii) (Binet’s formula for Ln) formula

Ln = αn + βn

holds for all n ≥ 1.

The next two lemmas follow from the previous one.

Lemma 2 We have that
(i) F2n = FnLn.

(ii) Ln = Fn+1 + Fn–1.
(iii) L2n = 5F2

n + 2(–1)n.
(iv) L2n = L2

n – 2(–1)n.
(v) (D’Ocagne’s identity) (–1)nFm–n = FmFn+1 – Fm+1Fn.

We know that Q(β) = Q(
√

5) is a quadratic field extension of Q with Q-basis {1,β}. The
next result asserts the exact coefficients of the Q-linear combinations for powers of β ,
namely,

Lemma 3 For any n ≥ 1, one has that

βn = βFn + Fn–1.

The last ingredients are some known lower and upper bounds for Fn, that is,

Lemma 4 The inequalities

αn–2 ≤ Fn ≤ αn–1

hold for all n ≥ 1.

We refer the reader to [7] for the proofs of these results as well as for the history, prop-
erties, and rich applications of the Fibonacci sequence and some of its generalizations.

With these tools in hand, we are now in a position to prove our results.

3 The proof of Theorem 1
By Lemma 1(i), we have that

Fmk =
αmk
√

5

(
1 –

(
β

α

)mk)
,
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hence

1
F2

mk
=

5
α2mk(1 – (β/α)mk)2 .

However, 1/(1 – x)2 = 1 + 2x + 3x2 + · · · holds for |x| < 1. Thus, since |β/α| < 1 and αβ = –1,
we have

1
F2

mk
=

5
α2mk

(
1 + 2

(
β

α

)mk

+ 3
(

β

α

)2mk

+ · · ·
)

=
5

α2mk + 5
∞∑
i=2

i(–1)mk
(

β

α

)imk

.

By summing up from k = n to infinity and after a straightforward calculation, we arrive at

∞∑
k=n

1
F2

mk
=

5
α2m(n–1)(α2m – 1)

+ 5
∞∑
i=2

i
∞∑

k=n

(–1)mk
(

β

α

)imk

=
5

α2m(n–1)(α2m – 1)
+ 5

∞∑
i=2

i(–1)mn
(

β

α

)imn 1
1 – (–1)m(β/α)im

=
5

α2m(n–1)(α2m – 1)
(
1 + f (m, n)

)
, (7)

where f (m, n) denotes the following summatory

f (m, n) :=
(

α2m – 1
α2m

) ∞∑
i=2

i
(

β

α

)mn(i–1) 1
1 – (–1)m(β/α)im .

Note that, by the reverse triangle inequality (and β/α = –1/α2, which follows from β =
–1/α), one has

∣∣1 – (–1)m(β/α)im∣∣ ≥ 1 –
∣∣∣∣βα

∣∣∣∣
2m

> 1 –
1
α4 > 0.85.

Thus, we deduce the following upper bound for |f (m, n)|:

∣∣f (m, n)
∣∣ ≤ 1

0.85
α2m – 1

α2m

∞∑
i=2

i
(

1
α2

)mn(i–1)

≤ 1.18
α2mn

∞∑
i=2

i
(

1
α2mn

)i–2

=
1.18
α2mn

(
2 +

3
α2mn +

∞∑
i=4

i
α2mn(i–2)

)

=
1.18
α2mn

(
2 +

3
α2mn +

∞∑
i=3

i + 1
αmn(2i–2)

)

=
1.18
α2mn

(
2 +

3
α2mn +

∞∑
i=3

(
i + 1
αimn · 1

α(i–2)mn

))
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≤ 1.18
α2mn

(
2.065 +

1
60

∞∑
i=1

1
αimn

)

≤ 1.18
α2mn

(
2.065 +

0.171
60

)

<
2.45
α2mn ,

where we used that

αimn > 1.6imn ≥ 6.55i > 60(i + 1)

for all i ≥ 3 (since mn ≥ 4) together with

1
αmn +

1
α2mn +

1
α3mn + · · · <

1
α4 +

1
α8 +

1
α12 + · · · =

1
α4 – 1

< 0.171,

because αmn ≥ α4. Thus f (m, n) tends to 0 as min{m, n} → ∞. Furthermore, |f (m, n)| <
0.06 for all integers m and n with mn ≥ 4.

Turning back to (7), we have that

∞∑
k=n

1
F2

mk
=

5
α2m(n–1)(α2m – 1)

· (1 + f (m, n)
)
,

and hence

( ∞∑
k=n

1
F2

mk

)–1

=
α2m(n–1)(α2m – 1)

5

(
1

1 + f (m, n)

)
. (8)

Since |f (m, n)| < 1, for mn ≥ 4, then

1
1 + f (m, n)

= 1 – f (m, n) +
(
f (m, n)

)2 – · · · = 1 – f (m, n) + Rm,n,

where Rm,n := (f (m, n))2 – (f (m, n))3 + (f (m, n))4 – · · · . For our purposes, we need to find
an upper bound for |Rm,n|. For that, one has

|Rm,n| ≤ ∣∣(f (m, n)
)2(1 – f (m, n) +

(
f (m, n)

)2 – · · · )∣∣
=

∣∣∣∣ (f (m, n))2

1 + f (m, n)

∣∣∣∣
≤ (f (m, n))2

1 – |f (m, n)|

≤ 1.07
(
f (m, n)

)2 <
6.4

α4mn , (9)

where we used that

∣∣1 + f (m, n)
∣∣ ≥ 1 –

∣∣f (m, n)
∣∣ > 1 –

2.37
α2mn > 1 – 0.06 = 0.94.
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Turning back to (8), we have

( ∞∑
k=n

1
F2

mk

)–1

=
α2m(n–1)(α2m – 1)

5
(
1 – f (m, n) + Rm,n

)

=
α2m(n–1)(α2m – 1)

5
–

α2m(n–1)(α2m – 1)
5

f (m, n)

+
α2m(n–1)(α2m – 1)

5
Rm,n

=
α2m(n–1)(α2m – 1)

5
–

α2m(n–1)(α2m – 1)
5

f (m, n)

+Tm,n,

where

Tm,n :=
α2m(n–1)(α2m – 1)

5
· Rm,n

satisfies (by (9))

|Tm,n| =
α2m(n–1)(α2m – 1)|Rm,n|

5
<

α2mn

5
· 6.4
α4mn <

1.3
α2mn . (10)

Hence

( ∞∑
k=n

1
F2

mk

)–1

=
α2m(n–1)(α2m – 1)

5
–

α2m(n–1)(α2m – 1)
5

f (m, n) + Tm,n. (11)

Now, let us work with the second term of the right-hand side of (11). By the definition
of f (m, n), we can write

α2m(n–1)(α2m – 1)
5

f (m, n)

=
2α2mn(α2m – 1)2

5α4m

(
β

α

)mn 1
1 – (–1)m(β/α)2m + Dm,n,

where

Dm,n :=
α2mn(α2m – 1)2

5α4m

∞∑
i=3

i
(

β

α

)mn(i–1) 1
1 – (–1)m(β/α)im .

Since β/α = –1/α2, we deduce that

2α2mn(α2m – 1)2

5α4m

(
β

α

)mn 1
1 – (–1)m(β/α)2m

=
2α2mn(α2m – 1)2

5α4m

(
–1
α2

)mn 1
1 – (–1/α4)m

=
2(–1)mn

5
· α4m – 2α2m + 1

α4m

(
1 +

∞∑
i=1

(
–1
α4

)mi
)
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=
2(–1)mn

5
(1 – Sm)(1 + Em)

=
2(–1)mn

5
+ (–1)mnGm,

where

Gm :=
2
5

(Em – Sm – EmSm) (12)

and Em and Sm are defined as

Sm :=
2

α2m –
1

α4m and Em :=
∞∑
i=1

(
–1
α4

)mi

=
(–1)m

α4m – (–1)m . (13)

Now, we use that Sm < 2/α2m and

|Em| ≤
∞∑
i=1

∣∣∣∣–1
α4

∣∣∣∣
mi

=
1

α4m – 1
=

1
α4m

α4m

α4m – 1
≤ 1

α4m
α4

α4 – 1
<

1.2
α4m

(since x 	→ x/(x–1) is a decreasing function for x > 1, and so the maximum of α4m/(α4m –1)
is attained at m = 1) to infer that

|Gm| ≤ 2
5
(|Em| + |Sm| + |EmSm|) ≤ 2

5

(
1.2
α4m +

2
α2m +

2.4
α6m

)
≤ 1.2

α2m , (14)

which proves (6). Observe that, in particular, Gm tends to 0 as m → ∞.
For the remaining terms, i.e., Dm,n, first we can realize that

α2mn(α2m – 1)2

5α4m <
α2mn

5
, (15)

since (α2m – 1)2 < α4m. Therefore, by using again β/α = –1/α2, we get

∣∣∣∣∣
∞∑
i=3

i
(β/α)mn(i–1)

1 – (–1)m(β/α)im

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
i=3

i
(

–1
α2

)mn(i–1) 1
1 – (–1)m(β/α)im

∣∣∣∣∣

< 1.32 ·
∞∑
i=3

i
1

α2mn(i–1)

< 1.32 ·
∞∑
i=3

1
α2mn(i–1)–2i ,

where we used that i < 2i < α2i holds for every integer i ≥ 3. Furthermore, since mn ≥ 4,
we have for i ≥ 2

a2mn(i–1)–2i ≥ (
α2mn( i–1

i )–2)i ≥ (
α

2mn
2 –2)i ≥ (

α2)i > 2.6i.

Thus,
∣∣∣∣∣

∞∑
i=3

i
(β/α)mn(i–1)

1 – (–1)m(β/α)im

∣∣∣∣∣
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≤ 1.32 ·
∞∑
i=3

1
α2mn(i–1)–2i =

1.32
α4mn–4

∞∑
i=3

1
α2mn(i–3)–2(i–2)

=
1.32

α4mn–4

∞∑
i=1

1
α2mn(i–1)–2i =

1.32
α4mn–4

(
1

α–2 +
∞∑
i=2

1
α2mn(i–1)–2i

)

<
1.32

α4mn–4

(
1

α–2 +
∞∑
i=2

1
2.6i

)

<
3.78

α4mn–4 . (16)

By combining (15) and (16), we infer that

|Dm,n| <
0.76

α2mn–4 . (17)

In particular,

lim
min{m,n}→∞

Dm,n = 0.

Summarizing, we have

( ∞∑
k=n

1
F2

mk

)–1

=
α2m(n–1)(α2m – 1)

5
–

2(–1)mn

5
– (–1)mnGm + Dm,n + Tm,n. (18)

On the other hand, we can apply Binet’s formula again to obtain

F2
mn – F2

m(n–1) =
(

αmn – βmn
√

5

)2

+
(

αm(n–1) – βm(n–1)
√

5

)2

=
α2mn – 2(–1)mn + β2mn – α2m(n–1) + 2(–1)m(n–1) – β2m(n–1)

5

=
α2m(n–1)(α2m – 1)

5
–

2(–1)mn

5
(
1 + (–1)m)

+
(

β2mn – β2m(n–1)

5

)
,

=
α2m(n–1)(α2m – 1)

5
–

2(–1)mn

5
–

2(–1)m(n–1)

5
–

(
α2m – 1
5α2mn

)
,

where we used that αβ = –1. Now, we can combine the previous relation with the formula
in (18) to write

Am,n =

( ∞∑
k=n

1
F2

mk

)–1

–
(
F2

mn – F2
m(n–1) + (–1)mnCm

)
, (19)

where

Cm :=
2
5

+ (–1)mGm and Am,n :=
1 – α2m

5α2mn + Dm,n + Tm,n.

Now, we use the formula for Am,n, estimates (17) and (10) to obtain

|Am,n| <
0.2

α2m(n–1) +
5.3

α2mn +
1.3

α2mn =
1

α2m(n–1)

(
0.2 +

5.3
α2m +

1.3
α2m

)
<

9.83
α2m(n–1) ,
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which implies in (3) (we used that 0.76/α2mn–4 = 0.76α4/α2mn). Moreover, in particular,
Am,n tends to 0 as n → ∞, then (4) holds, i.e.,

( ∞∑
k=n

1
F2

mk

)–1

∼ F2
mn – F2

m(n–1) + (–1)mnCm.

Moreover, Cm is positive, because by (14) one has

Cm :=
2
5

+ (–1)mGm ≥ 2
5

– |Gm| >
2
5

–
1.2
α2m > 0,

where we used that 1.2/α2m ≤ 1.2/α4 < 0.18 for all m ≥ 2. Additionally, we combine (12)
and (13) to obtain

Cm =
2
5

(
1 +

1
α4m – (–1)m –

2(–1)m

α2m +
(–1)m

α4m

–
2

α2m(α4m – (–1)m)
+

1
α4m(α4m – (–1)m)

)
. (20)

To obtain the formula in (5), we shall rationalize every fraction in (20). First, we observe
that (αβ)im = 1 for i ∈ {2, 4} and

(
α4m – (–1)m)(

β4m – (–1)m)
= (αβ)4m – (–1)m(

α4m + β4m)
+ 1 = 2 – (–1)mL4m.

Now, let us work with the expression

1
α4m – (–1)m –

2(–1)m

α2m +
(–1)m

α4m –
2

α2m(α4m – (–1)m)
+

1
α4m(α4m – (–1)m)

. (21)

By rationalizing, one has

1
α4m – (–1)m =

β4m – (–1)m

2 – (–1)mLm
and

2(–1)m

α2m = 2(–1)mβ2m,

(–1)m

α4m = (–1)mβ4m and
2

α2m(α4m – (–1)m)
=

2β2m(α4m – (–1)m)
2 – (–1)mL4m

,

and finally

1
α4m(α4m – (–1)m)

=
β4m(β4m – (–1)m)

2 – (–1)mL4m
.

By putting all this information together and after a straightforward computation, we de-
duce that

Cm =
2
5

(
1 +

Bm

(2 – (–1)mL4m)

)
,

where

Bm := β4m – (–1)m – 4(–1)mβ2m + 2β2mL4m + 2(–1)mβ4m

– β4mL4m – 2β6m + 2(–1)mβ2m + β8m – (–1)mβ4m.
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We then use βs = βFs +Fs–1 (Lemma 3) to write Bm in the form rm +βsm (where rm and sm

belong to Q and they are called the rational and irrational parts of Bm, respectively). After
some manipulations (by using F2�m = F�mL�m, where � is a positive integer, and identity
F4m–1 – 1 = L2m–1F2m, see [7]), we arrive at

rm :=
(
1 – (–1)m)

L2m + 5
(
1 + (–1)m)

Fm–1FmF2m (22)

and

sm :=
(
1 + (–1)m)

F2m(L2m – 2) (23)

as desired. The proof is then complete.

4 The proof of Corollary 1
Now, our goal is to provide a simpler characterization of Cm depending on the parity of m
(and to show how this affects its arithmetic nature). By Theorem 1, we have that

Cm =
2
5

(
1 +

rm + βsm

2 – (–1)mL4m

)
,

where

rm :=
(
1 – (–1)m)

L2m + 5
(
1 + (–1)m)

Fm–1FmF2m

and

sm :=
(
1 + (–1)m)

F2m(L2m – 2).

Thus, we only need to work with rm and sm for the case in which m is odd and m is even.
Therefore, the proof conveniently splits into two cases as follows.

4.1 The proof of item (i)
When m is even, we start by noting that, by Lemma 2(iii), one has

2 – (–1)mL4m = 2 – (–1)m(
5F2

2m + 2(–1)2m)
= 2 –

(
5F2

2m + 2
)

= –5F2
2m.

Furthermore, it holds

sm = 2F2m(L2m – 2) > 0.

For rm, we infer that

rm = 10Fm–1FmF2m = 2(F4m–1 + F2m – 1).

Thus,

Cm =
2
5

(
1 +

10Fm–1FmF2m + 2βF2m(L2m – 2)
–5F2

2m

)
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=
2
5

5(F2m – 2Fm–1Fm) – 2(L2m – 2)β
5F2m

=
2
5

(L2m – 2) – 2(L2m – 2)β
5F2m

=
2(L2m – 2)

25F2m
(1 – 2β) =

2(L2m – 2)
25F2m

√
5,

where we used Lemma 2(i) and that 1 – 2β =
√

5.

4.2 The proof of item (ii)
When m is odd, we note that, by Lemma 2(iv), one has

2 – (–1)mL4m = 2 – (–1)m(
L2

2m – 2(–1)2m)
= L2

2m.

Clearly, we get by (22) and (23) that

sm = 0 and rm = 2L2m.

Thus,

Cm =
2
5

(
1 +

2L2m

L2
2m

)
=

2
5

(
1 +

2
L2m

)
=

2(L2m + 2)
5L2m

for any odd m ≥ 1. The proof is then complete.

5 The proof of Corollary 2
First, for m = 1, we observe from (1) that

⌊( ∞∑
k=n

1
F2

k

)–1⌋
=

⎧⎨
⎩

Fn–1Fn – 1, if n is even, n ≥ 2;

Fn–1Fn, if n is odd, n ≥ 1.

However, since

F2
n – F2

n–1 = (Fn – Fn–1)(Fn + Fn–1) = Fn–2Fn+1,

we can use Lemma 2(v) to deduce that

Fn–2Fn+1 – 1 = Fn–1Fn, if n is odd

and

Fn–2Fn+1 = Fn–1Fn – 1, if n is even.

Thus, the formula in Corollary 2(ii) holds for m = 1.
To deal with m ≥ 2, we use Corollary 1 to obtain better bounds for Cm. If m is odd, then

2
5

< Cm <
2
5

(
1 +

2
L2

)
=

2
3

.
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In the case in which m is even, one has

0.28 <
2
√

5
25

(
L2m

F2m
–

2
F2m

)
< Cm <

2
5

,

where we combine items (iii) and (iv) of Lemma 2 to get L2m/F2m >
√

5.
To simplify our notation, we shall denote Xm,n as

Xm,n :=

( ∞∑
k=n

1
F2

mk

)–1

–
(
F2

mn – F2
m(n–1)

)
.

Thus, inequality (3) yields

(–1)mnCm –
9.83

α2m(n–1) < Xm,n < (–1)mnCm +
9.83

α2m(n–1) . (24)

To prove items (i) and (ii), we may split the proof into two cases as follows.

5.1 The case mn even
In this case, we have Cm ∈ (0.28, 2/3), 2m(n – 1) ≥ 8, and so (24) becomes

0.07 < 0.28 –
9.83
α8 < Cm +

9.83
α2m(n–1)

< Xm,n < Cm +
9.83
α8 <

2
3

+
9.83
α8 < 0.88.

Thus, 
Xm,n� = 0 and so

0 =

⌊( ∞∑
k=n

1
F2

mk

)–1

–
(
F2

mn – F2
m(n–1)

)⌋
=

⌊( ∞∑
k=n

1
F2

mk

)–1⌋
–

(
F2

mn – F2
m(n–1)

)
.

Hence, if mn is an even integer, we have

⌊( ∞∑
k=n

1
F2

mk

)–1⌋
= F2

mn – F2
m(n–1).

5.2 The case mn odd
In this case, m and n are odd integers. Thus Cm ∈ (2/5, 2/3) and (24) implies

–0.7 < –
2
3

–
9.83
α12 < –Cm –

9.83
α2m(n–1) < Xm,n

< –Cm +
9.83

α2m(n–1) < –
2
5

+
9.83
α12 < –0.36,

where we used that 2m(n – 1) ≥ 12 (since m ≥ 3, because ≥ 2 is odd). Thus, 
Xm,n� = –1,
and so

–1 =

⌊( ∞∑
k=n

1
F2

mk

)–1

–
(
F2

mn – F2
m(n–1)

)⌋
=

⌊( ∞∑
k=n

1
F2

mk

)–1⌋
–

(
F2

mn – F2
m(n–1)

)
.
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Therefore, if mn is an odd integer, we have

⌊( ∞∑
k=n

1
F2

mk

)–1⌋
= F2

mn – F2
m(n–1) – 1.

This finishes the proof.

6 Conclusions
In this paper, for any m ≥ 1, we provide an explicit constant Cm > 0 for which

∣∣∣∣∣
( ∞∑

k=n

1
F2

mk

)–1

–
(
F2

mn – F2
m(n–1) + (–1)mnCm

)∣∣∣∣∣ <
9.83

α2m(n–1) ,

where (Fn)n is the Fibonacci sequence and α = (1 +
√

5)/2 is the golden number. More-
over, we show that the estimate |Cm – 2/5| < 1.2/α2m holds for all m ≥ 1. These results
solve effectively (and quantitatively) some questions proposed by Lee and Park [8]. As an
application of the previous facts, we find the closed formula

⌊( ∞∑
k=n

1
F2

mk

)–1⌋
=

⎧⎨
⎩

F2
mn – F2

m(n–1), if mn is even;

F2
mn – F2

m(n–1) – 1, if mn is odd.

The proof combines several estimates, inequalities, properties of Fibonacci and Lucas
numbers as well as some facts about the convergence of series. The computations in this
work were performed with Mathematica software.

Acknowledgements
The first author is grateful to CNPq-Brazil for financial support. The second author thanks University of Hradec Kralove for
support.

Funding
The second author was supported by Project of Excellence of Faculty of Science No. 2209/2022-2023, University of
Hradec Kralove, Czech Republic.

Availability of data and materials
Data sharing is not applicable to this paper as no datasets were generated or analyzed during the current study.

Declarations

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MD dealt with the conceptualization, supervision, methodology, investigation, and writing—original draft preparation. PT
made the formal analysis, writing—review and editing, project administration, and funding acquisition. Both authors read
and approved the final manuscript.

Author details
1Departamento de Matemática, Universidade de Brasília, 70910-900 Brasília, Brazil. 2Department of Mathematics, Faculty
of Science, University of Hradec Králové, Rokitanského 62, 50008 Hradec Králové, Czech Republic.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 1 September 2021 Accepted: 13 January 2022



Marques and Trojovský Journal of Inequalities and Applications         (2022) 2022:21 Page 16 of 16

References
1. Basbuk, M., Yazlik, Y.: On the sum of reciprocal of generalized bi-periodic Fibonacci numbers. Miskolc Math. Notes 17,

35–41 (2016)
2. Choi, G., Choo, Y.: On the reciprocal sums of products of Fibonacci and Lucas numbers. Filomat 32(8), 2911–2920

(2018)
3. Choo, Y.: On the reciprocal sums of generalized Fibonacci numbers. Int. J. Math. Anal. 10, 1365–1373 (2016)
4. Choo, Y.: On the finite sums of reciprocal Lucas numbers. Int. J. Math. Anal. 11, 519–529 (2017)
5. Holliday, S., Komatsu, T.: On the sum of reciprocal generalized Fibonacci numbers. Integers 11(A), Article ID 11 (2011)
6. Kiliç, E., Arican, T.: More on the infinite sum of reciprocal Fibonacci, Pell and higher order recurrences. Appl. Math.

Comput. 219, 7783–7788 (2013)
7. Koshy, T.: Fibonacci and Lucas Numbers with Applications. Wiley, New York (2001)
8. Lee, H.-H., Park, J.-D.: Asymptotic behavior of reciprocal sum of two products of Fibonacci numbers. J. Inequal. Appl.

2020(1), 91 (2020)
9. Lee, H.-H., Park, J.-D.: Asymptotic behavior of reciprocal sum of subsequential Fibonacci numbers. Submitted
10. Lin, X., Li, X.: A reciprocal sum related to the Riemann ζ – function. J. Math. Inequal. 11(1), 209–215 (2017)
11. Ohtsuka, H., Nakamura, S.: On the sum of reciprocal Fibonacci numbers. Fibonacci Q. 46/47, 153–159 (2008)
12. Yuan, P., He, Z., Zhou, J.: On the sum of reciprocal generalized Fibonacci numbers. Abstr. Appl. Anal. 2014, Article ID

402540 (2014)
13. Zhang, H., Wu, Z.: On the reciprocal sums of the generalized Fibonacci sequences. Adv. Differ. Equ. 2013, Article ID

377 (2013)


	The proof of a formula concerning the asymptotic behavior of the reciprocal sum of the square of multiple-angle Fibonacci numbers
	Abstract
	MSC
	Keywords

	Introduction
	Auxiliary results
	The proof of Theorem 1
	The proof of Corollary 1
	The proof of item (i)
	The proof of item (ii)

	The proof of Corollary 2
	The case mn even
	The case mn odd

	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


