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Abstract
In recent times, various algorithms have been incorporated with the inertial
extrapolation step to speed up the convergence of the sequence generated by these
algorithms. As far as we know, very few results exist regarding algorithms of the
inertial derivative-free projection method for solving convex constrained monotone
nonlinear equations. In this article, the convergence analysis of a derivative-free
iterative algorithm (Liu and Feng in Numer. Algorithms 82(1):245–262, 2019) with an
inertial extrapolation step for solving large scale convex constrained monotone
nonlinear equations is studied. The proposed method generates a sufficient descent
direction at each iteration. Under some mild assumptions, the global convergence of
the sequence generated by the proposed method is established. Furthermore, some
experimental results are presented to support the theoretical analysis of the proposed
method.
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1 Introduction
Our main aim in this paper is to find the approximate solutions of the systems of monotone
nonlinear equations with convex constraints; precisely, the problem

find x ∈ C s.t. h(x) = 0, (1)

where h : Rn →Rn is assumed to be a monotone and Lipschitz continuous operator, while
C is a nonempty, closed, and convex subset of Rn.

Monotone operator was first introduced by Minty [2]. The concept has aided several
studies such as the abstract study of electrical networks [2]. Interest in the study of the
systems of monotone nonlinear equations with convex constraint (1) stems mainly from
their several applications in various fields. For instance, in power flow equations [3], eco-
nomic equilibrium problems [4], chemical equilibrium [5], and compressive sensing [6].
These applications have attracted the attention of many researchers. Thus, numerous it-
erative methods have been proposed by many authors to approximate solutions of (1) (see
[7–35] and the references therein).
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Among the early methods introduced and studied in the literature are Newton method,
quasi-Newton method, Gauss–Newton method, Levenberg–Marquardt method, and
their modifications (see, e.g., [36–39] and the references therein). These methods have
fast local convergence but are not efficient for solving large scale nonlinear monotone
equations, because they involve the computation of the Jacobian matrix or its approxi-
mation per iteration, which is well known to require a large amount of storage. To over-
come this problem, various alternatives and modifications of the early methods have been
proposed by several authors. Amongst these methods are conjugate gradient methods,
spectral conjugate gradient methods, and spectral gradient methods. Extensions of the
conjugate gradient method and its variant to solve large scale nonlinear equations have
been obtained by several authors. For instance, motivated by the stability and efficiency of
the Dai–Yuan (DY) conjugate gradient method [40] for solving unconstrained optimiza-
tion problems, Liu and Feng [1] proposed a derivative-free projection method based on
the structures of the DY conjugate gradient method [40]. This method inherits the stability
of the DY method and greatly improves its computing performance.

In practical applications, it is always desirable to have iterative algorithms that have a
high rate of convergence [41–46]. An increasingly important acceleration method is the
inertial extrapolation type algorithms [47, 48]. They use an iterative procedure in which
subsequent terms are obtained using the preceding two terms. This idea was first intro-
duced by Polyak [49] and was inspired by an implicit discretization of a second-order-in-
time dissipative dynamical system, so-called ‘Heavy Ball with Friction’:

v′′(t) + γ v′(t) + ∇f
(
v(t)

)
= 0, (2)

where γ > 0 and f : Rn →R is differentiable. System (2) is discretized so that, having the
terms xk–1 and xk , the next term xk+1 can be determined using

xk+1 – 2xk + xk–1

j2 + γ
xk – xk–1

j
+ ∇f (xk) = 0, k ≥ 1, (3)

where j is the step size. Equation (3) yields the following iterative algorithm:

xk+1 = xk + β(xk – xk–1) – α∇f (xk), k ≥ 1, (4)

where β = 1 – γ j, α = j2 and β(xk – xk–1) is called the inertial extrapolation term which is
intended to speed up the convergence of the sequence generated by equation (4).

Several algorithms with inertial extrapolation term have been tested in the solution of
several problems (for example, imaging/data analysis problems and motion of a body in a
potential field), and the test showed that the inertial steps remarkably increase the conver-
gence speed of these algorithms (see [47, 48, 50] and other references therein). Therefore,
this property is very important. As far as we know, there are not many results regarding
algorithms of inertial derivative-free projection for solving (1).

Our concern now is the following: Based on the derivative-free iterative algorithm of Liu
and Feng [1], can we construct an inertial derivative-free method for solving the system of
monotone nonlinear equations with convex constraints?
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In this paper, we give a positive answer to the aforementioned question. Motivated
and inspired by the algorithm in [1], we introduce an inertial derivative-free algorithm
for solving (1). Our proposed method is a combination of inertial extrapolation step and
the derivative-free iterative method for nonlinear monotone equations with convex con-
straints [1]. We obtain the global convergence result under mild assumptions. Using a set
of test problems, we illustrate the numerical behaviors of the algorithm in [1] and compare
it with the algorithm presented in this paper. The results indicate that the proposed algo-
rithm with the inertial step is superior in terms of the number of iterations and function
evaluations.

The rest of paper is organized as follows. The next section contains some preliminaries.
The proposed inertial algorithm is presented in Sect. 3, and its convergence is presented in
the fourth section. The last section is devoted to presentation of examples and numerical
results.

2 Preliminaries
We recall some known definitions and results which will be used in the sequel. First, let
us denote by SOL(h,C) the solution set of (1).

Definition 2.1 Let C be a nonempty closed convex subset of Rn. A mapping h : Rn →Rn

is said to be:
(i) monotone on C if

(
h(x) – h(z)

)T (x – z) ≥ 0, ∀x, z ∈ C.

(ii) L-Lipschitz continuous on C , if there exists L > 0 such that

∥
∥h(x) – h(z)

∥
∥ ≤ L‖x – z‖, ∀x, z ∈ C.

Definition 2.2 Let C ⊂Rn be a closed and convex set, some vector x ∈Rn, the orthogonal
projection of x onto C denoted by PC(x), is defined by

PC(x) = arg min
{‖z – x‖ | z ∈ C

}
,

where ‖x‖ =
√

xT x.
The following lemma gives some well-known characteristics of the projection operator.

Lemma 2.3 Let C ⊂ Rn be a nonempty closed and convex set. Then the following state-
ments hold:

(i) (x – PC(x))T (PC(x) – z) ≥ 0, ∀x ∈Rn, ∀z ∈ C.
(ii) ‖PC(x) – PC(z)‖ ≤ ‖x – z‖, ∀x, z ∈Rn.

(iii) ‖PC(x) – z‖2 ≤ ‖x – z‖2 – ‖x – PC(x)‖2, ∀x ∈Rn, ∀z ∈ C .

Lemma 2.4 ([51]) Let Rn be an Euclidean space. Then the following inequality holds:

‖x + z‖2 ≤ ‖x‖2 + 2zT (x + z), ∀x, z ∈Rn.
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Lemma 2.5 ([52]) Let {xk} and {zk} be sequences of nonnegative real numbers satisfying
the following relation:

xk+1 ≤ xk + zk ,

where
∑∞

k=1 zk < ∞, then limk→∞ xk exists.

3 Proposed method
Based on the Liu and Feng [1] derivative-free iterative method for monotone nonlinear
equation with convex constraint, in the sequel, we present an inertial extrapolation al-
gorithm for solving the system of nonlinear monotone equations (1). The corresponding
algorithm, which we refer to as the inertial projected Dai–Yuan (IPDY) algorithm, uses a
strategy which tracks the optimal x-value by starting with an initial x-value x0 and there-
after updating the x by performing iterations of the form

xk+1 = xk + αkdk , k ≥ 0, (5)

where αk is a positive step size obtained by a line search procedure, and dk is the search
direction implemented so that

h(xk)T dk = –c
∥
∥h(xk)

∥
∥2, c > 0, (6)

is fulfilled. Next, we give a precise statement for our method as follows.

Algorithm 1 (Inertial projected Dai–Yuan algorithm (IPDY))
1 (S.0) Choose x0, x1 ∈ C , Tol ∈ (0, 1), a ∈ (0, 1],σ > 0, θ ∈ [0, 1)r ∈ (0, 1). Set k := 1.
2 (S.1) Compute

wk = xk + θk(xk – xk–1),

where 0 ≤ θk ≤ θ̃k with

θ̃k :=

⎧
⎨

⎩
min{θ , 1

k2‖xk –xk–1‖2 } if xk = xk–1,

θ , otherwise.
(7)

3 (S.2) Compute h(wk). If ‖h(wk)‖ ≤ Tol, stop. Otherwise, generate the search direction
dk by

4

dk :=

⎧
⎨

⎩
–h(wk) if k = 1,

–ζkh(wk) + βIPDY
k dk–1 if k > 1,

(8)
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5 where

βIPDY
k :=

‖h(wk)‖2

dT
k–1yk–1

, ζk := c0 +
h(wk)T dk–1

dT
k–1yk–1

, c0 > 0,

vk–1 := h(wk) – h(wk–1),

yk–1 := vk–1 + tk–1dk–1, tk–1 := 1 + max

{
0, –

dT
k–1vk–1

dT
k–1dk–1

}
.

(9)

6 (S.3) Find zk = wk +αkdk , where αk = ari with i being the smallest nonnegative integer
such that

7

–h(wk + αkdk)T dk ≥ σαk
∥∥h(wk + αkdk)

∥∥‖dk‖2. (10)

8 (S.4) If zk ∈ C and ‖h(zk)‖ ≤ Tol, stop. Otherwise, compute the next iterate by
9

xk+1 = PC
[
wk – λkh(zk)

]
, (11)

where

λk :=
h(zk)T (wk – zk)

‖h(zk)‖2 .

10 (S.5) Set k ← k + 1, and return to (S.1).

Remark 3.1 For all k ≥ 0, it can be observed from equation (7) that θk‖xk – xk–1‖2 ≤ 1
k2 .

This implies that

∞∑

k=1

θk‖xk – xk–1‖2 < ∞.

Throughout this paper, we make use of the following assumptions.

Assumption 1
(A1) The solution set C∗ of (1) is nonempty.
(A2) h is monotone on C .
(A3) h is Lipschitz continuous on C .

4 Convergence result
In this section, convergence analysis of our algorithm is presented. We start by proving
some lemmas followed by the proof of the main theorem.
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Lemma 4.1 Let dk be generated by Algorithm 1. Then dk always satisfies the sufficient
descent condition, that is,

h(wk)T dk = –c0
∥∥h(wk)

∥∥2, c0 > 0. (12)

Proof For k = 1, multiplying both sides of (8) by h(w0)T , we have

h(w0)T d0 = –
∥
∥h(w0)

∥
∥2.

Also for k > 1, multiplying both sides of (8) by h(wk)T , we get

h(wk)T dk = –ζk
∥
∥h(wk)

∥
∥2 + βkh(wk)T dk–1

= –
(

c0 +
h(wk)T dk–1

dT
k–1yk–1

)∥∥h(wk)
∥∥2 +

‖h(wk)‖2

dT
k–1yk–1

h(wk)T dk–1

= –c0
∥∥h(wk)

∥∥2. �

Remark 4.2 From the definition of yk–1 and tk–1, it holds that

dT
k–1yk–1 ≥ dT

k–1vk–1 + ‖dk–1‖2 – dT
k–1vk–1 = ‖dk–1‖2,

then from (12) we have

dT
k–1yk–1 ≥ c2

0
∥∥h(wk–1)

∥∥2.

This indicates that dT
k–1yk–1 is always positive when the solution of (1) is not achieved,

which means that the parameters ζk and βk are well defined.

Lemma 4.3 The line search condition (10) is well defined. That is, for all k ≥ 1, there exists
a nonnegative integer i satisfying (10).

Proof The proof of Lemma 4.3 can be obtained in the same way as [1] with the difference
that the sequence {xk} is replaced with the inertial extrapolation term wk . �

Lemma 4.4 Suppose that h is a monotone and Lipschitz continuous mapping, and {wk}
and {zk} are sequences generated by Algorithm 1, then

αk > max

{
a,

rc0‖h(wk)‖2

(L + σ‖h(wk + α̃kdk)‖)‖dk‖2

}
. (13)

Proof From line search (10), if αk = a, then α̃kr–1 does not satisfy the line search. That is,

–h(wk + α̃kdk)T dk < σ α̃k
∥∥h(wk + α̃kdk)

∥∥‖dk‖2.
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This fact, in combination with the Lipschitz continuity assumption (A3) and the sufficient
descent condition (12), expresses

c0
∥∥h(wk)

∥∥2 = –h(wk)T dk

=
(
h(wk + α̃kdk) – h(wk)

)T dk – h(wk + α̃kdk)T dk

< α̃k
(
L + σ

∥∥h(wk + α̃kdk)
∥∥)‖dk‖2.

This yields the desired inequality (13). �

Lemma 4.5 Let {xk} and {zk} be generated by Algorithm 1. If x∗ ∈ SOL(h,C), then under
Assumption 1, it holds that

∥
∥xk+1 – x∗∥∥2 ≤ ∥

∥wk – x∗∥∥2 – σ 2‖wk – zk‖4. (14)

Moreover, the sequence {xk} is bounded and

∞∑

k=1

‖wk – zk‖4 < ∞. (15)

Proof By the monotonicity of the mapping h, we have

h(zk)T(
wk – x∗) = h(zk)T (wk – zk) + h(zk)T(

zk – x∗)

≥ h(zk)T (wk – zk) + h
(
x∗)T(

zk – x∗)

= h(zk)T (wk – zk) (16)

≥ σ
∥
∥h(zk)

∥
∥‖wk – zk‖2. (17)

By Lemma 2.3(iii), (16), and (17), it holds that, for any x∗ ∈ SOL(h,C),

∥∥xk+1 – x∗∥∥2 =
∥∥PC

(
wk – λkh(zk)

)
– x∗∥∥2

≤ ∥∥(
wk – λkh(zk)

)
– x∗∥∥2 –

∥∥(
wk – λkh(zk)

)
– PC

(
wk – λkh(zk)

)∥∥2

≤ ∥∥wk – λkh(zk) – x∗∥∥2

≤ ∥
∥wk – x∗∥∥2 – 2λkh(zk)T(

wk – x∗) + λ2
k
∥
∥h(zk)

∥
∥2

≤ ∥
∥wk – x∗∥∥2 – 2λkh(zk)T (wk – zk) + λ2

k
∥
∥h(zk)

∥
∥2

≤ ∥∥wk – x∗∥∥2 –
[h(zk)T (wk – zk)]2

‖h(zk)‖2

≤ ∥
∥wk – x∗∥∥2 – σ 2‖wk – zk‖4. (18)

From inequality (18), we can deduce that

∥∥xk+1 – x∗∥∥ ≤ ∥∥wk – x∗∥∥

=
∥
∥xk + θk(xk – xk–1) – x∗∥∥

≤ ∥∥xk – x∗∥∥ + θk‖xk – xk–1‖. (19)
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From Remark 3.1, noting that
∑∞

k=1 θk‖xk – xk–1‖ < ∞, by Lemma 2.5, we deduce that the
sequence {‖xk – x∗‖} is bounded by a positive number, say M0. Therefore, for all k, we have
that

∥
∥xk – x∗∥∥ ≤ M0. (20)

Thus, we can infer that ‖xk – xk–1‖ ≤ 2M0. Using the aforementioned facts, we have

∥
∥wk – x∗∥∥2 =

∥
∥xk + θk(xk – xk–1) – x∗∥∥2

≤ ∥∥xk – x∗∥∥2 + 2θk(xk – xk–1)T(
xk + θk(xk – xk–1) – x∗)

≤ ∥∥xk – x∗∥∥2 + 2θk‖xk – xk–1‖
(∥∥xk – x∗∥∥ + θk‖xk – xk–1‖

)

≤ ∥∥xk – x∗∥∥2 + 2M0θk‖xk – xk–1‖ + 4M0θk‖xk – xk–1‖
=

∥∥xk – x∗∥∥2 + 6M0θk‖xk – xk–1‖. (21)

Combining (21) with (18), we have

∥
∥xk+1 – x∗∥∥2 ≤ ∥

∥xk – x∗∥∥2 + 6M0θk‖xk – xk–1‖ – σ 2‖wk – zk‖4. (22)

Thus, we have

σ 2‖wk – zk‖4 ≤ ∥
∥xk – x∗∥∥2 + 6M0θk‖xk – xk–1‖ –

∥
∥xk+1 – x∗∥∥2. (23)

Adding (23) for k = 1, 2, 3, . . . , we have

σ 2
∞∑

k=1

‖wk – zk‖4 ≤
∞∑

k=1

(∥∥xk – x∗∥∥2 + 6M0θk‖xk – xk–1‖ –
∥∥xk+1 – x∗∥∥2).

But
∑∞

k=1(‖xk – x∗‖2 – ‖xk+1 – x∗‖2) is finite since the sequence {‖xk+1 – x∗‖} is convergent
and

∑∞
k=1 θk‖xk – xk–1‖ < ∞. It implies that

σ 2
∞∑

k=1

‖wk – zk‖4 ≤
∞∑

k=1

(∥∥xk – x∗∥∥2 –
∥∥xk+1 – x∗∥∥2 + 6M0θk‖xk – xk–1‖

)
< ∞.

Therefore,

lim
k→∞

‖wk – zk‖ = 0. (24)
�

Remark 4.6 By the definition of {zk} and (24), we have

lim
k→∞

αk‖dk‖ = 0. (25)
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Theorem 4.7 Suppose that the conditions of Assumption 1 hold. If {xk} is the sequence
generated by (11) in Algorithm 1, then

lim inf
k→∞

∥∥h(xk)
∥∥ = 0. (26)

Furthermore, {xk} converges to a solution of (1).

Proof We first prove that

lim inf
k→∞

∥∥h(wk)
∥∥ = 0. (27)

Suppose that equality (27) does not hold. Then there exists a constant ε > 0 such that

∥∥h(wk)
∥∥ ≥ ε, ∀k ≥ 1.

This fact, in combination with the sufficient descent condition (12), implies that

‖dk‖ ≥ c0ε, ∀k ≥ 1. (28)

This shows that

lim
k→∞

αk = 0. (29)

On the other hand, by the Lipschitz continuity assumption (A3) and (20), we have

∥∥h(wk)
∥∥ =

∥∥h(wk) – h
(
x∗)∥∥ ≤ L

∥∥wk – x∗∥∥

≤ L
(∥∥xk – x∗∥∥ + ‖xk – xk–1‖

) ≤ 3LM0 = Mh. (30)

By using the Cauchy–Schwarz inequality, Remark 4.2, and (28), it follows from (8)–(9)
that, for all k > 1,

‖dk‖ ≤ γd.

Then we get from (13) that

αk‖dk‖ > max

{
a,

rc0‖h(wk)‖2

(L + σ‖h(wk + α̃kdk)‖)‖dk‖2

}
‖dk‖

> max

{
ac0ε,

rc0ε
2

(L + σM∗
h)γd

}
> 0,

which contradicts (29). Thus, (27) holds. Now, since we know that

‖xk – wk‖ =
∥∥xk –

(
xk + θk(xk – xk–1)

)∥∥ = θk‖xk – xk–1‖ → 0, (31)
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by the continuity of h, we have that

lim inf
k→∞

∥
∥h(xk)

∥
∥ = 0. (32)

From the continuity of h, the boundedness of {xk}, and (32), it implies that the sequence
{xk} generated by Algorithm 1 has an accumulation point x∗ such that h(x∗) = 0. On the
other hand, the sequence {xk – x∗} is convergent by Lemma 2.5, which means that the
whole sequence {xk} globally converges to the solution x∗ of system (1). �

5 Numerical experiments
In this section, an efficiency comparison between the proposed method called IPDY and
the method proposed Liu and Feng in [1] called PDY is presented. Recall that the IPDY is a
modification of the method in PDY by introducing the inertial term. The metrics consid-
ered for the comparison are the number of iterations (NI) and function evaluations (NF).
This means that the method with the least NI and NF is the best method. The following
were considered for the experimental comparison:

• Dimensions: 1000, 5000, 10,000, 50,000, 100,000.
• Parameters: For IPDY, we select θ = 0.8, a = 1, r = 0.7, σ = 0.01, c0 = 1. As for PDY, all

parameters are selected as in [1].
• Terminating criterion: When ‖h(wk)‖ ≤ 10–6.
• Implementation software: All methods are coded in MATLAB R2019ba and run on a

PC with an intel COREi3 processor, 8 GB of RAM and CPU 2.30 GHz.
The two methods were compared based on the following test problems, where h =
(h1, h2, . . . , hn)T .

Problem 1 (Modified exponential function [53])

h1(x) = ex1 – 1

hi(x) = exi + xi – 1, i = 1, 2, . . . , n – 1,

C = Rn
+.

Problem 2 (Logarithmic function [53])

hi(xi) = log(xi + 1) –
xi

n
, i = 1, 2, . . . , n,

C = Rn
+.

Problem 3 (Nonsmooth function [54])

hi(x) = 2xi – sin
(|xi|

)
, for i = 1, 2, . . . , n,

C =

{

x ∈Rn
+ : x ≥ 0,

n∑

i=1

xi ≤ n

}

.
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Problem 4 ([55])

hi(x) = min
(
min

(|xi|, x2
i
)
, max

(|xi|, x3
i
))

, i = 1, 2, . . . , n,

C = Rn
+.

Problem 5 (Strictly convex function I [53])

hi(x) = exi – 1, i = 1, 2, . . . , n,

C = Rn
+.

Problem 6 (Strictly convex function II [53])

hi(x) =
(

i
n

)
exi – 1, i = 1, 2, . . . , n,

C = Rn
+.

Problem 7 (Tridiagonal exponential function [53])

h1(x) = x1 – ecos(l(x1+x2))

hi(x) = xi – ecos(l(xi–1+xi+xi+1)), i = 2, . . . , n – 1,

hn(x) = xn – ecos(l(xn–1+xn)),

l =
1

n + 1
and C = Rn

+.

Problem 8 (Nonsmooth function II [56])

hi(x) = xi – sin
(|xi – 1|), for i = 1, 2, . . . , n,

C =

{

x ∈Rn
+ : x ≥ –1,

n∑

i=1

xi ≤ n

}

.

Problem 9 (Trig-Exp function [57])

h1(x) = 3x3
1 + 2x2 – 5 + sin(x1 – x2) sin(x1 + x2),

hi(x) = 3x3
i + 2xi+1 – 5 + sin(xi – xi+1) sin(xi + xi+1)

+ 4xi – xi–1e(xi–1–xi) – 3, for 1 < i < n,

hn(x) = 4xn – xn–1e(xn–1–xn) – 3,

C = Rn
+.
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Table 1 List of starting points

S/N Starting points

1 x0 = (0.2, 0.2, . . . , 0.2)T , x1 = (0.1, 0.1, . . . , 0.1)T
2 x0 = (0.2, 0.2, . . . , 0.2)T , x1 = (0.2, 0.2, . . . , 0.2)T
3 x0 = (0.5, 0.5, . . . , 0.5)T , x1 = (0.5, 0.5, . . . , 0.5)T
4 x0 = (1.2, 1.2, . . . , 1.2)T , x1 = (1.2, 1.2, . . . , 1.2)T
5 x0 = (1.5, 1.5, . . . , 1.5)T , x1 = (1.5, 1.5, . . . , 1.5)T
6 x0 = (2, 2, . . . , 2)T , x1 = (2, 2, . . . , 2)T
7 x0 = rand(n, 1), x1 = rand(n, 1)

Problem 10 (Penalty function I [58])

ξi =
n∑

i=1

x2
i , c = 10–5,

hi(x) = 2c(xi – 1) + 4(ξi – 0.25)xi, i = 1, 2, . . . , n,

C = Rn
+.

Above is a list of the seven starting points in Table 1.
The numerical results are given in Tables 2–11 in the Appendix section for the sake of

comparison. From the table, it can be observed that the IPDY method has lower NI and
NF than the PDY in most of the problems. This is the result of the inertial effect possessed
by the IPDY method. For all initial points used, it can be observed that the IPDY method
was able to solve the test problems. However, it can be seen that for Problem 3, using the
randomly selected initial points, the IPDY method failed for dimension 5000 and 10,000.
On the overall, to visualize the performance of IPDY verses the PDY method, we employ
the well-known performance profiles of Dolan and Moré [59] defined as:

ρ(τ ) :=
1

|TP|
∣
∣∣∣

{
tp ∈ TP : log2

(
tp,q

min{tp,q : q ∈ Q}
)

≤ τ

}∣
∣∣∣,

where TP is the test set, |TP| is the number of problems in the test set TP , Q is the set of
optimization solvers, and tp,q is the NI (or the NF) for tp ∈ TP and q ∈ Q. Figures 1 and 2
were obtained using the above performance profiles.

From Figs. 1 and 2, the IPDY method has the least NI and NF in over 80% of the problem,
respectively. This can be seen on the y-axis of the plots. As a conclusion, it can be said that
the purpose of introducing the inertial effect was achieved as the IPDY method recorded
the lowest number of iterations and function evaluations.

6 Conclusion
The paper has proposed an inertial derivative-free algorithm, called IPDY, for solving sys-
tems of monotone nonlinear equations with convex constraints in the Euclidean space.
Under some suitable conditions imposed on parameters, we established the global con-
vergence of the algorithm. In all our comparisons, the numerical results as shown in Ta-
bles 2–11 and Figs. 1, 2 demonstrate that our method converges faster and is more efficient
than the PDY algorithm. In the future, we plan to study different variants of derivative-
free methods with the inertial extrapolation step and apply them in various directions like
image deblurring and signal processing problems.
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Figure 1 Performance profiles based on the number of iterations

Figure 2 Performance profiles based on the number of function evaluations
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Appendix

Table 2 Test result for Problem 1

DIM (x0, x1) IPDY PDY

NI NF CPU NI NF CPU

1000 (x1, x2) 10 40 0.029733 16 64 0.03464
(x2, x2) 11 44 0.030847 16 64 0.023968
(x3, x3) 12 48 0.010731 17 68 0.014996
(x4, x4) 12 48 0.024497 18 72 0.015807
(x5, x5) 12 48 0.021592 18 72 0.032048
(x6, x6) 12 48 0.022392 18 72 0.015106
(x7, x7) 18 72 0.031427 17 68 0.011476

5000 (x1, x2) 10 40 0.042238 16 64 0.04849
(x2, x2) 11 44 0.067285 17 68 0.061148
(x3, x3) 12 48 0.044846 18 72 0.072658
(x4, x4) 12 48 0.054505 19 76 0.052417
(x5, x5) 13 52 0.057993 18 72 0.055616
(x6, x6) 12 48 0.05459 18 72 0.058231
(x7, x7) 20 80 0.083833 18 72 0.062164

10,000 (x1, x2) 9 36 0.0635 17 68 0.10741
(x2, x2) 12 48 0.10059 17 68 0.094942
(x3, x3) 12 48 0.080824 18 72 0.12731
(x4, x4) 12 48 0.13745 19 76 0.10435
(x5, x5) 14 56 0.10695 20 80 0.13305
(x6, x6) 13 52 0.12456 19 76 0.13785
(x7, x7) 19 76 0.14196 18 72 0.13154

50,000 (x1, x2) 9 36 0.31707 17 68 0.4311
(x2, x2) 12 48 0.29351 18 72 0.37639
(x3, x3) 13 52 0.35328 19 76 0.42555
(x4, x4) 15 60 0.48101 20 80 0.79858
(x5, x5) 16 64 0.64442 22 88 0.74776
(x6, x6) 16 64 0.59247 23 92 1.3893
(x7, x7) 14 56 0.47954 19 76 0.54864

100,000 (x1, x2) 9 36 0.54463 18 72 1.3933
(x2, x2) 12 48 0.68154 18 72 1.0358
(x3, x3) 14 56 0.76761 19 76 1.1113
(x4, x4) 16 64 0.99936 23 92 1.5626
(x5, x5) 17 68 1.2856 23 92 1.4079
(x6, x6) 19 76 1.672 26 104 1.6467
(x7, x7) 15 60 0.87727 20 80 1.0802
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Table 3 Test result for Problem 2

DIM (x0, x1) IPDY PDY

NI NF CPU NI NF CPU

1000 (x1, x2) 7 27 0.096872 13 51 0.019005
(x2, x2) 10 39 0.020041 15 59 0.013681
(x3, x3) 11 43 0.010628 16 63 0.019522
(x4, x4) 11 43 0.014032 18 71 0.015199
(x5, x5) 12 47 0.032128 18 71 0.020678
(x6, x6) 12 47 0.031786 18 71 0.018411
(x7, x7) 17 67 0.05388 17 67 0.022057

5000 (x1, x2) 8 31 0.057562 14 55 0.49934
(x2, x2) 11 43 0.14625 15 59 0.069077
(x3, x3) 12 47 0.103 17 67 0.073856
(x4, x4) 12 47 0.24808 18 71 0.095211
(x5, x5) 12 47 0.039387 19 75 0.069529
(x6, x6) 12 47 0.078057 19 75 0.09134
(x7, x7) 23 91 0.17661 17 67 0.052495

10,000 (x1, x2) 8 31 0.043896 14 55 0.1585
(x2, x2) 11 43 0.12549 16 63 0.089382
(x3, x3) 12 47 0.12935 17 67 0.11205
(x4, x4) 12 47 0.12544 19 75 0.11729
(x5, x5) 12 47 0.11877 19 75 0.14566
(x6, x6) 12 48 0.12846 19 76 0.13503
(x7, x7) 21 83 0.20705 18 71 0.31225

50,000 (x1, x2) 8 31 0.24247 15 59 0.48899
(x2, x2) 11 43 0.55387 16 63 0.35285
(x3, x3) 12 47 0.77037 18 71 0.44647
(x4, x4) 14 56 0.73475 21 84 0.5386
(x5, x5) 14 56 0.65943 21 84 1.1396
(x6, x6) 15 60 0.46108 21 84 0.54725
(x7, x7) 22 87 0.87983 19 75 0.46819

100,000 (x1, x2) 8 31 0.36339 15 59 0.71881
(x2, x2) 11 43 0.48992 17 67 0.76688
(x3, x3) 13 52 0.61507 18 72 0.88845
(x4, x4) 15 60 0.85806 22 88 1.1812
(x5, x5) 15 60 1.0527 22 88 1.1886
(x6, x6) 15 60 1.5379 22 88 1.1909
(x7, x7) 19 76 1.1514 20 80 1.0089
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Table 4 Test result for Problem 3

DIM (x0, x1) IPDY PDY

NI NF CPU NI NF CPU

1000 (x1, x2) 9 36 0.13993 15 60 0.009012
(x2, x2) 10 40 0.016829 16 64 0.012426
(x3, x3) 11 44 0.01805 16 64 0.013702
(x4, x4) 11 44 0.013523 17 68 0.011571
(x5, x5) 11 44 0.011749 18 72 0.016509
(x6, x6) 12 48 0.031454 18 72 0.012098
(x7, x7) 259 1036 0.62134 17 68 0.010712

5000 (x1, x2) 9 36 0.60992 16 64 0.13774
(x2, x2) 11 44 0.050266 16 64 0.12547
(x3, x3) 11 44 0.057844 17 68 0.037555
(x4, x4) 12 48 0.052319 18 72 0.1555
(x5, x5) 11 44 0.12611 18 72 0.2368
(x6, x6) 13 52 0.11407 18 72 0.050688
(x7, x7) – – – 17 68 0.044552

10,000 (x1, x2) 9 36 0.49181 16 64 0.090626
(x2, x2) 11 44 0.14241 17 68 0.10902
(x3, x3) 11 44 0.26172 17 68 0.74438
(x4, x4) 13 52 0.38111 18 72 0.17919
(x5, x5) 12 48 0.17741 20 80 0.10613
(x6, x6) 13 52 0.083221 19 76 0.12769
(x7, x7) – – – 18 72 0.093064

50,000 (x1, x2) 10 40 0.27835 17 68 0.32105
(x2, x2) 11 44 0.24875 17 68 0.30922
(x3, x3) 12 48 0.35821 18 72 0.87847
(x4, x4) 13 52 0.4112 20 80 0.43688
(x5, x5) 13 52 0.38957 21 84 0.46666
(x6, x6) 13 52 0.48965 21 84 1.7167
(x7, x7) 15 60 0.51664 18 72 1.4507

100,000 (x1, x2) 10 40 0.45116 17 68 0.89372
(x2, x2) 11 44 1.1194 18 72 0.86119
(x3, x3) 13 52 1.804 19 76 0.8354
(x4, x4) 14 56 1.0128 22 88 1.1409
(x5, x5) 15 60 1.0246 22 88 0.96899
(x6, x6) 15 60 0.93187 22 88 1.06
(x7, x7) 15 60 1.0907 20 80 1.0702
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Table 5 Test result for Problem 4

DIM (x0, x1) IPDY PDY

NI NF CPU NI NF CPU

1000 (x1, x2) 2 6 0.047603 2 6 0.00627
(x2, x2) 2 6 0.005977 2 6 0.003122
(x3, x3) 2 6 0.004191 2 6 0.004575
(x4, x4) 2 6 0.010495 2 6 0.003937
(x5, x5) 2 6 0.005327 2 6 0.003846
(x6, x6) 2 6 0.011041 2 6 0.002927
(x7, x7) 2 6 0.005492 2 6 0.003468

5000 (x1, x2) 2 6 0.031877 2 6 0.096079
(x2, x2) 2 6 0.014782 2 6 0.020704
(x3, x3) 2 6 0.017518 2 6 0.011814
(x4, x4) 2 6 0.056106 2 6 0.008442
(x5, x5) 2 6 0.033729 2 6 0.01061
(x6, x6) 2 6 0.013977 2 6 0.018209
(x7, x7) 2 6 0.019215 2 6 0.011608

10,000 (x1, x2) 2 6 0.037551 2 6 0.078449
(x2, x2) 2 6 0.025921 2 6 0.054769
(x3, x3) 2 6 0.02794 2 6 0.013808
(x4, x4) 2 6 0.017372 2 6 0.045487
(x5, x5) 2 6 0.14848 2 6 0.050758
(x6, x6) 2 6 0.089886 2 6 0.018096
(x7, x7) 2 6 0.21488 2 6 0.016159

50,000 (x1, x2) 2 6 0.11667 2 6 0.076694
(x2, x2) 2 6 0.087319 2 6 0.06213
(x3, x3) 2 6 0.093389 2 6 0.060762
(x4, x4) 2 6 0.072841 2 6 0.045131
(x5, x5) 2 6 0.17981 2 6 0.096853
(x6, x6) 2 6 0.19816 2 6 0.11699
(x7, x7) 2 7 0.12229 2 7 0.08756

100,000 (x1, x2) 2 6 0.42528 2 6 0.15701
(x2, x2) 2 6 0.27468 2 6 0.18368
(x3, x3) 2 6 0.29093 2 6 0.37375
(x4, x4) 2 6 0.14828 2 6 0.16735
(x5, x5) 2 6 0.22 2 6 0.08926
(x6, x6) 2 6 0.23811 2 6 0.12826
(x7, x7) 2 7 0.40503 2 7 0.17219
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Table 6 Test result for Problem 5

DIM (x0, x1) IPDY PDY

NI NF CPU NI NF CPU

1000 (x1, x2) 9 36 0.054204 15 60 0.014197
(x2, x2) 10 40 0.017794 16 64 0.014104
(x3, x3) 11 44 0.016521 16 64 0.019131
(x4, x4) 11 44 0.024269 15 60 0.013714
(x5, x5) 11 44 0.014339 17 68 0.013673
(x6, x6) 11 44 0.01843 17 68 0.015563
(x7, x7) 21 84 0.074477 17 68 0.012997

5000 (x1, x2) 9 36 0.089441 16 64 0.055828
(x2, x2) 11 44 0.12174 16 64 0.034553
(x3, x3) 11 44 0.034213 17 68 0.39755
(x4, x4) 11 44 0.094632 16 64 0.059572
(x5, x5) 12 48 0.26357 17 68 0.039368
(x6, x6) 12 48 0.099053 19 76 0.055029
(x7, x7) 22 88 0.15821 18 72 0.085236

10,000 (x1, x2) 9 36 0.27567 16 64 0.17337
(x2, x2) 11 44 0.10903 17 68 0.081115
(x3, x3) 11 44 0.13007 17 68 0.058728
(x4, x4) 12 48 0.063544 19 76 0.1323
(x5, x5) 12 48 0.062452 18 72 0.079782
(x6, x6) 12 48 0.10251 19 76 0.6484
(x7, x7) 24 96 0.20202 18 72 0.11402

50,000 (x1, x2) 10 40 0.22994 17 68 0.30098
(x2, x2) 12 48 0.36531 17 68 0.23896
(x3, x3) 13 52 0.23288 18 72 0.30252
(x4, x4) 14 56 0.64547 20 80 0.40897
(x5, x5) 15 60 0.31616 20 80 1.1317
(x6, x6) 16 64 0.75731 22 88 0.45799
(x7, x7) 21 84 0.47342 19 76 0.26783

100,000 (x1, x2) 10 40 0.41965 17 68 0.56148
(x2, x2) 12 48 0.46951 18 72 0.60414
(x3, x3) 12 48 0.42241 19 76 0.61453
(x4, x4) 15 60 0.98056 22 88 0.81583
(x5, x5) 15 60 1.0268 24 96 1.0713
(x6, x6) 17 68 1.0367 26 104 1.1566
(x7, x7) 20 80 0.81391 19 76 0.58601
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Table 7 Test result for Problem 6

DIM (x0, x1) IPDY PDY

NI NF CPU NI NF CPU

1000 (x1, x2) 18 71 0.083017 19 75 0.012928
(x2, x2) 20 79 0.031182 19 75 0.019364
(x3, x3) 26 103 0.028924 20 79 0.023384
(x4, x4) 24 96 0.032465 20 80 0.018849
(x5, x5) 22 88 0.028834 20 80 0.020314
(x6, x6) 30 120 0.077844 21 84 0.01811
(x7, x7) 33 131 0.049431 28 111 0.026045

5000 (x1, x2) 23 91 0.12845 20 79 0.10752
(x2, x2) 25 99 0.06932 20 79 0.080367
(x3, x3) 27 107 0.11594 21 83 0.088736
(x4, x4) 27 108 0.088566 21 84 0.066533
(x5, x5) 22 88 0.078413 21 84 0.063351
(x6, x6) 25 100 0.19629 21 84 0.061728
(x7, x7) 42 167 0.24797 27 107 0.12475

10,000 (x1, x2) 25 99 0.49274 20 79 0.10424
(x2, x2) 27 107 0.11762 20 79 0.087288
(x3, x3) 25 99 0.22357 22 87 0.10489
(x4, x4) 32 128 0.31481 23 92 0.12033
(x5, x5) 21 84 0.15018 21 84 0.099959
(x6, x6) 23 92 0.22802 21 84 0.12034
(x7, x7) 37 148 0.34333 25 100 0.11022

50,000 (x1, x2) 27 108 0.95113 23 92 0.4633
(x2, x2) 26 104 0.65128 23 92 0.4594
(x3, x3) 24 96 0.60615 22 88 0.49417
(x4, x4) 23 92 0.9149 24 96 0.59564
(x5, x5) 34 136 1.7539 24 96 0.47907
(x6, x6) 40 160 1.661 23 92 0.56435
(x7, x7) 30 120 1.2256 26 104 0.62177

100,000 (x1, x2) 27 108 1.5181 24 96 1.0094
(x2, x2) 23 92 1.1859 24 96 0.95376
(x3, x3) 35 140 2.2552 23 92 0.91113
(x4, x4) 38 152 2.6421 25 100 1.0668
(x5, x5) 34 136 2.9522 25 100 1.0427
(x6, x6) 44 176 3.966 26 104 1.1329
(x7, x7) 24 96 1.4499 24 96 1.0176
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Table 8 Test result for Problem 7

DIM (x0, x1) IPDY PDY

NI NF CPU NI NF CPU

1000 (x1, x2) 11 44 0.068624 18 72 0.030227
(x2, x2) 11 44 0.023476 18 72 0.023403
(x3, x3) 11 44 0.017342 18 72 0.020935
(x4, x4) 11 44 0.025539 17 68 0.017201
(x5, x5) 11 44 0.022939 17 68 0.024173
(x6, x6) 11 44 0.019481 17 68 0.026493
(x7, x7) 11 44 0.017316 18 72 0.039273

5000 (x1, x2) 13 52 0.16108 19 76 0.098763
(x2, x2) 13 52 0.077516 19 76 0.096008
(x3, x3) 13 52 0.072916 18 72 0.12134
(x4, x4) 12 48 0.11408 18 72 0.087261
(x5, x5) 11 44 0.06039 18 72 0.14077
(x6, x6) 11 44 0.19888 17 68 0.15511
(x7, x7) 13 52 0.093287 18 72 0.22382

10,000 (x1, x2) 10 40 0.14961 21 84 0.22682
(x2, x2) 10 40 0.17445 21 84 0.16402
(x3, x3) 14 56 0.12871 20 80 0.17297
(x4, x4) 13 52 0.1861 18 72 0.12425
(x5, x5) 12 48 0.147 18 72 0.21042
(x6, x6) 11 44 0.096169 18 72 0.27754
(x7, x7) 14 56 0.16325 20 80 0.14635

50,000 (x1, x2) 18 72 1.0847 24 96 1.6976
(x2, x2) 16 64 1.0441 24 96 0.96248
(x3, x3) 16 64 0.9691 23 92 0.99229
(x4, x4) 15 60 0.7331 21 84 0.8611
(x5, x5) 10 40 0.43613 21 84 0.84527
(x6, x6) 13 52 0.48876 18 72 0.92241
(x7, x7) 16 64 0.94373 23 92 0.98198

100,000 (x1, x2) 21 84 3.0149 29 116 2.8437
(x2, x2) 20 80 2.8402 28 112 2.6468
(x3, x3) 19 76 3.7723 26 104 2.3032
(x4, x4) 16 64 2.2599 23 92 1.9833
(x5, x5) 14 56 2.5742 22 88 1.8357
(x6, x6) 10 40 1.6625 20 80 1.5495
(x7, x7) 19 76 4.7247 26 104 2.3423
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Table 9 Test result for Problem 8

DIM (x0, x1) IPDY PDY

NI NF CPU NI NF CPU

1000 (x1, x2) 13 52 0.047278 17 68 0.017428
(x2, x2) 12 48 0.018759 17 68 0.017513
(x3, x3) 5 20 0.037937 5 20 0.006891
(x4, x4) 7 28 0.01145 18 72 0.013338
(x5, x5) 13 52 0.018218 19 76 0.017099
(x6, x6) 13 51 0.019231 18 71 0.024026
(x7, x7) 20 80 0.072003 19 76 0.024216

5000 (x1, x2) 13 52 0.1766 18 72 0.31792
(x2, x2) 13 52 0.062472 17 68 0.071077
(x3, x3) 5 20 0.042518 5 20 0.016293
(x4, x4) 7 28 0.18377 19 76 0.075083
(x5, x5) 14 56 0.082247 20 80 0.05464
(x6, x6) 14 55 0.051198 19 75 0.071584
(x7, x7) 21 84 0.091359 19 76 0.49819

10,000 (x1, x2) 13 52 0.071794 18 72 0.34353
(x2, x2) 13 52 0.096188 18 72 0.10846
(x3, x3) 5 20 0.08997 5 20 0.026613
(x4, x4) 7 28 0.049831 20 80 0.094635
(x5, x5) 14 56 0.1608 20 80 0.13325
(x6, x6) 14 56 0.10315 21 84 0.23725
(x7, x7) 22 88 0.21037 20 80 0.14349

50,000 (x1, x2) 14 56 1.3873 19 76 0.8772
(x2, x2) 13 52 0.48713 19 76 0.39603
(x3, x3) 6 24 0.19012 5 20 0.12496
(x4, x4) 8 32 0.212 21 84 0.51621
(x5, x5) 15 60 0.47484 21 84 0.55585
(x6, x6) 15 60 0.46325 21 84 0.56854
(x7, x7) 23 92 0.71778 21 84 0.58178

100,000 (x1, x2) 8 32 0.38132 20 80 0.90233
(x2, x2) 14 56 0.84004 19 76 0.75693
(x3, x3) 6 24 0.26154 5 20 0.18686
(x4, x4) 16 64 1.0809 22 88 2.3305
(x5, x5) 16 64 1.0547 22 88 1.1825
(x6, x6) 16 64 1.0315 22 88 1.4144
(x7, x7) 24 96 1.6254 20 80 1.1643
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Table 10 Test result for Problem 9

DIM (x0, x1) IPDY PDY

NI NF CPU NI NF CPU

1000 (x1, x2) 26 104 0.25727 36 144 0.23507
(x2, x2) 25 100 0.34424 35 140 0.20293
(x3, x3) 20 80 0.23255 35 140 0.18885
(x4, x4) 19 76 0.20691 33 132 0.29419
(x5, x5) 16 64 0.19554 31 124 0.18894
(x6, x6) 27 108 0.28929 24 96 0.19307
(x7, x7) 18 72 0.15421 27 108 0.18974

5000 (x1, x2) 16 64 0.66807 34 136 0.96072
(x2, x2) 20 80 1.0047 34 136 0.98855
(x3, x3) 18 72 0.74354 34 136 0.91487
(x4, x4) 19 76 0.83177 31 124 0.92888
(x5, x5) 17 68 0.77948 30 120 0.80674
(x6, x6) 24 96 1.1869 24 96 0.66125
(x7, x7) 18 72 0.85028 27 108 0.75491

10,000 (x1, x2) 20 80 1.6479 34 136 1.6326
(x2, x2) 30 120 2.6217 34 136 1.7051
(x3, x3) 24 96 1.8867 33 132 1.6473
(x4, x4) 16 64 1.3469 30 120 1.544
(x5, x5) 17 68 1.4065 30 120 1.5837
(x6, x6) 27 108 2.2891 24 96 1.2598
(x7, x7) 18 72 1.4826 28 112 1.6064

50,000 (x1, x2) 26 104 12.2321 34 136 7.4057
(x2, x2) 20 80 6.9478 33 132 7.1126
(x3, x3) 17 68 5.6733 32 128 6.9792
(x4, x4) 19 76 6.8442 24 96 5.7097
(x5, x5) 18 72 6.3233 29 116 6.4302
(x6, x6) 19 76 6.8044 31 124 6.8804
(x7, x7) 20 80 7.1252 26 104 5.7188

100,000 (x1, x2) 33 132 23.4997 33 132 14.5783
(x2, x2) 20 80 13.6641 33 132 14.6661
(x3, x3) 21 84 14.5443 40 160 18.5338
(x4, x4) 18 72 12.7254 30 120 13.2054
(x5, x5) 19 76 13.7186 28 112 12.9061
(x6, x6) 28 112 20.2095 26 104 11.7886
(x7, x7) 19 76 14.2087 28 112 12.1064
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Table 11 Test result for Problem 10

DIM (x0, x1) IPDY PDY

NI NF CPU NI NF CPU

1000 (x1, x2) 8 29 0.031115 11 42 0.013176
(x2, x2) 8 30 0.011849 11 42 0.007171
(x3, x3) 8 30 0.007197 11 42 0.014527
(x4, x4) 8 30 0.013392 11 42 0.010997
(x5, x5) 8 30 0.011848 11 42 0.013188
(x6, x6) 8 30 0.011115 12 46 0.010747
(x7, x7) 8 30 0.012579 11 42 0.014138

5000 (x1, x2) 8 31 0.084149 8 31 0.13649
(x2, x2) 8 31 0.052078 8 31 0.033025
(x3, x3) 8 31 0.054572 8 31 0.072224
(x4, x4) 8 31 0.071554 9 35 0.044811
(x5, x5) 9 35 0.075278 9 35 0.042668
(x6, x6) 9 35 0.29077 9 35 0.049779
(x7, x7) 8 31 0.10995 8 31 0.29745

10,000 (x1, x2) 8 31 0.11789 11 43 0.29977
(x2, x2) 8 31 0.12087 11 43 0.11724
(x3, x3) 8 31 0.50803 11 43 0.1141
(x4, x4) 9 35 0.47272 12 47 0.23368
(x5, x5) 9 35 0.25186 13 51 0.18279
(x6, x6) 10 39 0.22833 13 51 0.19171
(x7, x7) 8 31 0.11345 11 43 0.10251

50,000 (x1, x2) 8 32 0.54884 10 40 0.506
(x2, x2) 8 32 0.57793 10 40 1.0076
(x3, x3) 9 36 1.006 11 44 0.69436
(x4, x4) 11 44 1.5944 13 52 1.0485
(x5, x5) 11 44 1.9997 14 56 1.3131
(x6, x6) 13 52 2.2809 16 64 1.5874
(x7, x7) 9 36 0.90394 11 44 0.5891

100,000 (x1, x2) 8 32 1.1894 9 36 0.95893
(x2, x2) 8 32 1.3967 9 36 0.96424
(x3, x3) 9 36 2.0912 11 44 1.6021
(x4, x4) 12 48 4.044 14 56 2.5748
(x5, x5) 13 52 4.7375 16 64 3.3814
(x6, x6) 15 60 6.0328 18 72 4.1306
(x7, x7) 10 40 2.4042 11 44 1.5925
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