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Abstract
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1 Introduction
The notion of Lipschitz continuity of mappings between two metric spaces is well known
and significant in all fields of mathematics, particularly in geometry and analysis. It is
one of the most fundamental facts in functional analysis that an arbitrary bounded linear
operator T between normed spaces is Lipschitz continuous. Thus, for all vectors u, v in
the normed space on which T is defined, the following norm inequality holds:

‖Tu – Tv‖ ≤ ‖T‖‖u – v‖. (1.1)

Moreover, the Lipschitz constant is precisely the operator norm of T . That is, the identity

sup
u�=v

‖Tu – Tv‖
‖u – v‖ = ‖T‖

holds.
Let D = {z ∈C; |z| < 1} be the open unit disk of the complex number field C. The Möbius

addition on D is defined by the equation

a ⊕ b =
a + b

1 + ab

for any a, b ∈ D, which appears in various branches of mathematics. The Poincaré disk
(D,⊕) is one of the earliest examples of gyrogroups. The theory of gyrogroups and gy-
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rovector spaces was initiated in connection with Einstein’s special theory of relativity and
intensively studied by A.A. Ungar. Especially, in [8–10], Ungar established the concept of
real inner product gyrovector spaces, including Möbius gyrovector spaces. Let us briefly
recall the definition of the Möbius gyrovector spaces. No knowledge of general theory of
gyrogroups or gyrovector spaces is required to read this paper except for some basic facts
on Möbius addition, Möbius scalar multiplication, and (gyro) distance function; however,
it is fundamental for our motivation and background. In addition, notations from gyrovec-
tor space theory simplify expressions of our formulae remarkably. For elementary facts on
functional analysis and CBS type inequalities, one can refer to [2, 7]. Let H be a complex
inner product space with a positive definite inner product 〈·, ·〉, and let Hs be the open
s-ball of H,

Hs =
{

u ∈H;‖u‖ < s
}

for any fixed s > 0, where ‖u‖ = 〈u, u〉 1
2 . Although definitions and results are often de-

scribed for real inner product spaces in the literature, they are also valid for complex inner
product spaces as far as we are concerned in this paper, with some trivial modifications
such as the change from 〈u, v〉 to Re〈u, v〉.

Definition 1.1 ([11, Definition 3.40, Definition 6.83]) The Möbius addition ⊕M and the
Möbius scalar multiplication ⊗M are given by the equations

u ⊕M v =
(1 + 2

s2 Re〈u, v〉 + 1
s2 ‖v‖2)u + (1 – 1

s2 ‖u‖2)v
1 + 2

s2 Re〈u, v〉 + 1
s4 ‖u‖2‖v‖2

,

r ⊗M u = s tanh

(
r tanh–1 ‖u‖

s

)
u

‖u‖ (if u �= 0), r ⊗M 0 = 0

for any u, v ∈ Hs and r ∈ R. The addition ⊕M and the scalar multiplication ⊗M for real
numbers are defined by the equations

a ⊕M b =
a + b

1 + 1
s2 ab

, r ⊗M a = s tanh

(
r tanh–1 a

s

)

for any a, b ∈ (–s, s) and r ∈R.

We simply denote ⊕M, ⊗M by ⊕s, ⊗s, respectively. The ball Hs expands to the whole
space H as the parameter s → ∞, and each result in linear functional analysis can be
recaptured from the counterpart in gyrolinear analysis.

Theorem 1.2 (cf. [11, after Remark 3.41], [10, p. 1054]) The Möbius addition (resp. Möbius
scalar multiplication) reduces to the ordinary vector addition (resp. scalar multiplication)
as s → ∞, that is,

u ⊕s v → u + v (s → ∞),

r ⊗s u → ru (s → ∞)

for any u, v ∈H and r ∈R.
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Definition 1.3 ([11, (2.1), (6.286), (6.293)]) The inverse element of u with respect to ⊕s

obviously coincides with –u. We use the notation

u �s v = u ⊕s (–v)

as in vector spaces. Moreover, the Möbius gyrodistance function d and Poincaré distance
function (or Möbius metric) h are defined by the equations

d(u, v) = ‖v �s u‖,

h(u, v) = tanh–1 d(u, v)
s

.

Theorem 1.4 (cf. [11, (6.294)]. See also [4, 19]) The Poincaré distance function h satisfies
the triangle inequality, so that (Hs, h) is a metric space. In addition, if H is a Hilbert space,
then (Hs, h) is complete as a metric space.

In recent years, various notions in the Möbius gyrovector spaces have been established
as counterparts to those in Hilbert spaces, such as orthogonal gyrodecomposition with re-
spect to closed gyrovector subspaces, orthogonal gyroexpansion with respect to orthogo-
nal bases, Cauchy–Schwarz type inequalities, and continuous quasi gyrolinear functionals
(cf. [1, 12–18]). The Cauchy–Bunyakovsky–Schwarz (CBS in the sequel) inequality is one
of the most fundamental inequalities in mathematics. Recently, a CBS type inequality re-
lated to the Möbius operations was obtained.

Theorem 1.5 (cf. [16, Theorem 3.6, Theorem 3.7], [17, Theorem 15]) For any u, v ∈ H,
s > max{‖u‖,‖v‖} and w ∈H with ‖w‖ ≤ 1, the following inequality holds:

h
(〈u, w〉, 〈v, w〉) ≤ ‖w‖h(u, v)

or

∣∣〈u, w〉 �s 〈v, w〉∣∣ ≤ ‖w‖ ⊗s ‖u �s v‖.

Moreover, for any s > 0 and w ∈H with ‖w‖ ≤ 1, the following identity holds:

sup
‖u‖,‖v‖<s,u�=v

h(〈u, w〉, 〈v, w〉)
h(u, v)

= ‖w‖.

This result implies that every linear functional u → 〈u, w〉 with ‖w‖ ≤ 1 is Lipschitz
continuous on the Möbius gyrovector space with respect to the Poincaré metric, and that
the Lipschitz constant is precisely ‖w‖. It is so desirable to extend this result of linear
functionals to linear operators with norm less than or equal to one. Let H, K be inner
product spaces, let s, s′ > 0, and let T be a bounded linear operator fromH into K. Suppose
that ‖T‖ ≤ s′

s . Then, it is obvious that the restriction of T maps Hs into Ks′ , and one
can expect that they form one of the most fundamental classes of mappings between the
Möbius gyrovector spaces. Although the restriction of bounded linear operators does not
preserve the Möbius addition and the Möbius scalar multiplication in general, they can be
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considered as the most natural counterpart to bounded linear operators between Hilbert
spaces. Maps that preserve gyro addition on gyrovector spaces are known to be special in a
sense (cf. [5, Theorem 1], [3, Theorem 6], [17, Theorem 11]). Assume s = s′ for simplicity.
In this article, for every linear operator between inner product spaces whose operator
norm is less than or equal to one, we show that the restriction to the Möbius gyrovector
space is Lipschitz continuous with respect to the Poincaré metric. Moreover, the Lipschitz
constant is precisely the operator norm. In addition, the classical formula (1.1) can be
recaptured from our novel result by letting s → ∞.

The main result in this article is Theorem 3.3, which is a satisfactory extension of [16,
Theorem 3.6]. Also the core of Theorem 3.3 is Theorem 3.2, which is an extension of
[15, Theorem 5] to an operator version. Although the proofs have similarity to the corre-
sponding one in [15] or [16], we present them for the sake of completeness and reader’s
convenience. The technical ingredient in this paper is the use of an inequality derived from
the classical CBS inequality, and the rest of the proofs are just refinement and conversion
to the operator version of those in [15] and [16].

2 Preliminaries
In this section, we collect some necessary results. The following lemma is an easy
consequence of the definition. One can refer to [12, Proposition 2.3], [13, Lemma 12,
Lemma 14(i)].

Lemma 2.1 Let s > 0. The following formulae hold:
(i) ‖u ⊕s v‖2 = ‖u‖2+2Re〈u,v〉+‖v‖2

1+ 2
s2 Re〈u,v〉+ 1

s4 ‖u‖2‖v‖2

(ii) u
s ⊕1

v
s = u⊕sv

s
(iii) r ⊗1

u
s = r⊗su

s
for any u, v ∈Hs and r ∈R.

Note that the Möbius operations generally are not commutative, associative, or distribu-
tive. Furthermore, the ordinary scalar multiplication does not distribute the Möbius ad-
dition. However, the restricted Möbius operations to the interval (–s, s) together with the
ordinary addition and multiplication have a familiar nature.

Lemma 2.2 The following identities hold:

a ⊕s b = b ⊕s a,

a ⊕s (b ⊕s c) = (a ⊕s b) ⊕s c,

0 ⊕s a = a ⊕s 0 = a, (–a) ⊕s a = a ⊕s (–a) = 0,

1 ⊗s a = a,

(r1r2) ⊗s a = r1 ⊗s (r2 ⊗s a),

(r1 + r2) ⊗s a = r1 ⊗s a ⊕s r2 ⊗s a,

r ⊗s (a ⊕s b) = r ⊗s a ⊕s r ⊗s b

for any a, b, c ∈ (–s, s), r1, r2, r ∈R.



Watanabe Journal of Inequalities and Applications        (2021) 2021:166 Page 5 of 15

In addition, we need the following lemma.

Lemma 2.3 ([16, Lemma 1.5]) If –s < bj ≤ aj < s (j = 1, 2), then

b1 ⊕s b2 ≤ a1 ⊕s a2.

The equality holds if and only if aj = bj (j = 1, 2).

The following theorem is crucial when we extend a particular case of the main theorem
to the full strength with the Möbius scalar multiplication. The proof is essentially already
given in [16, Theorem 3.1].

Theorem 2.4 Let a, b, p, and q be real numbers with 0 ≤ a, b, p, q ≤ 1. If t is a real number
with |t| ≤ 1, then the following inequality holds:

(p + q)
√

1 –
(p + q)2

2
abt +

(p + q)4

16
a2b2

· {√1 – 2p2abt + p4a2b2
√

1 – 2q2abt + q4a2b2 + pq
(
a2 – 2abt + b2)}

≤ {
p
√

1 – 2q2abt + q4a2b2 + q
√

1 – 2p2abt + p4a2b2
}

·
{

1 –
(p + q)2

2
abt +

(p + q)4

16
a2b2 +

(p + q)2

4
(
a2 – 2abt + b2)

}
.

The equality holds if and only if one of the following conditions is satisfied:
(i) p = q

(ii) a = b = 0.

Proof Put α = a, θ = arccos t, β = beiθ and apply [16, Theorem 3.1]. �

3 Lipschitz continuity of linear contractions
Let H, K be complex inner product spaces, let u, v be elements in H, and let T be a
bounded linear operator from H into K, unless otherwise stated.

Lemma 3.1 If u, v ∈H and ‖T‖ ≤ 1, then the following inequality holds:

∣∣〈u, v〉 – 〈Tu, Tv〉∣∣ ≤
√(‖u‖2 – ‖Tu‖2

)(‖v‖2 – ‖Tv‖2
)
. (3.1)

Proof Although this assertion is almost trivial, we give a proof for the sake of completeness
and readers’ convenience. Considering the completion of inner product spaces if neces-
sary, we can use the positive semidefinite square root of I – T∗T , where I denotes the
identity operator on H. By the CBS inequality, we obtain

∣∣〈u, v〉 – 〈Tu, Tv〉∣∣

=
∣∣〈(I – T∗T

)
u, v

〉∣∣ =
∣∣〈(I – T∗T

) 1
2 u,

(
I – T∗T

) 1
2 v

〉∣∣

≤ ∥∥(
I – T∗T

) 1
2 u

∥∥∥∥(
I – T∗T

) 1
2 v

∥∥ =
√(‖u‖2 – ‖Tu‖2

)(‖v‖2 – ‖Tv‖2
)
.

This completes the proof. �



Watanabe Journal of Inequalities and Applications        (2021) 2021:166 Page 6 of 15

The following theorem can be considered as a core of the main theorem in the present
article, and it is an extension of [15, Theorem 5] to an operator version. It is necessary to
consider the polar forms of complex numbers 〈u, v〉 and 〈Tu, Tv〉. We reduce the proof of
inequality (3.2) related with contractive linear operators between possibly infinite dimen-
sional inner product spaces to a problem of constrained minimum value of a function of
eight real variables a, b, c, d, ρ , r, t, x. The tuple (a, b, c, d,ρ, r, t, x) does not move all over
the entire a priori rectangular, but is constrained by conditions derived from the norms of
u and v, the linearity, and contractivity of T . We extract constraints (3.3) by the previous
lemma.

Theorem 3.2 If ‖u‖,‖v‖ < 1 and ‖T‖ ≤ 1, then the following inequality holds:

‖Tu‖2 – 2Re〈Tu, Tv〉 + ‖Tv‖2

1 – 2Re〈Tu, Tv〉 + ‖Tu‖2‖Tv‖2 ≤ ‖u‖2 – 2Re〈u, v〉 + ‖v‖2

1 – 2Re〈u, v〉 + ‖u‖2‖v‖2 . (3.2)

The equality holds if and only if one of the following conditions is satisfied:
(i) u = v

(ii) ‖Tu‖ = ‖u‖ and ‖Tv‖ = ‖v‖.

Proof Put

a = ‖u‖, b = ‖v‖, c = ‖Tu‖, and d = ‖Tv‖.

We can take real numbers 0 ≤ ρ, r ≤ 1 and 0 ≤ t, x < 2π such that

〈u, v〉 = abρeit and 〈Tu, Tv〉 = cdreix.

Then it follows from (3.1) that

|abρ cos t – cdr cos x| ≤ ∣∣abρeit – cdreix∣∣ =
∣∣〈u, v〉 – 〈Tu, Tv〉∣∣

≤
√(‖u‖2 – ‖Tu‖2

)(‖v‖2 – ‖Tv‖2
)

=
√(

a2 – c2
)(

b2 – d2
)
.

Hence, we can obtain

abρ cos t –
√(

a2 – c2
)(

b2 – d2
) ≤ cdr cos x. (3.3)

In order to prove inequality (3.2), it is necessary and sufficient to show

(
a2 – 2abρ cos t + b2)(1 – 2cdr cos x + c2d2)

–
(
1 – 2abρ cos t + a2b2)(c2 – 2cdr cos x + d2) ≥ 0.

(3.4)

The left-hand side of (3.4) can be calculated as follows:

a2 – 2a2cdr cos x + a2c2d2

– 2abρ cos t + 4abcdρr cos t cos x – 2abc2d2ρ cos t



Watanabe Journal of Inequalities and Applications        (2021) 2021:166 Page 7 of 15

+ b2 – 2b2cdr cos x + b2c2d2

– c2 + 2cdr cos x – d2

+ 2abc2ρ cos t – 4abcdρr cos t cos x + 2abd2ρ cos t

– a2b2c2 + 2a2b2cdr cos x – a2b2d2

= a2 + a2c2d2 + b2 + b2c2d2 – c2 – d2 – a2b2c2 – a2b2d2

– 2abρ cos t
(
1 – c2)(1 – d2)

+ 2cdr cos x
(
1 – a2)(1 – b2).

By using (3.3), we can continue to estimate:

≥ a2 + a2c2d2 + b2 + b2c2d2 – c2 – d2 – a2b2c2 – a2b2d2

– 2abρ cos t
(
1 – c2)(1 – d2)

+ 2
{

abρ cos t –
√(

a2 – c2
)(

b2 – d2
)}(

1 – a2)(1 – b2)

= a2 + a2c2d2 + b2 + b2c2d2 – c2 – d2 – a2b2c2 – a2b2d2

– 2abρ cos t
{(

1 – c2)(1 – d2) –
(
1 – a2)(1 – b2)}

– 2
√(

a2 – c2
)(

b2 – d2
)(

1 – a2)(1 – b2)

≥ a2 + a2c2d2 + b2 + b2c2d2 – c2 – d2 – a2b2c2 – a2b2d2

– 2ab
{(

1 – c2)(1 – d2) –
(
1 – a2)(1 – b2)}

– 2
√(

a2 – c2
)(

b2 – d2
)(

1 – a2)(1 – b2).

It follows from arithmetic–geometric mean inequality that

≥ a2 + a2c2d2 + b2 + b2c2d2 – c2 – d2 – a2b2c2 – a2b2d2

– 2ab
{(

1 – c2)(1 – d2) –
(
1 – a2)(1 – b2)}

–
{(

a2 – c2) +
(
b2 – d2)}(1 – a2)(1 – b2)

= (a – b)2{(1 – c2)(1 – d2) –
(
1 – a2)(1 – b2)}

≥ 0.

Thus the desired inequality (3.4) is shown, and so inequality (3.2) holds.
It is obvious that condition (i) implies the trivial equality in (3.2). Suppose that condition

(ii) is satisfied. If u = 0, then the equality in (3.2) holds as ‖Tv‖ = ‖v‖, so we may assume
u �= 0. We can obtain

‖u‖2 = ‖Tu‖2 =
〈
T∗Tu, u

〉 ≤ ∥∥T∗Tu
∥∥‖u‖ ≤ ‖u‖2.

By the equality condition of the CBS inequality, it is easy to see T∗Tu = u. Hence we have

〈Tu, Tv〉 =
〈
T∗Tu, v

〉
= 〈u, v〉. (3.5)
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Condition (ii) and formula (3.5) clearly imply the equality in (3.2). Conversely, suppose
that the equality in (3.2) holds. If u = 0 or v = 0, then condition (ii) is satisfied. If u, v �= 0,
then the proof of inequality (3.4) shows that the following conditions (3.6)–(3.7) hold:

(ρ cos t – 1)
{(

1 – c2)(1 – d2) –
(
1 – a2)(1 – b2)} = 0, (3.6)

a2 – c2 = b2 – d2. (3.7)

By formula (3.6), we have

(
1 – c2)(1 – d2) –

(
1 – a2)(1 – b2) = 0 or ρ cos t = 1.

If (1 – c2)(1 – d2) – (1 – a2)(1 – b2) = 0, then a = c and b = d, so condition (ii) is satisfied. If
ρ cos t = 1, then 〈u, v〉 = ‖u‖‖v‖, and it follows that v = λu for some positive real number
λ. Therefore, from formula (3.7) we obtain

b2 – d2 = ‖v‖2 – ‖Tv‖2 = λ2(‖u‖2 – ‖Tu‖2) = λ2(a2 – c2) = λ2(b2 – d2).

The case b2 – d2 = 0 leads to condition (ii). The case b2 – d2 �= 0 yields λ = 1 or condition
(i). This completes the proof. �

The following theorem can be regarded as the most natural counterpart to the classical
norm inequality (1.1) for mappings between Möbius gyrovector spaces obtained by the
restriction of contractive linear operators between inner product spaces. Actually, they
are Lipschitz continuous with respect to the Poincaré metric. In the rest of the paper, we
simply denote ⊕1, ⊗1 by ⊕, ⊗, respectively.

Theorem 3.3 If s > max{‖u‖,‖v‖} and ‖T‖ ≤ 1, then the following inequality holds:

h(Tu, Tv) ≤ ‖T‖h(u, v). (3.8)

That is,

‖Tu �s Tv‖ ≤ ‖T‖ ⊗s ‖u �s v‖

or
√

‖Tu‖2 – 2Re〈Tu, Tv〉 + ‖Tv‖2

1 – 2
s2 Re〈Tu, Tv〉 + 1

s4 ‖Tu‖2‖Tv‖2
≤ ‖T‖ ⊗s

√
‖u‖2 – 2Re〈u, v〉 + ‖v‖2

1 – 2
s2 Re〈u, v〉 + 1

s4 ‖u‖2‖v‖2
.

The equality holds if and only if one of the following conditions is satisfied:
(i) u = v,

(ii) T = 0,
(iii) ‖Tu‖ = ‖u‖ and ‖Tv‖ = ‖v‖.

Proof At first, we show that if s = 1, ‖u‖,‖v‖ < 1, and ‖T‖ ≤ 1, then

√
‖Tu‖2 – 2Re〈Tu, Tv〉 + ‖Tv‖2

1 – 2Re〈Tu, Tv〉 + ‖Tu‖2‖Tv‖2 ≤ ‖T‖ ⊗
√

‖u‖2 – 2Re〈u, v〉 + ‖v‖2

1 – 2Re〈u, v〉 + ‖u‖2‖v‖2 . (3.9)
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The proof uses an argument in [6] that shows the operator monotonicity of the functions
tp with 0 ≤ p ≤ 1. Let E denote the set of all real numbers p in the interval [0, 1] for which if
T : H →K is a bounded linear operator with ‖T‖ = p, then inequality (3.9) holds. Trivially
0 ∈ E, and the previous theorem implies that 1 ∈ E. It is easy to check that E is a closed
subset of [0, 1]. In order to complete the proof of inequality (3.9), it suffices to show that
E is convex. Suppose p, q ∈ E. For an arbitrary bounded linear operator T : H → K with
‖T‖ = p+q

2 , put T1 = 2p
p+q T , T2 = 2q

p+q T . Then ‖T1‖ = p, ‖T2‖ = q, so we have

√
‖T1u‖2 – 2Re〈T1u, T1v〉 + ‖T1v‖2

1 – 2Re〈T1u, T1v〉 + ‖T1u‖2‖T1v‖2 ≤ p ⊗
√

‖u‖2 – 2Re〈u, v〉 + ‖v‖2

1 – 2Re〈u, v〉 + ‖u‖2‖v‖2 ,

√
‖T2u‖2 – 2Re〈T2u, T2v〉 + ‖T2v‖2

1 – 2Re〈T2u, T2v〉 + ‖T2u‖2‖T2v‖2 ≤ q ⊗
√

‖u‖2 – 2Re〈u, v〉 + ‖v‖2

1 – 2Re〈u, v〉 + ‖u‖2‖v‖2 .

We have to show

√
‖Tu‖2 – 2Re〈Tu, Tv〉 + ‖Tv‖2

1 – 2Re〈Tu, Tv〉 + ‖Tu‖2‖Tv‖2 ≤ p + q
2

⊗
√

‖u‖2 – 2Re〈u, v〉 + ‖v‖2

1 – 2Re〈u, v〉 + ‖u‖2‖v‖2 . (3.10)

By Lemma 2.2 and Lemma 2.3, we obtain

p + q
2

⊗
√

‖u‖2 – 2Re〈u, v〉 + ‖v‖2

1 – 2Re〈u, v〉 + ‖u‖2‖v‖2

=
1
2

⊗
(

p ⊗
√

‖u‖2 – 2Re〈u, v〉 + ‖v‖2

1 – 2Re〈u, v〉 + ‖u‖2‖v‖2

)

⊕ 1
2

⊗
(

q ⊗
√

‖u‖2 – 2Re〈u, v〉 + ‖v‖2

1 – 2Re〈u, v〉 + ‖u‖2‖v‖2

)

≥ 1
2

⊗
√

‖T1u‖2 – 2Re〈T1u, T1v〉 + ‖T1v‖2

1 – 2Re〈T1u, T1v〉 + ‖T1u‖2‖T1v‖2

⊕ 1
2

⊗
√

‖T2u‖2 – 2Re〈T2u, T2v〉 + ‖T2v‖2

1 – 2Re〈T2u, T2v〉 + ‖T2u‖2‖T2v‖2 .

Therefore, in order to show (3.10), it is sufficient to prove

2 ⊗
√

‖Tu‖2 – 2Re〈Tu, Tv〉 + ‖Tv‖2

1 – 2Re〈Tu, Tv〉 + ‖Tu‖2‖Tv‖2 (3.11)

≤
√

‖T1u‖2 – 2Re〈T1u, T1v〉 + ‖T1v‖2

1 – 2Re〈T1u, T1v〉 + ‖T1u‖2‖T1v‖2 ⊕
√

‖T2u‖2 – 2Re〈T2u, T2v〉 + ‖T2v‖2

1 – 2Re〈T2u, T2v〉 + ‖T2u‖2‖T2v‖2 .

If ‖Tu‖ = 0, then inequality (3.11) reduces to the following inequality:

2 ⊗ ‖Tv‖ ≤ ‖T1v‖ ⊕ ‖T2v‖
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or

2 ⊗ ‖Tv‖ ≤ 2p
p + q

‖Tv‖ ⊕ 2q
p + q

‖Tv‖,

which is equivalent to

2‖Tv‖
1 + ‖Tv‖2 ≤

2p
p+q ‖Tv‖ + 2q

p+q ‖Tv‖
1 + 2p

p+q ‖Tv‖ · 2q
p+q ‖Tv‖ .

The last inequality actually holds by (p + q)2 ≥ 4pq. So we may assume ‖Tu‖,‖Tv‖ �= 0. Put

a =
2

p + q
‖Tu‖, b =

2
p + q

‖Tv‖, t =
4

(p + q)2
Re〈Tu, Tv〉

ab
.

Obviously 0 < a, b < 1 and |t| ≤ 1 by the CBS inequality. Furthermore, we have

‖Tu‖ =
p + q

2
a, ‖Tv‖ =

p + q
2

b, Re〈Tu, Tv〉 =
(p + q)2

4
abt,

‖T1u‖ = pa, ‖T1v‖ = pb, Re〈T1u, T1v〉 = p2abt,

‖T2u‖ = qa, ‖T2v‖ = qb, Re〈T2u, T2v〉 = q2abt.

Hence we obtain

2 ⊗
√

‖Tu‖2 – 2Re〈Tu, Tv〉 + ‖Tv‖2

1 – 2Re〈Tu, Tv〉 + ‖Tu‖2‖Tv‖2 =
2
√

‖Tu‖2–2Re〈Tu,Tv〉+‖Tv‖2

1–2Re〈Tu,Tv〉+‖Tu‖2‖Tv‖2

1 + ‖Tu‖2–2Re〈Tu,Tv〉+‖Tv‖2

1–2Re〈Tu,Tv〉+‖Tu‖2‖Tv‖2

=
(p + q)

√
a2–2abt+b2

1– (p+q)2
2 abt+ (p+q)4

16 a2b2

1 +
(p+q)2

4 (a2–2abt+b2)

1– (p+q)2
2 abt+ (p+q)4

16 a2b2

and

√
‖T1u‖2 – 2Re〈T1u, T1v〉 + ‖T1v‖2

1 – 2Re〈T1u, T1v〉 + ‖T1u‖2‖T1v‖2 ⊕
√

‖T2u‖2 – 2Re〈T2u, T2v〉 + ‖T2v‖2

1 – 2Re〈T2u, T2v〉 + ‖T2u‖2‖T2v‖2

=

√
‖T1u‖2–2Re〈T1u,T1v〉+‖T1v‖2

1–2Re〈T1u,T1v〉+‖T1u‖2‖T1v‖2 +
√

‖T2u‖2–2Re〈T2u,T2v〉+‖T2v‖2

1–2Re〈T2u,T2v〉+‖T2u‖2‖T2v‖2

1 +
√

‖T1u‖2–2Re〈T1u,T1v〉+‖T1v‖2

1–2Re〈T1u,T1v〉+‖T1u‖2‖T1v‖2 ·
√

‖T2u‖2–2Re〈T2u,T2v〉+‖T2v‖2

1–2Re〈T2u,T2v〉+‖T2u‖2‖T2v‖2

=
p
√

a2–2abt+b2

1–2p2abt+p4a2b2 + q
√

a2–2abt+b2

1–2q2abt+q4a2b2

1 + p
√

a2–2abt+b2

1–2p2abt+p4a2b2 · q
√

a2–2abt+b2

1–2q2abt+q4a2b2

.



Watanabe Journal of Inequalities and Applications        (2021) 2021:166 Page 11 of 15

Therefore, dividing both sides by
√

a2 – 2abt + b2, our proof of inequality (3.11) is reduced
to show that

(p + q)
√

1 – (p+q)2

2 abt + (p+q)4

16 a2b2

1 – (p+q)2

2 abt + (p+q)4

16 a2b2 + (p+q)2

4 (a2 – 2abt + b2)

≤ p
√

1 – 2q2abt + q4a2b2 + q
√

1 – 2p2abt + p4a2b2
√

1 – 2p2abt + p4a2b2
√

1 – 2q2abt + q4a2b2 + pq(a2 – 2abt + b2)
,

the last inequality actually holds by Theorem 2.4. Thus the set E is convex, which leads to
E = [0, 1], so inequality (3.9) holds.

Finally, let u, v ∈H be arbitrary elements, and let s > max{‖u‖,‖v‖}. Applying inequality
(3.9) to u

s , v
s , it is straightforward to deduce inequality (3.8).

For the equality condition, we may assume s = 1. It is immediate to see that the equality
in (3.9) holds provided one of conditions (i), (ii), or (iii) is satisfied.

Conversely, let 1
2 ≤ p < 1, ‖u‖,‖v‖ < 1, and ‖T‖ = p. Suppose that the equality of (3.9)

holds. If we put

p′ = 2p – 1, T1 =
2p′

p′ + 1
T , T2 =

2
p′ + 1

T ,

then it is obvious that ‖T1‖ = p′, ‖T2‖ = 1. By inequality (3.11), inequality (3.9), and
Lemma 2.3, we obtain

√
‖Tu‖2 – 2Re〈Tu, Tv〉 + ‖Tv‖2

1 – 2Re〈Tu, Tv〉 + ‖Tu‖2‖Tv‖2

≤ 1
2

⊗
√

‖T1u‖2 – 2Re〈T1u, T1v〉 + ‖T1v‖2

1 – 2Re〈T1u, T1v〉 + ‖T1u‖2‖T1v‖2

⊕ 1
2

⊗
√

‖T2u‖2 – 2Re〈T2u, T2v〉 + ‖T2v‖2

1 – 2Re〈T2u, T2v〉 + ‖T2u‖2‖T2v‖2

≤ 1
2

⊗
(

p′ ⊗
√

‖u‖2 – 2Re〈u, v〉 + ‖v‖2

1 – 2Re〈u, v〉 + ‖u‖2‖v‖2

)

⊕ 1
2

⊗
(

1 ⊗
√

‖u‖2 – 2Re〈u, v〉 + ‖v‖2

1 – 2Re〈u, v〉 + ‖u‖2‖v‖2

)

=
p′ + 1

2
⊗

√
‖u‖2 – 2Re〈u, v〉 + ‖v‖2

1 – 2Re〈u, v〉 + ‖u‖2‖v‖2 ,

where the last formula equals the first one by the assumption. The equality condition of
Lemma 2.3 implies

√
‖T2u‖2 – 2Re〈T2u, T2v〉 + ‖T2v‖2

1 – 2Re〈T2u, T2v〉 + ‖T2u‖2‖T2v‖2 =

√
‖u‖2 – 2Re〈u, v〉 + ‖v‖2

1 – 2Re〈u, v〉 + ‖u‖2‖v‖2 ,

which yields one of the following conditions:
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(i) u = v,
(ii) ‖T2u‖ = ‖u‖ and ‖T2v‖ = ‖v‖

by the equality condition of Theorem 3.2. We have to consider only the case of condition
(ii). The first inequality in the previous series of inequalities also has to be an equality.
Namely,

√
‖Tu‖2 – 2Re〈Tu, Tv〉 + ‖Tv‖2

1 – 2Re〈Tu, Tv〉 + ‖Tu‖2‖Tv‖2

=
1
2

⊗
√

‖T1u‖2 – 2Re〈T1u, T1v〉 + ‖T1v‖2

1 – 2Re〈T1u, T1v〉 + ‖T1u‖2‖T1v‖2

⊕ 1
2

⊗
√

‖T2u‖2 – 2Re〈T2u, T2v〉 + ‖T2v‖2

1 – 2Re〈T2u, T2v〉 + ‖T2u‖2‖T2v‖2 .

Considering the division by
√

a2 – 2abt + b2 in the proof of (3.11), it yields one of the
following conditions:

(i′) p′ = 1,
(ii′) ‖Tu‖ = ‖Tv‖ = 0,

(iii′) Re〈Tu,Tv〉
‖Tu‖‖Tv‖ = 1 and ‖Tu‖ = ‖Tv‖.

However, we have p′ �= 1, because p < 1.
Note that, if ‖Tu‖ = 0, then we have T1u = T2u = 0 and

‖Tv‖ =
1
2

⊗ ‖T1v‖ ⊕ 1
2

⊗ ‖T2v‖

=
1
2

⊗ 2p – 1
p

‖Tv‖ ⊕ 1
2

⊗ 1
p
‖Tv‖,

from which we easily obtain ‖Tv‖ = 0. In case (ii′), obviously u = v = 0 by ‖T2u‖ = ‖u‖ and
‖T2v‖ = ‖v‖.

In case (iii′), by the equality condition of the CBS inequality, Tv = λTu for some positive
real number λ. Hence

‖Tu‖ = ‖Tv‖ = λ‖Tu‖.

We may assume λ = 1, and it follows that

〈u, v〉 = 〈T2u, T2v〉 =
1
p2 〈Tu, Tv〉 =

1
p2 ‖Tu‖2 = ‖T2u‖‖T2v‖ = ‖u‖‖v‖.

Therefore, v = μu for some μ ≥ 0, and it leads to u = v.
Next, suppose 1

4 ≤ p < 1
2 and that the equality of (3.9) holds for ‖T‖ = p. Put

p′ = 2p –
1
2

, T1 =
2p′

p′ + 1
2

T , T2 =
2 · 1

2

p′ + 1
2

T .

Then we have ‖T1‖ = p′, ‖T2‖ = 1
2 . A similar argument before shows

√
‖T2u‖2 – 2Re〈T2u, T2v〉 + ‖T2v‖2

1 – 2Re〈T2u, T2v〉 + ‖T2u‖2‖T2v‖2 =
1
2

⊗
√

‖u‖2 – 2Re〈u, v〉 + ‖v‖2

1 – 2Re〈u, v〉 + ‖u‖2‖v‖2 ,
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which yields u = v by the equality condition established just before. This argument can
be repeated for half open intervals [1/2n+1, 1/2n), and we can conclude that the equality
condition holds. This completes the proof. �

Remark 3.4
(i) If ‖T‖ = 1, then inequality (3.9) reduces to inequality (3.2).

(ii) The classical norm inequality (1.1) can be recaptured by an argument of elementary
calculus and letting s → ∞ in inequality (3.8).

(iii) Let w ∈H with ‖w‖ ≤ 1. If we consider the linear functional defined by

Tu = 〈u, w〉 (u ∈H),

then [16, Theorem 3.6] can be regarded as a particular case of Theorem 3.3 in the
present paper.

(iv) In equality condition (iii) of Theorem 3.3, it is necessary that ‖T‖ = 1 unless u = v = 0.

The following theorem shows that, for every linear operator between inner product
spaces whose operator norm is less than or equal to one, the Lipschitz constant of the
restriction to the Möbius gyrovector space is precisely the operator norm if we consider
the Poincaré metric.

Theorem 3.5 Let H, K be complex inner product spaces, and let T : H →K be a bounded
linear operator with ‖T‖ ≤ 1. For any s > 0, the following identity holds:

sup
‖u‖,‖v‖<s,u�=v

h(Tu, Tv)
h(u, v)

= ‖T‖. (3.12)

Proof It is easy to see that we may assume s = 1 without loss of generality. Theorem 3.3
implies

sup
‖u‖,‖v‖<1,u�=v

h(Tu, Tv)
h(u, v)

≤ ‖T‖.

If we put

K = sup
‖u‖,‖v‖<1,u�=v

h(Tu, Tv)
h(u, v)

,

then obviously we have

√
‖Tu‖2 – 2Re〈Tu, Tv〉 + ‖Tv‖2

1 – 2Re〈Tu, Tv〉 + ‖Tu‖2‖Tv‖2 ≤ K ⊗
√

‖u‖2 – 2Re〈u, v〉 + ‖v‖2

1 – 2Re〈u, v〉 + ‖u‖2‖v‖2 (3.13)

for any u, v ∈H with ‖u‖,‖v‖ < 1.
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Now, for arbitrary u, v ∈ H and t > max{‖u‖,‖v‖}, by applying inequality (3.13) to u
t , v

t ,
it is immediate to see

√
‖Tu‖2 – 2Re〈Tu, Tv〉 + ‖Tv‖2

1 – 2
t2 Re〈Tu, Tv〉 + 1

t4 ‖Tu‖2‖Tv‖2

≤ t tanh

{
K tanh–1

(
1
t

√
‖u‖2 – 2Re〈u, v〉 + ‖v‖2

1 – 2
t2 Re〈u, v〉 + 1

t4 ‖u‖2‖v‖2

)}
.

By letting t → ∞, we can obtain

‖Tu – Tv‖ ≤ K‖u – v‖

for every pair u, v ∈H, which implies ‖T‖ ≤ K . This completes the proof. �

We state the corresponding results in real inner product spaces.

Theorem 3.6 Let H, K be real inner product spaces, and let T : H → K be a bounded
real linear operator with ‖T‖ ≤ 1. For any u, v ∈ H and s > max{‖u‖,‖v‖}, the following
inequality holds:

h(Tu, Tv) ≤ ‖T‖h(u, v).

That is,

‖Tu �s Tv‖ ≤ ‖T‖ ⊗s ‖u �s v‖

or

√
‖Tu‖2 – 2〈Tu, Tv〉 + ‖Tv‖2

1 – 2
s2 〈Tu, Tv〉 + 1

s4 ‖Tu‖2‖Tv‖2
≤ ‖T‖ ⊗s

√
‖u‖2 – 2〈u, v〉 + ‖v‖2

1 – 2
s2 〈u, v〉 + 1

s4 ‖u‖2‖v‖2
.

The equality holds if and only if one of the following conditions is satisfied:
(i) u = v,

(ii) T = 0,
(iii) ‖Tu‖ = ‖u‖ and ‖Tv‖ = ‖v‖.

Theorem 3.7 Let H, K be real inner product spaces, and let T : H →K be a bounded real
linear operator with ‖T‖ ≤ 1. For any s > 0, the following identity holds:

sup
‖u‖,‖v‖<s,u�=v

h(Tu, Tv)
h(u, v)

= ‖T‖.
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