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Abstract
In this paper, we consider the numerical method for solving finite-dimensional
quasi-variational inequalities with both equality and inequality constraints. Firstly, we
present a semismooth equation reformulation to the KKT system of a
finite-dimensional quasi-variational inequality. Then we propose a semismooth
Newton method to solve the equations and establish its global convergence. Finally,
we report some numerical results to show the efficiency of the proposed method.
Our method can obtain the solution to some problems that cannot be solved by the
method proposed in (Facchinei et al. in Comput. Optim. Appl. 62:85–109, 2015).
Besides, our method outperforms than the interior point method proposed in
(Facchinei et al. in Math. Program. 144:369–412, 2014).
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1 Introduction
We consider the finite-dimensional quasi-variational inequality QVI(K , F): Find a vector
x∗ ∈ K(x∗) such that

F
(
x∗)T(y – x∗)≥ 0, ∀y ∈ K

(
x∗), (1.1)

where F : Rn → Rn is a point to point mapping and K : Rn ⇒ Rn is a point to set mapping
with closed and convex images. Throughout the paper, we assume that F belongs to C1

and for each x ∈ Rn, the feasible set mapping K is given by

K(x) �
{

y ∈ Rn | g(y, x) ≤ 0, h(y, x) = 0
}

, (1.2)

where g : Rn × Rn → Rm1 belongs to C2 and gi(·, x) is convex on Rn for each i = 1, 2, . . . , m1

and for all x ∈ Rn, h : Rn × Rn → Rm2 belongs to C2 and hj(·, x) is affine on Rn for each
j = 1, 2, . . . , m2 and for all x ∈ Rn. When the set K(x) is independent of x, (1.1) reduces to
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the famous variational inequality (VI). For VI, we refer the reader to [13] and the references
therein.

QVI (1.1), which was first introduced by Bensoussan and Lions [2, 3], has important ap-
plications in many fields such as generalized Nash games, mechanics, economics, statis-
tics, transportation and biology; see for example [1, 6, 10, 12] and the references therein.
One interesting topic on QVI is to develop the efficient algorithms for the solution of
QVI. Since QVI is nonsmooth and nonconvex, it is difficult to design effective methods
for QVI, and by now, compared with VI, the numerical methods are still scarce. In this
paper, we mainly focus on the numerical method based on the KKT conditions of QVI.
This area attracts many people’s attention and much progress has been made. In [12] an
interior point approach was proposed to solve QVI and the convergence was established
for several classes of interesting QVIs. Reference [8, 9] developed a so called LP-Newton
method and the method can be successfully applied to nonsmooth systems of equations
with non-isolated solutions. Reference [21] developed an efficient regularized smoothing
Newton-type algorithm for QVI. The proposed algorithm takes the advantage of newly
introduced smoothing functions and a non-monotone line search strategy. [10] proposed
a semismooth Newton method for QVI. They obtained global convergence and locally
superlinear/quadratic convergence result for some important classes of quasi-variational
inequality problems. The numerical results show that the method performs well.

There are many ways to compute a numerical solution of the nonlinear complementarity
problems (NCP), such as linearized projected relaxation methods [13], the modulus-based
matrix splitting method [24] and the penalty method [7, 23, 25]. In the past two decades,
the nonsmooth-equation-based method has been thoroughly studied to solve NCP; see for
example [5, 14–19] and the references therein. A common way to reformulate the com-
plementarity system is to use the so called NCP-function. A function φ : R2 → R is called
an NCP-function if it satisfies

φ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

For example, the famous Fischer–Burmeister (FB) function takes the form

φ(a, b) =
√

a2 + b2 – a – b.

By the use of the NCP-function, nonlinear complementarity problem can be easily con-
verted into a system of nonlinear equations. Most existing NCP-functions are generally
nondifferentiable in the sense of Fréderivative but semismooth in the sense of Mifflin [20]
and Qi and Sun [22]. In [17], the authors proposed a nonsmooth equation reformulation
to the NCP. Their reformulation enjoys a nice property that it is continuous differentiable
everywhere except at the solution. In this paper, we present a semismooth equation refor-
mulation to the KKT system of a quasi-variational inequality and propose a semismooth
Newton method to solve the equations.

The paper is organized as follows. In the next section, we describe a semismooth equa-
tion reformulation to the KKT system of a quasi-variational inequality, present the semis-
mooth Newton method and establish the global convergence for the method. In Sect. 3,
we compare the proposed method with some other methods on problems list in [11].
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In the following, we introduce some notations that will be used in this paper. For a con-
tinuously differentiable function F : Rn → Rn, we write JF(x) for the Jacobian of F at a
point x ∈ Rn, whereas ∇F(x) denotes the transposed Jacobian of F . Given a smooth map-
ping g : Rn × Rn → Rm, (y, x) �→ g(y, x), ∇yg(y, x) denotes the transpose of the partial Ja-
cobian of g with respect to the y-variables. If F is locally Lipschitz continuous around x,
then ∂F(x) denotes Clarke’s generalized Jacobian of F at x. For a vector x ∈ Rn and a sub-
set I ⊂ {1, 2, . . . , n}, we write xI for the subvector consisting of the elements xi, i ∈ I . For a
matrix A ∈ Rn×n and two subsets I, J ⊂ {1, 2, . . . , n}, the symbol AIJ stands for the subma-
trix with entries aij for i ∈ I , j ∈ J . The symbol diag(a11, a22, . . . , ann) stands for a diagonal
matrix with diagonal elements a11, a22, . . . , ann.

2 Semismooth equation reformulation and semismooth Newton method
Firstly, we give the following definition that will be used.

Definition 2.1 ([22]) A function F : Rn → Rn is semismooth at a point x ∈ Rn if it is locally
Lipschitzian at x and

lim
V∈∂F(x+td′),d′→d,t↓0

Vd′

exists for any d ∈ Rn, where ∂F(x) is the generalized Jacobian of F at x. F is strongly semis-
mooth at x ∈ Rn if for any d → 0 and any V ∈ ∂F(x + d),

Vd – F ′(x; d) = O
(‖d‖2),

where F ′(x; d) denotes the directional derivative of F at x along the direction d.

A point x is called a KKT point of QVI (1.1) if there exist Lagrange multipliers λ ∈ Rm1

and ν ∈ Rm2 such that

⎧
⎪⎪⎨

⎪⎪⎩

F(x) + ∇yg(x, x)λ + ∇yh(x, x)ν = 0,

h(x, x) = 0,

λ ≥ 0, g(x, x) ≤ 0, λT g(x, x) = 0.

(2.1)

Similar to Theorem 1 of [12], we find that x∗ ∈ K(x∗) is a solution of (1.1) if there exist
λ∗ ∈ Rm1 and ν∗ ∈ Rm2 such that (x∗,λ∗,ν∗) satisfies the KKT conditions (2.1). Moreover, if
x∗ ∈ K(x∗) is a solution of (1.1) and some suitable constraint qualification holds at x∗, then
there exist λ∗ ∈ Rm1 and ν∗ ∈ Rm2 such that (x∗,λ∗,ν∗) satisfies the KKT conditions (2.1).
Based on the above relationship, our aim is to develop a numerical method for solving the
KKT conditions (2.1). For convenience, let

L(x,λ,ν) := F(x) + ∇yg(x, x)λ + ∇yh(x, x)ν,

p(x) := g(x, x), q(x) := h(x, x),
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and then (2.1) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L(x,λ,ν) = 0,

q(x) = 0,

p(x) + w = 0,

λ ≥ 0, w ≥ 0, λT w = 0,

(2.2)

where the w ∈ Rm1 are slack variables.
It is not easy to solve (2.2) directly since the fourth formula is a complementarity sys-

tem. We replace the complementarity system by an NCP-function [17], which is called the
smoothed form of FB function:

φ(u, v, ε) =
√

u2 + v2 + ε2 – (u + v).

It is clear that, for each ε �= 0, φ(u, v, ε) is continuously differentiable. We use it to construct
an almost smooth equation reformulation to the fourth formula.

Let �FB(λ, w) = (φFB
1 (λ1, w1), . . . ,φFB

m1 (λm1 , wm1 ))T and S(λ, w) = (S1(λ, w), . . . , Sm1 (λ, w))T ,
where for each i = 1, 2, . . . , m1, the elements φFB

i (λi, wi) and Si(λ, w) are given by

φFB
i (λi, wi) =

√
λ2

i + w2
i – λi – wi

and

Si(λ, w) = φ
(
λi, wi,μ

1
2
∥∥�FB(λ, w)

∥∥) =
√

λ2
i + w2

i + 2μθ (λ, w) – λi – wi, (2.3)

respectively, where 0 < μ < (
√

2+1)2

m1
is a parameter, ‖ · ‖ is the Euclidean norm, and

θ (λ, w) =
1
2
∥
∥�FB(λ, w)

∥
∥2.

It is obvious that, for each i = 1, 2, . . . , m1, Si(λ, w) is differentiable everywhere except at the
degenerate point (λ, w) which satisfies θ (λ, w) = 0 and λi = wi = 0 for some i = 1, 2, . . . , m1.
Moreover, we can obtain from Theorem 2.3 of [17] that S(λ, w) = 0 is equivalent to λ ≥
0, w ≥ 0, λT w = 0. This means that (x∗,λ∗,ν∗) is a KKT point of the QVI if and only if
(x∗,λ∗,ν∗, w∗) with w∗ = –p(x∗) is a solution of the nonsmooth system of equations

H(x,λ,ν, w) = 0, with H(x,λ,ν, w) :=

⎛

⎜⎜⎜
⎝

L(x,λ,ν)
q(x)

p(x) + w
S(λ, w)

⎞

⎟⎟⎟
⎠

. (2.4)

Associated with the system of H(x,λ,ν, w) = 0, we consider its natural merit function

	(z) :=
1
2
∥∥H(z)

∥∥2, (2.5)

where we set z := (x,λ,ν, w).
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By a direct calculation, we find that the gradient ∇θ (λ, w) of θ (·, ·) at (λ, w) can be ex-
pressed as follows:

∇θ (λ, w) =
(
∂θ (λ, w)/∂λ1, . . . , ∂θ (λ, w)/∂λm1 , ∂θ (λ, w)/∂w1, . . . , ∂θ (λ, w)/∂wm1

)T ,

where

∂θ (λ, w)/∂λi = φFB
i (λi, wi)vλi , with vλi ∈ ∂λiφ

FB
i (λi, wi),

and

∂θ (λ, w)/∂wi = φFB
i (λi, wi)vwi , with vwi ∈ ∂wiφ

FB
i (λi, wi),

which means that

∇θ (λ, w) =
[
diag(vλ1 , vλ2 , . . . , vλm1

)
︸ ︷︷ ︸

Vλ

diag(vw1 , vw2 , . . . , vwm1
)

︸ ︷︷ ︸
Vw

]T
�FB(λ, w).

Here, ∂λiφ
FB
i (λi, wi) denotes the partial generalized gradient of φFB

i (·, wi) at λi and
∂wiφ

FB
i (λi, wi) denotes the partial generalized gradient of φFB

i (·, wi) at wi, respectively. In
particular, if θ (λ, w) = 0, then ∇θ (λ, w) = 0.

If θ (λ, w) �= 0, we can get by a direct calculation

∇Si(λ, w) =
(

∂Si

∂λ1
, . . . ,

∂Si

∂λm1
,
∂Si

∂w1
, . . . ,

∂Si

∂wm1

)T

=
[(

λi√
λ2

i + w2
i + 2μθ

– 1
)

eT
i ,
(

wi√
λ2

i + w2
i + 2μθ

– 1
)

eT
i

]T

+
μ∇θ (λ, w)

√
λ2

i + w2
i + 2μθ

=
[(

λi√
λ2

i + w2
i + 2μθ

︸ ︷︷ ︸
ai(λ,w)

–1
)

eT
i ,
(

wi√
λ2

i + w2
i + 2μθ

︸ ︷︷ ︸
bi(λ,w)

–1
)

eT
i

]T

+
√

2μθ
√

λ2
i + w2

i + 2μθ
︸ ︷︷ ︸

ci(λ,w)

√
μ

[
Vλ

Vw

]
�FB(λ, w)

‖�FB(λ, w)‖ ,

where

a2
i (λ, w) + b2

i (λ, w) + c2
i (λ, w) = 1.
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Otherwise, we have λi ≥ 0, wi ≥ 0 and λiwi = 0 for any i, which means that, if λ2
i + w2

i �= 0,
then

∇Si(λ, w) =
(

∂Si

∂λ1
, . . . ,

∂Si

∂λm1
,
∂Si

∂w1
, . . . ,

∂Si

∂wm1

)T

=
[(

λi√
λ2

i + w2
i

– 1
)

eT
i ,
(

wi√
λ2

i + w2
i

– 1
)

eT
i

]T

,

and, if λ2
i + w2

i = 0, then the element in ∂CSi(λ, w) takes the form

[
(ai –1)eT

i , (bi –1)eT
i
]T +ci

√
μ
[
diag(v̄λ1 , v̄λ2 , . . . , v̄λm1

) diag(v̄w1 , v̄w2 , . . . , v̄wm1
)
]T u, (2.6)

where v̄λi ∈ ∂λiφ
FB
i (λi, wi), v̄wi ∈ ∂wiφ

FB
i (λi, wi), ‖u‖ = 1, and

a2
i + b2

i + c2
i ≤ 1.

Therefore, the partial generalized derivatives S(λ, w) can be expressed in the form of

Uλ = diag(a1 – 1, a2 – 1, . . . , am1 – 1) +
√

μdiag(c1, c2, . . . , cm1 )EVλ diag(u) (2.7)

and

Uw = diag(b1 – 1, b2 – 1, . . . , bm1 – 1) +
√

μdiag(c1, c2, . . . , cm1 )EVw diag(u), (2.8)

where a2
i + b2

i + c2
i ≤ 1, u ∈ Rm1 satisfies ‖u‖ = 1, E is a matrix whose elements are one,

Vλ and Vw are diagonal matrices whose diagonal elements belong to ∂λiφ
FB
i (λi, wi) and

∂wiφ
FB
i (λi, wi), respectively.

On the basis of the above calculations, we have the following proposition.

Proposition 2.2 Let the mapping H be defined by (2.4). Then the following statements
hold:

(a) If F is continuously differentiable and g , h are twice continuously differentiable, then
H is semismooth and

∂H(x,λ,ν, w) ⊆

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜
⎝

JxL(x,λ,ν) ∇yg(x, x) ∇yh(x, x) 0
Jq(x) 0 0 0
Jp(x) 0 0 I

0 Uλ 0 Uw

⎞

⎟⎟⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

where Uλ, Uw is defined by (2.7) and (2.8), respectively.
(b) If, in addition, JF , ∇2gi (i = 1, . . . , m1) and ∇2hj (j = 1, . . . , m2) are locally Lipschitz,

then H is strongly semismooth.
(c) Let the merit function 	 be defined by (2.5). If F is continuously differentiable and g ,

h are twice continuously differentiable, then 	 is continuously differentiable, and its
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gradient is given by

∇	(z) = V T H(z)

for an arbitrary element V ∈ ∂H(z).

Remark 2.1 Consider QVI(K̃ , F), where

K̃(x) �
{

y ∈ Rn | g(y, x) ≤ 0
}

. (2.9)

That is, there are no equality constraints in QVI (1.1). Similarly, we can formulate the
above problem in terms of the nonsmooth system of equations

H̃(x,λ, w) = 0, with H̃(x,λ, w) :=

⎛

⎜
⎝

L̃(x,λ)
p(x) + w
S(λ, w)

⎞

⎟
⎠ , (2.10)

where L̃(x,λ) := F(x) + ∇yg(x, x)λ. Similar to the Proposition 2.2, if F is continuously dif-
ferentiable and g is twice continuously differentiable, then H̃ is semismooth and

∂H̃(x,λ, w) ⊆

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

JxL̃(x,λ) ∇yg(x, x) 0
Jp(x) 0 I

0 Uλ Uw

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
,

where Uλ and Uw are the same as in Proposition 2.2.

Now, we present the semismooth Newton method for (1.1).

Algorithm 1 (Semismooth Newton Method)
Step 0. Choose z0 = (x0,λ0,ν0, w0) ∈ Rn × Rm1 × Rm2 × Rm1 , ρ > 0, β ∈ (0, 1),
σ ∈ (0, 1

2 ), p > 2, ε ≥ 0, and set k := 0.
Step 1. If ‖∇	(zk)‖ ≤ ε, stop.
Step 2. Choose an arbitrary element Vk ∈ ∂H(zk), and compute dk as a solution of the
linear system of equations

Vkd = –H
(
zk). (2.11)

If either this system is not solvable or the sufficient decrease condition

∇	
(
zk)T dk ≤ –ρ

∥
∥dk∥∥p (2.12)

is not satisfied, then take dk := –∇	(zk).
Step 3. Compute a stepsize tk as the maximum of the numbers β lk , lk = 0, 1, 2, . . . , such
that the following Armijo condition holds:

	
(
zk + tkdk)≤ 	

(
zk) + σ tk∇	

(
zk)T dk . (2.13)
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Step 4. Set zk+1 := zk + tkdk , k ← k + 1, and go to Step 1.
End.

Below, we establish the following global convergence theorem for Algorithm 1.

Theorem 2.3 Let {zk} = {(xk ,λk ,νk , wk)} be a sequence of iterates generated by Algorithm 1.
Then every accumulation point of the sequence {zk} is a stationary point of the merit func-
tion 	 .

Proof We prove it by contradiction. Firstly, if for an infinite set of indices N , dk = –∇	(zk)
for all k ∈ N , then, by [4] Proposition 1.16, we see that any limit point z∗ of zk satisfies
∇	(z∗).

In the following, we suppose the direction is always given by (2.11). Suppose {zk} → z∗

and ∇	(z∗) �= 0, by (2.11), we have

∥∥H
(
zk)∥∥ =

∥∥Vkdk∥∥≤ ‖Vk‖ × ∥∥dk∥∥.

Noting that ‖Vk‖ cannot be 0, otherwise H(zk) = 0 and zk would be a stationary point.
Hence, we have

∥
∥dk∥∥≥ ‖H(zk)‖

‖Vk‖ . (2.14)

If for some subsequence N , {dk}N → 0, we have by (2.14), {H(zk)}N → 0, and z∗ is a
solution of the QVI (1.1). Hence, there exists a m > 0 such that ‖dk‖ ≥ m. Noting that
{∇	(zk)}N is bounded and p > 2, there exists M > 0 such that ‖dk‖ ≤ M. Otherwise, it
would contradict (2.12).

By (2.13) and {zk} is a bounded sequence, 	(zk) is bounded from below and {	(zk+1) –
	(zk)} → 0, which implies

{
β lk ∇	

(
zk)T dk}→ 0. (2.15)

Suppose, subsequencing if necessary, we have {β lk } → 0. By (2.13), we have

	(zk + β lk –1dk) – 	(zk)
β lk –1 > σ∇	

(
zk)T dk . (2.16)

By m ≤ ‖dk‖ ≤ M, we can assume, subsequencing if necessary, that {dk} → d̄ �= 0. By pass-
ing to the limit in (2.16), we get

∇	
(
zk)T d̄ ≥ σ∇	

(
zk)T d̄. (2.17)

On the other hand, by (2.12), we have ∇	(zk)T d̄ ≤ –ρ‖d̄‖p < 0, which contradicts (2.17).
Hence β lk is bounded away from 0. (2.15) and (2.12) imply that {dk} → 0, thus contradict-
ing 0 < m ≤ ‖dk‖, so that ∇	(z∗) = 0. This completes the proof. �

Remark 2.2 The method proposed in [10] only considers the case of inequality con-
straints, while our method can solve QVI with both equality and inequality constraints.
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Besides, as we will see in the next section, our method can solve some problems in QVILIB
[11], which cannot be solved by the method proposed by [10].

3 Numerical experiments
In this section, we report the results obtained by Algorithm 1 on problems list in QVILIB.
All the computations in this paper were done using Matlab 2014a on a computer with
8.00 GB RAM and 2.5 GHz CPU. We solved all 55 test problems whose detailed descrip-
tion can be found in [11]. For each problem we list

– the x-part of the starting point (the number reported is the value of all components of
the x-part of the starting point);

– the number of iterations;
– the number of evaluations of 	 ;
– the value of Y (x,λ,ν) at the termination.
In order to perform the linear algebra involved, we used Matlab’s linear system solver

mldivide. If any entry of the solution given by mldivide is a NaN or it is equal to ±∞ or the
sufficient decrease condition is not satisfied, then an anti gradient direction is used. We
take μ = 10–5, β = 0.5, ρ = 10–10, σ = 0.01 and p = 2.1. We choose λ0 = 0, ν0 = 0 and w0 = 0
for all problems. For (2.6), we choose ai = bi = ci = 0 when (λi, wi) = (0, 0) and θ = 0. Our
aim is mainly to verify the reliability of the method, and compare the iteration numbers

Table 1 Test results for Algorithm 1 and SSN

Problem x0 Algorithm 1 SSN

iter 	 Y(x,λ,ν) iter 	 Y(x,λ,ν)

Box2A 10 14 17 2.8478e–05 24 77 4.1771e–06
Box2B 10 Failure 26 89 8.1684e–06
Box3A 10 10 14 2.0397e–05 10 14 5.7049e–07
Box3B 10 Failure Failure
KunR11 0 Failure 14 26 7.1161e–05
KunR12 0 Failure 20 53 5.1480e–05
KunR21 0 Failure 5 5 2.8047e–05
KunR22 0 Failure 5 5 2.4567e–05
KunR31 0 Failure Failure
KunR32 0 Failure Failure
MoveSet3A1 0 Failure Failure
MoveSet3A2 0 Failure Failure
MoveSet3B1 0 Failure Failure
MoveSet3B2 0 Failure Failure
MoveSet4A1 0 11 27 5.2971e–10 11 27 2.6602e–06
MoveSet4A2 0 13 41 2.0149e–09 13 43 4.0769e–07
MoveSet4B1 0 11 28 3.0273e–08 11 28 8.0836e–07
MoveSet4B2 0 13 40 1.2611e–08 13 42 8.7163e–07
OutKZ31 0 8 11 2.3605e–09 7 10 2.6128e–06
OutKZ41 0 11 20 6.2950e–06 11 21 1.7394e–05
OutZ40 0 5 5 2.5263e–08 5 5 2.5270e–08
OutZ41 0 5 5 2.8060e–08 5 5 8.6320e–07e–08
OutZ42 0 6 7 7.7261e–07 6 7 9.2896e–07
OutZ43 0 4 4 5.2452e–05 4 4 5.2459e–05
OutZ44 0 4 4 4.8112e–05 4 4 4.9362e–05
RHS1A1 0 35 242 2.5881e–08 Failure
RHS1A1 10 35 242 2.5880e–08 Failure
RHS2B1 0 70 559 2.3303e–08 Failure
RHS2B1 10 70 559 2.3303e–08 Failure
Scrim22 0 10 19 2.0003e–05 10 20 3.5249e–06
Wal2 0 17 63 8.0835e–07 20 78 2.2062e–07
Wal3 0 13 41 5.0018e–05 Failure
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Table 2 Test results for Algorithm 1 and IP

Problem x0 Algorithm 1 IP

iter 	 Y(x,λ,ν) CPU iter 	 Y(x,λ,ν) CPU

BiLin1A 0 12 21 3.3093e–07 0.267200 30 90 5.4887e–05 0.172522
Box1A 0 5 5 1.3892e–08 0.235864 7 7 9.3897e–05 0.044991
Box1B 0 Failure Failure
Box2B 0 14 24 2.1673e–05 16.392773 19 19 1.5653e–05 190.318205
MoveSet1A 0 9 12 8.9800e–08 0.056921 24 252 3.5404e–05 0.208420
MoveSet1B 10 18 24 6.0742e–06 0.222965 Failure
MoveSet2A 0 11 23 2.0779e–07 0.216374 56 466 9.7848e–05 0.430626
MoveSet2B 0 Failure Failure
MoveSet4A1 0 11 27 5.2971e–10 30.333752 10 10 9.1223e–05 177.94647
MoveSet4A2 0 13 41 2.01419e–09 359.196863 11 11 1.6374e–05 1322.551713

Table 3 Test results for rest QVIs in QVILIB

Problem x0 iter 	 Y(x,λ,ν)

BiLin1B 0 9 15 6.5200e–09
RHS2A1 0 39 315 2.5649e–08
RHS1B1 10 70 349 6.9449e–09
Wal5 5 17 54 5.0645e–05
LunSS2 0 Failure
LunSSVI1 0 11 11 2.5630e–05
LunSSVI3 0 12 13 9.6398e–05
WalEq2 0 54 301 4.6316e–06
WalEq4 0 Failure
Scrim11 0 6 6 9.6075e–05

Problem x0 iter 	 Y(x,λ,ν)

Box3A 0 9 10 8.2844e–06
RHS2A1 10 39 315 2.5649e–08
Scrim21 0 10 19 2.1008e–06
LunSS1 0 Failure
LunSS3 0 Failure
LunSSVI2 0 11 11 1.4596e–05
WalEq1 0 10 20 4.0512e–06
WalEq3 0 Failure
WalEq5 0 Failure
Scrim12 0 7 7 2.7352e–07

with the results presented in [10]. In order to perform a fair computation with the results
in [10], we choose the same stopping criterion, i.e., let

Y (x,λ,ν) =

∥∥∥
∥∥

(
L(x,λ,ν)

S(λ, –p(x))

)∥∥∥
∥∥∞

,

and choose the termination criterion to be Y (xk ,λk ,νk) ≤ 10–4. The iteration is also
stopped if the number of iterations exceeds 500 or the stepsize tk computed at Step 3
is less than 10–6.

We denote Algorithm 2.2 proposed in [10] by SSN, and compare our method with SSN.
The results are list in Table 1. From Table 1, for problems that can be solved by SSN, they
can also be solved by our method with almost the same iteration numbers except problems
Box2B, Box3A, KunR11, KunR12, KunR21 and KunR22. However, our method can solve
the problems RHS1A1, RHS1B1, RHS2A1, RHS2B1 and Wal3, which cannot be solved by
SSN.

We also compare our method with the interior point method (denoted by IP) proposed
in [12] from the iteration number and CPU time. For IP, we use the same parameters
presented in [12] and the results are list in Table 2. From Table 2, we can see that our
method is much more effective than IP for most problems.

We also consider other problems in QVILIB which are not test in Tables 1 and 2, includ-
ing the QVIs with equality constraints, that is, Problems LunSS1 to Scrim12 in Table 3. As
we can see from the table, Algorithm 1 can solve over half of those problems effectively.

We tried to make some modifications to the algorithm for those problems that cannot
be solved. Specifically, when calculating the Jacobian of H̃(z̃), we use JF(x) to approximate
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Table 4 Test results for modified algorithm

Problem x0 iter 	 Y(x,λ,ν)

MoveSet3A1 10 41 92 7.5378e–05
MoveSet3B1 10 29 60 5.1761e–05

Problem x0 iter 	 Y(x,λ,ν)

MoveSet3A2 10 43 96 6.9322e–05
MoveSet3B2 10 32 67 3.3559e–05

Figure 1 Algorithm 1 for BiLin1A

Figure 2 Algorithm 1 for Moveset4A1

JL̃. For now, we cannot prove the convergence of the modified algorithm. However, it is
interesting to find that the modified algorithm can find a solution for some problems, such
as MoveSet3A1, MoveSet3A2, MoveSet3B1 and MoveSet3B2. The results are presented
in Table 4.
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Figure 3 Algorithm 1 for OutZ40

Figure 4 Algorithm 1 for Wal2

Figures 1–4 display the performance of our method on the problems BiLin1A, Movset
4A1, OutZ40 and Wal2. The vertical axis in those figures represents the value of Y and
the horizontal axis represents the iteration number. As we can see from the figures, with
the increase of the iteration numbers, the value of Y decrease.

Conclusion Remarks In this paper, we have studied the numerical solution of QVI. We
obtain the KKT system of a QVI and present a semismooth Newton method to solve the
equations. We also establish its global convergence. Numerical results show that the per-
formance of the proposed algorithm is promising.
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