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Abstract
In this study, we investigate the boundedness of composition operators acting on
Morrey spaces and weak Morrey spaces. The primary aim of this study is to investigate
a necessary and sufficient condition on the boundedness of the composition
operator induced by a diffeomorphism on Morrey spaces. In particular, detailed
information is derived from the boundedness, i.e., the bi-Lipschitz continuity of the
mapping that induces the composition operator follows from the continuity of the
composition mapping. The idea of the proof is to determine the Morrey norm of the
characteristic functions, and employ a specific function composed of a characteristic
function. As this specific function belongs to Morrey spaces but not to Lebesgue
spaces, the result reveals a new phenomenon not observed in Lebesgue spaces.
Subsequently, we prove the boundedness of the composition operator induced by a
mapping that satisfies a suitable volume estimate on general weak-type spaces
generated by normed spaces. As a corollary, a necessary and sufficient condition for
the boundedness of the composition operator on weak Morrey spaces is provided.
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1 Introduction
In this study, we investigate the boundedness of composition operators on Morrey spaces
and weak Morrey spaces. The composition operator Cϕ induced by a mapping ϕ is a lin-
ear operator defined by Cϕ f ≡ f ◦ϕ, where f ◦ϕ represents the function composition. The
composition operator is also called the Koopman operator in the fields of dynamical sys-
tems, physics, and engineering [12]. Recently, it has attracted attention in various scientific
fields [10, 11]. It becomes more and more important recently to prove the properties of
composition operators mathematically.

Let (X,μ) be a σ -finite measure space, and L0(X,μ) be the set of all μ-measurable func-
tions on X. We provide a precise definition of the composition operators induced by a
measurable map ϕ : X → X.

Definition 1.1 (Composition operator) Let ϕ : X → X be a measurable map, and assume
that ϕ is nonsingular, namely, μ(ϕ–1(E)) = 0 for each μ-measurable null set E. Let V and
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W be function spaces contained in L0(X,μ). The composition operator Cϕ is the linear
operator from W to V such that its domain isD(Cϕ) ≡ {h ∈ W : h◦ϕ ∈ V }, and Cϕ f ≡ f ◦ϕ

for f ∈D(Cϕ).

Subsequently, we employ the result obtained by Singh [16] for the boundedness of the
composition operator on the Lebesgue space Lp(X,μ).

Singh [16] provided the following necessary and sufficient condition for the map ϕ to
generate a bounded mapping acting on Lebesgue spaces:

Theorem 1.2 ([16]) Let 0 < p < ∞. Then, the composition operator Cϕ induced by ϕ : X →
X is bounded on the Lebesgue space Lp(X,μ) if and only if there exists a constant K = K(ϕ)
such that for all μ-measurable sets E in R

n,

μ
(
ϕ–1(E)

) ≤ Kμ(E).

In this case, the operator norm is given by

‖Cϕ‖Lp→Lp = sup
0<μ(E)<∞

(
μ(ϕ–1(E))

μ(E)

) 1
p

. (1.1)

The boundedness of the composition operator on L∞(X,μ) easily follows from the def-
inition. Theorem 1.2 was extended to several important function spaces, such as Lorentz
spaces [1, 6], Orlicz spaces [3, 13], mixed Lebesgue spaces [5, 7], Musielak–Orlicz spaces
[14], and reproducing kernel Hilbert spaces [9]. However, there are no previous results
on the boundedness of composition operators acting on Morrey spaces and weak Morrey
spaces.

The first aim of this study is to investigate a necessary and sufficient condition on the
boundedness of the composition operator Cϕ on Morrey spaces. Subsequently, we discuss
the boundedness of the operator on weak Morrey spaces.

Hereafter, we consider the Euclidean spaceRn; μ is the Lebesgue measure dx. We denote
by |E| the volume of a measurable set E ⊂ R

n. Let χA : Rn →R≥0 be an indicator function
for a subset A ⊂R

n, which is defined as χA(x) = 1 if x ∈ A and χA(x) = 0, otherwise.
Now, we recall the definition of Morrey spaces on R

n.

Definition 1.3 (Morrey space) Let 0 < q ≤ p < ∞. The Morrey space Mp
q(Rn) is the space

defined by

Mp
q
(
R

n) ≡ {
f ∈ L0(

R
n) : ‖f ‖Mp

q
< ∞}

,

endowed with the quasinorm

‖f ‖Mp
q
≡ sup

Q∈Q
|Q| 1

p – 1
q ‖f χQ‖Lq ,

where Q denotes the family of all cubes parallel to the coordinate axes in R
n.

A standard argument in functional analysis shows that Mp
q(Rn) is a quasi-Banach space.

From the Hölder inequality, we observe that the Lebesgue space Lp(Rn) is embedded
into the Morrey space Mp

q(Rn), where 0 < q ≤ p < ∞.
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Remark 1.4 Let 0 < q ≤ p < ∞. Then, we have

Lp(
R

n) = Mp
p
(
R

n) ⊂Mp
q
(
R

n).

Moreover, Lp(Rn) is not dense in Mp
q(Rn) [15].

We now state the main results of the present paper. The following theorem provides a
sufficient condition on the boundedness of the composition operator Cϕ on the Morrey
space Mp

q(Rn).

Theorem 1.5 Let 0 < q ≤ p < ∞. Then, the composition operator Cϕ induced by ϕ : Rn →
R

n is bounded on the Morrey space Mp
q(Rn), if ϕ is a Lipschitz map that satisfies the volume

estimate

∣∣ϕ–1(E)
∣∣ ≤ K |E|, (1.2)

for all measurable sets E in R
n and some constant K independent of E. In particular, we

obtain

‖Cϕ‖Mp
q→Mp

q
≤ (

max(1,
√

nL)
)– n

p + n
q sup

E:0<|E|<∞

( |ϕ–1(E)|
|E|

) 1
q

, (1.3)

where L > 0 is a Lipschitz constant of ϕ, and the supremum is taken over all Lebesgue mea-
surable sets E satisfying 0 < |E| < ∞.

Conversely, as stated in the following theorem, if ϕ : Rn →R
n is a diffeomorphism, then

the Mp
q(Rn)-boundedness of the composition operators Cϕ and Cϕ–1 indicates that ϕ is

bi-Lipschitz. Note that any bi-Lipschitz mapping satisfies the assumption of Theorem 1.5.

Theorem 1.6 Let n ∈N, and ϕ : Rn →R
n be a diffeomorphism in the sense that ϕ and its

inverse ϕ–1 are differentiable. Suppose 0 < q < p < ∞, or q = p and n = 1. If the composition
operators Cϕ and Cϕ–1 induced by maps ϕ and ϕ–1, respectively, are bounded on Mp

q(Rn),
then ϕ is bi-Lipschitz.

Remark 1.7 In the case where p = q, n = 1 and ϕ is a diffeomorphism, Theorem 1.6 is
equivalent to Theorem 1.2. Unless n = 1, condition q < p is essential in the following sense.
If n ≥ 2 and q = p, then the same conclusion as in Theorem 1.6 fails. We present a coun-
terexample in Example 3.3 in Sect. 4. Noting that the Morrey space Mp

p(Rn) coincides
with the Lebesgue space Lp(Rn) (see Remark 1.4), we observe a new phenomenon from
Theorem 1.6. Whenever the composition operator generated by a diffeomorphism ϕ is an
isomorphism in the Morrey spaceMp

q(Rn) with 0 < q < p < ∞, ϕ must be bi-Lipschitz con-
tinuous. This phenomenon cannot be observed as is seen from Example 3.3. Unlike other
function spaces, Morrey spaces are not rearrangement invariant. This is because some
geometric conditions are included in the definition of the norm. Due to these geometric
conditions, it seems natural for the Lipschitz continuity to come into play.

Subsequently, we investigate the characterization of the boundedness of the composi-
tion operators acting on weak Morrey spaces, which are defined as follows:



Hatano et al. Journal of Inequalities and Applications         (2021) 2021:69 Page 4 of 15

Definition 1.8 (Weak Morrey space) Let 0 < q ≤ p < ∞. The weak Morrey space
WMp

q(Rn) is the space defined by

WMp
q
(
R

n) ≡ {
f ∈ L0(

R
n) : ‖f ‖WMp

q
< ∞}

endowed with the quasinorm

‖f ‖WMp
q
≡ sup

λ>0
λ‖χ{x∈Rn :|f (x)|>λ}‖Mp

q
.

Another standard argument in functional analysis shows that Mp
q(Rn) is a quasi-Banach

space. The weak Morrey space WMp
q(Rn) has the following basic properties:

Remark 1.9 Let 0 < q < p < ∞. Then, we have

Mp
q
(
R

n) ⊂ WMp
q
(
R

n), WMp
p
(
R

n) = WLp(
R

n).

The following theorem provides a necessary and sufficient condition on the bounded-
ness of the composition operator on weak Morrey spaces.

Theorem 1.10 Let 0 < q ≤ p < ∞, and let ϕ : Rn → R
n be a measurable function. Then,

ϕ generates the composition operator Cϕ which is bounded on the weak Morrey space
WMp

q(Rn) if and only if there exists a constant K such that for all measurable sets E in
R

n, the estimate

‖χϕ–1(E)‖Mp
q
≤ K‖χE‖Mp

q
.

holds. In particular, we obtain

‖Cϕ‖WMp
q→WMp

q
= sup

E

‖χϕ–1(E)‖Mp
q

‖χE‖Mp
q

,

where the supremum is taken over all measurable sets E in R
n with 0 < ‖χE‖Mp

q
< ∞.

Remark 1.11
(1) Theorem 1.10 indicates that the composition operator Cϕ is bounded on weak

Morrey spaces once it is bounded on Morrey spaces (see Sect. 4 for more).
(2) The conclusion of the case q = p in this theorem was provided in [2].
(3) Theorem 1.10 is a special case of Theorem 1.13 below.

In fact, we will establish the boundedness of the composition operator in a more general
framework.

Definition 1.12 Let (B(Rn),‖ · ‖B) be a linear subspace of L0(Rn) such that ‖|f |‖B = ‖f ‖B

for all f ∈ B(Rn). The weak-type space (WB(Rn),‖ · ‖WB) of B is defined by

WB
(
R

n) ≡ {
f ∈ L0(

R
n) : ‖f ‖WB < ∞}

,
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endowed with the quasinorm

‖f ‖WB ≡ sup
λ>0

λ‖χ{x∈Rn :|f (x)|>λ}‖B.

For example, the space WLp(Rn) is the weak Lebesgue space whose norm is given by
‖f ‖WLp = supλ>0 λ‖χf –1((λ,∞])‖Lp (see [8, Chap. 1] for more).

Now, we can rewrite Theorem 1.10 as follows:

Theorem 1.13 Let (B(Rn),‖ · ‖B) be a normed space. Then, the composition induced by ϕ

is bounded on the weak-type space (WB(Rn),‖ · ‖WB) if and only if there exists a constant
K such that for all measurable sets E in R

n, the estimate

‖χϕ–1(E)‖B ≤ K‖χE‖B (1.4)

holds. In particular, we obtain

‖Cϕ‖WB→WB = sup
E

‖χϕ–1(E)‖B

‖χE‖B
, (1.5)

where the supremum is taken over all measurable sets E in R
n with 0 < ‖χE‖B < ∞.

Here is a list of standard notation used in this paper in addition to that which has already
appeared above:

• The space L∞
c (Rn) stands for the set of all L∞(Rn) functions with compact support.

• The linear space Mn(Rn) is the set of all n × n-matrices.
• For α1,α2, . . . ,αn, the matrix diag(α1, . . . ,αn) is the diagonal matrix with entries

α1,α2, . . . ,αn.
• The matrix E ∈ Mn(Rn) denotes the identity matrix.
• For A ∈ Mn(Rn), the quantity ‖A‖F denotes the Frobenius norm defined by

√
tr(ATA).

• The space C∞
c (Rn) is the set of all smooth functions with compact support.

• For a cube Q, �(Q) stands for its side-length.
• Let A, B ≥ 0. Then A � B and B � A mean that there exists a constant C > 0 such that

A ≤ CB, where C depends only on the parameters of importance. The symbol A ∼ B
means that A � B and B � A happen simultaneously. For example, for functions A(x)
and B(x) of x, we use shorthand A(x) � B(x) to denote an estimate A(x) ≤ CB(x) with
some constant C > 0 independent of x. As a result, notation A(x) ∼ B(x) represents
A(x) � B(x) and B(x) � A(x).

• For a differentiable vector-valued function ϕ = (ϕ1, . . . ,ϕn)T on R
n, we denote by Dϕ

the Jacobi matrix of ϕ, that is,

Dϕ ≡
(

∂ϕi

∂xj

)

1≤i,j≤n
≡ (ϕi,j)1≤i,j≤n.

The remainder of this paper is organized as follows: In Sect. 2, we prove Theorems 1.5
and 1.6. In Sect. 3, we present some examples and counterexamples of the mapping that
induces the composition operator to be bounded on Morrey spaces. In Sect. 4, we prove
Theorem 1.13.
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2 Proofs of Theorems 1.5 and 1.6
In this section, we prove Theorems 1.5 and 1.6. The proof of Theorem 1.5 is provided in
Sect. 2.1. However, Theorem 1.6 is more difficult to prove. In Sect. 2.2, we reduce matters
to the linear setting. We divide its proof into two steps: we consider case p ≤ nq in Sect. 2.3
and case nq ≤ p in Sect. 2.4.

2.1 Proof of Theorem 1.5

Proof of Theorem 1.5 A cube Q ∈ Q is fixed. We note that, according to the Lipschitz
continuity of ϕ, the estimates

diam
(
ϕ(Q)

)
:= sup

x,x̃∈Q

∣
∣ϕ(x) – ϕ(x̃)

∣
∣ ≤ L sup

x,x̃∈Q
|x – x̃| =

√
nL�(Q),

hold; thus, there exist cubes Q1, Q2 ∈Q such that

Q1 ⊃ Q, Q2 ⊃ ϕ(Q), |Q1| = |Q2| =
(
max(1,

√
nL)

)n|Q|.

Since ϕ satisfies condition (1.2), we can apply the Lq(Rn)-boundedness of the composition
operators (Theorem 1.2) to obtain

|Q| 1
p – 1

q

(∫

Q

∣∣f
(
ϕ(x)

)∣∣q dx
) 1

q

≤ |Q| 1
p – 1

q

(∫

Rn

∣∣f
(
ϕ(x)

)∣∣q
χϕ(Q)

(
ϕ(x)

)
dx

) 1
q

≤ |Q| 1
p – 1

q · ‖Cϕ‖Lq→Lq

(∫

Rn

∣
∣f (x)

∣
∣q

χϕ(Q)(x) dx
) 1

q

≤ ((
max(1,

√
nL)

)–n|Q1|
) 1

p – 1
q · ‖Cϕ‖Lq→Lq

(∫

Rn

∣∣f (x)
∣∣q

χQ2 (x) dx
) 1

q

≤ (
max(1,

√
nL)

)– n
p + n

q ‖Cϕ‖Lq→Lq‖f ‖Mp
q
,

which indicates that the composition operator Cϕ is bounded on Mp
q(Rn). Moreover, by

applying equation (1.1), we obtain (1.3), which completes the proof of the theorem. �

2.2 Reduction of the diffeomorphism to the linear setting
In this subsection, by applying the following lemma (Lemma 2.1), we reduce the diffeo-
morphism ϕ : Rn → R

n in Theorem 1.6 to the linear mapping Dϕ : Rn → Mn(R). By the
estimate of the singular values of the Jacobi matrix Dϕ, we will show that ϕ is bi-Lipschitz
(see Proposition 2.6 below).

Lemma 2.1 Let 0 < q ≤ p < ∞. Suppose that a diffeomorphism ϕ : Rn → R
n induces a

bounded composition operator Cϕ from Mp
q(Rn) to itself. Then, there exists a positive con-

stant K > 0 such that

‖CDϕ(x0)f ‖Mp
q

=
∥∥f

(
Dϕ(x0)·)∥∥Mp

q
≤ K‖f ‖Mp

q
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for all x0 ∈ R
n and f ∈ Mp

q(Rn). In particular, the operator norm of ‖CDϕ(x0)‖ is bounded
above by a constant independent of x0.

Proof of Lemma 2.1 Set K ≡ ‖Cϕ‖Mp
q→Mp

q
< ∞. First, we prove the assertion for f ∈

C∞
c (Rn). Let t > 0. We calculate

∥
∥∥∥f

(
ϕ(x0 + t·) – ϕ(x0)

t

)∥
∥∥∥
Mp

q

= t– n
p

∥
∥∥∥f

(
ϕ(·) – ϕ(x0)

t

)∥
∥∥∥
Mp

q

≤ Kt– n
p

∥∥
∥∥f

( · – ϕ(x0)
t

)∥∥
∥∥
Mp

q

= K‖f ‖Mp
q
.

By letting t → 0, we obtain the desired result for f ∈ C∞
c (Rn).

Let f ∈ L∞
c (Rn). Then, for any p ∈ (0,∞), we can choose a sequence {fj}∞j=1 of compactly

supported smooth functions such that fj converges to f in Lp(Rn) as j → ∞. By passing to
a subsequence, we may assume that fj converges to f , almost everywhere in R

n as j → ∞.
Thus, by the Fatou lemma, the inequality

∥∥f
(
Dϕ(x0)·)∥∥Mp

q
≤ lim inf

j→∞
∥∥fj

(
Dϕ(x0)·)∥∥Mp

q

holds. As we have proved the assertion for fj, we have

∥∥fj
(
Dϕ(x0)·)∥∥Mp

q
≤ K‖fj‖Mp

q
.

Since Lp(Rn) is embedded into Mp
q(Rn) (see Remark 1.4), fj converges to f in Mp

q(Rn) as
j → ∞. Consequently,

lim inf
j→∞ ‖fj‖Mp

q
= ‖f ‖Mp

q
.

By combining these observations, the following estimate holds:

∥
∥f

(
Dϕ(x0)·)∥∥Mp

q
≤ K‖f ‖Mp

q
.

Finally, let f ∈Mp
q(Rn). For k ∈N, we define an element fk ∈ L∞

c (Rn) by

fk(x) ≡ f (x)χ[–k,k]n (x)χ[0,k]
(∣∣f (x)

∣
∣) (

x ∈ R
n).

Then, we have

∥∥fk
(
Dϕ(x0)·)∥∥Mp

q
≤ K‖fk‖Mp

q
≤ K‖f ‖Mp

q

according to the previous paragraph. By using the Fatou lemma again, we obtain

∥∥f
(
Dϕ(x0)·)∥∥Mp

q
≤ K‖f ‖Mp

q
,

as required. �
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Let ϕ : Rn → R
n be a diffeomorphism and Dϕ : Rn → Mn(R) be its Jacobi matrix. For

x0 ∈R
n, the Jacobi matrix Dϕ(x0) can be decomposed by the singular value decomposition

(see Lemma 2.2 below) as

Dϕ(x0) = U	V , (2.1)

where 	 = 	(x0) = diag(α1(x0), . . . ,αn(x0)) is a diagonal matrix with having positive com-
ponents satisfying α1(x0) ≤ · · · ≤ αn(x0), and U = U(x0) and V = V (x0) are orthogonal
matrices.

Lemma 2.2 (Singular value decomposition) Let A be an n × n real regular matrix, and
α1, . . . ,αn > 0 be the singular values of A. Then, there exist orthogonal matrices U and V
such that

UAV = diag(α1, . . . ,αn).

Now, by the definition of the Morrey norm ‖ · ‖Mp
q
, and a simple computation, we have

the equivalence

n
n
p – n

q ‖C	(x0)‖Mp
q→Mp

q
≤ ‖CDϕ(x0)‖Mp

q→Mp
q
≤ n– n

p + n
q ‖C	(x0)‖Mp

q→Mp
q
.

Here, the operator norms ‖ · ‖Mp
q→Mp

q
of the composition operators induced by the or-

thogonal matrices are bounded above by a constant independent of the selection of the
rotation matrices. Therefore, we have the following lemma:

Lemma 2.3 Let 0 < q ≤ p < ∞. Suppose that a diffeomorphism ϕ : Rn → R
n, induces a

bounded composition operator Cϕ on Mp
q(Rn). Let α1(x0), . . . ,αn(x0) be the singular values

of Dϕ(x0), and let us denote 	(x0) := diag(α1(x0), . . . ,αn(x0)). Then, the operator norm of
C	(x0) is bounded above by a constant independent of x0.

Proposition 2.4 Let 0 < q ≤ p < ∞, x0 ∈ R
n, and ϕ : Rn → R

n be diffeomorphism. If the
composition operators Cϕ and Cϕ–1 induced by ϕ and ϕ–1, respectively, are bounded on the
Morrey space Mp

q(Rn), then we have

n∏

k=1

αk(x0) ∼ 1,

where α1(x0), . . . ,αn(x0) are the singular values of Dϕ(x0).

This proposition can be proved by combining Lemmas 2.1 and 2.5 below.

Lemma 2.5 Let 0 < q ≤ p < ∞ and {a1, . . . , an} ⊂ R>0 be a positive sequence and set D ≡
diag(a1, . . . , an). Then, the following estimate holds:

n∏

k=1

ak ≥ ‖CD‖–p
Mp

q→Mp
q
.
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Proof We introduce matrix W ∈ Mn(R) corresponding to the transform

(x1, x2, . . . , xn) �→ (x2, x3, . . . , xn, x1).

Then, for any k ∈ {1, . . . , n}, we observe that

W –kDW k = diag(an–k+1, an–k+2, . . . , an, a1, a2, . . . , an–k)

holds, since W k maps the lth elementary vector el to el–k if l > k and el–k+n otherwise.
Since W leaves Q invariant and DCW = E,

‖CW –k DW k ‖Mp
q→Mp

q
= ‖CD‖Mp

q→Mp
q

hold. Noting that the identity

n∏

k=1

W –kDW k =

( n∏

k=1

ak

)

E

holds, we learn that the equality

‖C∏n
k=1 W –k DW k ‖Mp

q→Mp
q

=

( n∏

k=1

ak

)– n
p

holds. By combining this and identity C∏n
k=1 W –k DW k =

∏n
k=1 CW –k DW k , the conclusion of

this lemma is proved. �

To obtain the bi-Lipschitz continuity of ϕ, we use the following proposition, which is
obtained using the mean value theorem.

Proposition 2.6 Let ϕ : Rn → R
n be a diffeomorphism. Let α1(x0) be a minimal singular

value of Dϕ(x0). If there exists a positive constant C > 0 independent of x0 such that for all
x0 ∈R

n,

α1(x0) ≥ C, (2.2)

then the inverse function ϕ–1 of ϕ is Lipschitz.

Proof Assume x, x̃ ∈ R
n are fixed. Since the mapping ϕ–1 is differentiable on the line seg-

ment between x and x̃, by the mean value theorem, we can consider point x0 on the line
segment between x and x̃ and obtain

∣∣ϕ–1(x) – ϕ–1(x̃)
∣∣ =

∥∥Dϕ–1(x0)
∥∥

F|x – x̃|.

Now, using the decomposition (2.1), we can calculate

∥∥Dϕ–1(x0)
∥∥

F =

( n∑

j=1

∣
∣∣
∣

1
αj(x0)

∣
∣∣
∣

2
) 1

2

≤
√

n
C

.

Consequently, we obtain the Lipschitz continuity of ϕ–1. �
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According to this proposition, to obtain Theorem 1.6, it suffices to show that there exists
a positive constant C > 0 such that for each x0 ∈ R

n, estimate (2.2) holds. We divide the
proof of (2.2) into the two cases p ≤ nq and nq ≤ p.

2.3 Proof of (2.2) in the case p ≤ nq
To obtain estimate (2.2), we introduce a parameter m, we estimate the operator norm of
the diagonal matrices 	(x0) in the decomposition (2.1) as follows using Lemma 2.7 and
Proposition 2.8 below.

Lemma 2.7 Let n ∈ N and 0 < q ≤ p < ∞ satisfy p ≤ nq. Assume in addition that the
sequence {aj}n–1

j=0 satisfies a0 = 1 ≤ a1 ≤ · · · ≤ an–1. Then,

‖χ[0,1]×∏n–1
j=1 [0,aj]‖Mp

q
=

(m–1∏

j=1

a
1
q
j

)

a
n
p – m

q
m–1 ,

where m ∈ [2, n] is the unique integer satisfying 0 < q ≤ n
m q ≤ p ≤ n

m–1 q < ∞.

Proof Since we have to consider only cubes of form [0, R]n for R > 0 as the candidates for
supremum in the Morrey norm ‖ · ‖Mp

q
, we have identity

‖χ[0,1]×∏n–1
j=1 [0,aj]‖Mp

q
= sup

R>0
R

n
p – n

q

n–1∏

j=0

min(aj, R)
1
q .

By considering the case of R = 1, a1, . . . , an–1, we can determine the supremum on the right-
hand side of the above identity as follows:

‖χ[0,1]×∏n–1
j=1 [0,aj]‖Mp

q
= max

{(k–1∏

j=0

aj

)

a
n
p – k

q
k : k = 0, 1, . . . , n – 1

}

. (2.3)

Here, according to assumption p ≤ n
m–1 q, we observe that

a
1
q
1 a

n
p – 2

q
1 = a

n
p – 1

q
1 ≥ 1

when m = 2, and

(m–1∏

j=1

aj

) 1
q

a
n
p – m

q
m–1 ≥

(m–2∏

j=1

aj

) 1
q

a
n
p – m–1

q
m–2 ≥ · · · ≥ a

n
p – 1

q
1 ≥ 1

when m > 2. Meanwhile, using the assumption n
m q ≤ p, we calculate

(m–1∏

j=1

aj

) 1
q

a
n
p – m

q
m–1 ≥

( m∏

j=1

aj

) 1
q

a
n
p – m+1

q
m ≥ · · · ≥

(n–1∏

j=1

aj

) 1
q

a
n
p – n

q
n–1 ,

to conclude that quantity

(m–1∏

j=1

aj

) 1
q

a
n
p – m

q
m–1
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is the largest when taking the maximum in equation (2.3). Hence, this is the desired re-
sult. �

Proposition 2.8 Let n ≥ m ≥ 2, 0 < q ≤ n
m q ≤ p ≤ n

m–1 q < ∞, and 1 ≤ a1 ≤ · · · ≤ an–1.
Then, we have

‖Cdiag(1,a1,...,an–1)‖Mp
q→Mp

q
≥

(m–1∏

j=1

aj

)– 1
q

a
– n

p + m
q

m–1 .

Proof Simply using Lemma 2.7, we have

‖χ[0,1]×∏n–1
j=1 [0,Rj]‖Mp

q
=

(m–1∏

j=1

Rj

) 1
q

R
n
p – m

q
m–1

and

‖χ[0,1]×∏n–1
j=1 [0,a–1

j Rj]‖Mp
q

=

(m–1∏

j=1

a–1
j Rj

) 1
q (

a–1
m–1Rm–1

) n
p – m

q

for 1 ≤ R1 ≤ · · · ≤ Rn–1 with 1 ≤ a–1
1 R1 ≤ · · · ≤ a–1

n–1Rn–1. �

Now, we prove estimate (2.2) under the assumption p ≤ nq. It suffices to consider case
n
m q < p ≤ n

m–1 q, for each m = 2, . . . , n since p ≤ nq. According to Lemma 2.3 and Proposi-
tion 2.8, we calculate

1 � ‖C	(x0)‖Mp
q→Mp

q
(2.4)

≥ α1(x0)– n
p
∏

i∈I

(
αi(x0)
α1(x0)

)– 1
q

·
(

αj(x0)
α1(x0)

)– n
p + m

q

=
(

α1(x0)
∏

i∈I

αi(x0)
)– 1

q
αj(x0)– n

p + m
q ,

where I is a subset of {2, . . . , n} such that #I = m – 1 and j ∈ I . Combining estimate (2.4)
and Proposition 2.4, we have

1 �
∏

I⊂{2,...,n},
#I=m–1

∏

j∈I

((
α1(x0)

∏

i∈I

αi(x0)
)– 1

q
αj(x0)– n

p + m
q

)

= α1(x0)– m–1
q (n–1

m–1)
(
α2(x0) · · ·αn(x0)

)(– n
p + 1

q )(n–2
m–2)

∼ α1(x0)– m–1
q (n–1

m–1)+( n
p – 1

q )(n–2
m–2) = α1(x0)( n

p – n
q )(n–2

m–2)

and then

α1(x0) � 1.
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2.4 Proof of (2.2) in the case nq ≤ p
Let nq ≤ p. We start with an example of a Morrey function.

Lemma 2.9 Let 0 < q < nq ≤ p < ∞. Then, χ[0,1]×Rn–1 ∈Mp
q(Rn).

Proof We calculate

‖χ[0,1]×Rn–1‖Mp
q

= sup
R>0

R
n
p – n

q min(1, R)
1
q R

n–1
q = sup

R>0
R

n
p – 1

q min(1, R)
1
q = 1 < ∞. �

Using Lemma 2.9, we obtain the following estimate on the lower bound of the singular
values of matrices.

Lemma 2.10 Let 0 < a1 ≤ · · · ≤ an. We assume that D = diag(a1, a2, . . . , an) induces a
bounded composition operator on the Morrey space Mp

q(Rn) with the operator norm M.
Moreover, if 0 < q < nq ≤ p < ∞, then, a1 ≥ M– p

n .

Proof Note that χ[0,1]×Rn–1 ◦ (a1E) = χ[0,a1–1]×Rn–1 = χ[0,1]×Rn–1 ◦ D. Using scaling, we cal-
culate

a1
– n

p ‖χ[0,1]×Rn–1‖Mp
q

=
∥∥χ[0,1]×Rn–1 ◦ (a1E)

∥∥
Mp

q

= ‖χ[0,1]×Rn–1 ◦ D‖Mp
q

≤ M‖χ[0,1]×Rn–1‖Mp
q
.

Thus, according to Lemma 2.9, this is the desired result. �

Using Lemmas 2.3 and 2.10, we conclude that (2.2) holds.

3 Examples
In this section, we present some examples and counterexamples. In Example 3.1, the map-
ping inducing the composition operator satisfies the assumption in Theorem 1.5. In Exam-
ple 3.2, the mapping inducing the composition operator does not satisfy the assumption
in Theorem 1.5; however, the composition operator is bounded on Morrey spaces. Exam-
ple 3.3 presents a counterexample of cases n ≥ 2 and q = p in Theorem 1.6.

Example 3.1 The affine map ϕ, written as ϕ(x) = Ax + b for some A ∈ GL(n;R) and b ∈R
n

induces the composition operator Cϕ bounded on the Morrey space Mp
q(Rn) whenever

0 < q ≤ p < ∞. This follows from the fact that mapping ϕ satisfies the assumption of The-
orem 1.5.

Example 3.2 Let n = 1 and 1 < p < ∞. Then, the composition operator induced by ϕ : R →
R,

ϕ(x) ≡
⎧
⎨

⎩
ex – 1, if x ≥ 0,

x, if x < 0,

is bounded onMp
1(R) and ϕ satisfies the volume estimate (1.2); however, ϕ is not Lipschitz.
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Here, we prove that the composition mapping Cϕ induced by ϕ : R → R is bounded on
Mp

1(R). We will prove the inequality

(b – a)
1
p –1

∫ b

a

∣
∣Cϕ f (x)

∣
∣dx � ‖f ‖Mp

1
(3.1)

for any –∞ < a < b < ∞. Here, when a < 0 ≤ b, we calculate

(b – a)
1
p –1

∫ b

a

∣
∣f (x)

∣
∣dx ≤ (–a)

1
p –1

∫ 0

a

∣
∣Cϕ f (x)

∣
∣dx + b

1
p –1

∫ b

0

∣
∣Cϕ f (x)

∣
∣dx

≤ ‖f ‖Mp
1

+ b
1
p –1

∫ b

0

∣
∣Cϕ f (x)

∣
∣dx.

Then, we may assume that 0 ≤ a < b.
Now, we check inequality (3.1). If 0 < b – a ≤ 1, through the change of variable y = ex – 1

and due to the fact that eb – ea ∼ ea(b – a), we obtain

(b – a)
1
p –1

∫ b

a

∣
∣Cϕ f (x)

∣
∣dx = (b – a)

1
p –1

∫ eb–1

ea–1

∣
∣f (y)

∣
∣ dy
y + 1

≤ {
ea(b – a)

} 1
p –1 · e– a

p

∫ eb–1

ea–1

∣∣f (y)
∣∣dy � ‖f ‖Mp

1
.

Furthermore, when b – a > 1, or equivalently, (b – a)–1 < 1, we calculate

(b – a)
1
p –1

∫ b

a

∣∣Cϕ f (x)
∣∣dx ≤

∞∑

j=0

∫ 2j+1–1

2j–1

∣∣f (y)
∣∣ dy
y + 1

≤
∞∑

j=0

2– j
p · (2j) 1

p –1
∫ 2j+1–1

2j–1

∣
∣f (y)

∣
∣dy � ‖f ‖Mp

1

as desired.

Example 3.3 Let

ϕ(x1, x2) ≡
(

x1
3 + x1,

x2

3x12 + 1

)

be a diffeomorphism on R
2. Let us consider the boundedness of Cϕ on Mp

q(R2). In the
case of p = q, Cϕ is bounded, Dϕ(x1, x2) has determinant 1. In contrast, in the case of p > q,
Cϕ is not bounded; in fact, the first component is not Lipschitz.

4 Boundedness of composition operators on weak type spaces
To prove Theorem 1.13, we use the following identity.

Remark 4.1 Through a simple calculation, we have ‖χE‖WB = ‖χE‖B for all measurable
sets E in R

n.
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Proof of Theorem 1.13 First, we assume that the composition operator Cϕ is bounded on
WB(Rn), that is, there exists a constant K such that the estimate

‖Cϕ f ‖WB ≤ K‖f ‖WB

holds for any f ∈ WB(Rn). Then, upon choosing f = χE , the estimate

‖χϕ–1(E)‖WB = ‖CϕχE‖WB ≤ K‖χE‖WB

holds. By using Remark 4.1, we conclude that

‖χϕ–1(E)‖B ≤ K‖χE‖B.

Second, we assume condition (1.4). Considering E = {x ∈ R
n : |f (x)| > λ} for a function

f ∈ WB(Rn), we have

‖Cϕ f ‖WB = sup
λ>0

λ‖χϕ–1({x∈X:|f (x)|>λ})‖B ≤ K sup
λ>0

λ‖χ{x∈X:|f (x)|>λ}‖B = ‖f ‖WB.

Finally, the equation

‖Cϕ‖WB→WB ≤ sup
E

‖χϕ–1(E)‖B

‖χE‖B
(4.1)

is trivial. According to the definition of the operator norm ‖ · ‖WB→WB,

‖Cϕ‖WB→WB ≥ sup
E

‖χϕ–1(E)‖B

‖χE‖B
. (4.2)

Combining estimates (4.1) and (4.2), we obtain equation (1.5). �

The weak type spaces generated by the Banach lattice are essential.

Definition 4.2 We say that a Banach space (B(Rn),‖ · ‖B) contained in L0(Rn) is a Banach
lattice if the inequality ‖f ‖B ≤ ‖g‖B holds for all f , g ∈ B(Rn) that satisfy |f | ≤ |g| almost
everywhere.

Remark 4.3 If B(Rn) is a Banach lattice (see Definition 4.2), then B(Rn) is embedded in
WB(Rn).

Now, as the special case of the Morrey space B(Rn) = Mp
q(Rn), in Theorem 1.13, we have

Theorem 1.10.
In Theorem 1.10, through real interpolation, it is known that

WMp
q
(
R

n) =
[
Mpr

qr
(
R

n), L∞(
R

n)]
1–r,∞

as long as 1 < q ≤ p < ∞ and 0 < r < 1 satisfy qr > 1 (see [4]). Here, as the L∞(Rn)-
boundedness of the composition operators is trivial and the Mp

q(Rn)-boundedness and
Mpr

qr(Rn)-boundedness of composition operators, for r > 0, are equivalent owing to the
fact that |Cϕ f |r = Cϕ[|f |r] for mapping ϕ, we obtain that the boundedness “Cϕ : Mp

q(Rn) →
Mp

q(Rn) implies the boundedness Cϕ : WMp
q(Rn) → WMp

q(Rn)”.
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