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Abstract
In this paper, we study degenerate complete and incomplete r-Bell polynomials. They
are generalizations of the recently introduced degenerate r-Bell polynomials and
degenerate analogues for the complete and incomplete r-Bell polynomials. We
investigate some properties and identities for these polynomials. In particular, we give
explicit formulas for the degenerate complete and incomplete r-Bell polynomials.
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1 Introduction
For any nonzero λ ∈R, the degenerate exponential function is defined by

ex
λ(t) = (1 + λt)

x
λ , eλ(t) = (1 + λt)

1
λ (see [1–4]). (1.1)

The degenerate Bell polynomials were considered by Kim–Kim–Dolgy in [5] and they
are given by

ex(eλ(t)–1) =
∞∑

n=0

Beln(x|λ)
tn

n!
(see [2]). (1.2)

Note that limλ→0 Beln(x|λ) = Beln(x) (n ≥ 0), where Beln(x) are the ordinary Bell poly-
nomials defined by

ex(et–1) =
∞∑

n=0

Beln(x)
tn

n!
(see [6, 7]). (1.3)

For r ∈N∪ {0}, the degenerate r-Bell polynomials are given by

er
λ(t)ex(eλ(t)–1) =

∞∑

n=0

Bel(r)
n (x|λ)

tn

n!
(see [3]). (1.4)

When x = 1, Bel(r)
n (λ) = Bel(r)

n (1|λ) are called the degenerate r-Bell numbers.
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Let r be a nonnegative integer. The r-Stirling numbers S2,r(n, k) of the second kind are
given by

1
k!

ert(et – 1
)k =

∞∑

n=k

S2,r(n + r, k + r)
tn

n!
. (1.5)

These numbers enumerate the number of partitions of the set [n] = {1, 2, 3, . . . , n} into k
nonempty disjoint subsets in such a way that 1, 2, 3, . . . , r are in distinct subsets (see [8]).
Here we note, in passing, that Simsek [9] introduced the generalized array polynomials
which in some special case reduce to the classical array polynomials. The generating func-
tion of the array polynomials is given by that in (1.5) with r replaced by the variable x. Also,
the reader may want to see [10] for some related paper on Stirling numbers.

As a degenerate version of S(r)
2 (n + r, k + r), the degenerate r-Stirling numbers S(r)

2,λ(n +
r, k + r) of the second kind were introduced, and they are defined by

1
k!

er
λ(t)

(
eλ(t) – 1

)k =
∞∑

n=k

S(r)
2,λ(n + r, k + r)

tn

n!
(see [3, 4, 11]). (1.6)

Then it is not difficult to see that (1.6) is equivalent to the following:

(x + r)n,λ =
n∑

k=0

S(r)
2,λ(n + r, k + r)(x)k , (1.7)

where (x)0,λ = 1, (x)0 = 1, (x)n,λ = x(x – λ)(x – 2λ) · · · (x – (n – 1)λ) (n ≥ 1), and (x)n = (x)n,1

(n ≥ 1).
From (1.4) and (1.6), we have

Bel(r)
n (x|λ) =

n∑

k=0

S(r)
2,λ(n + r, k + r)xk (n ≥ 0). (1.8)

The exponential incomplete r-Bell polynomials are defined by the generating function
(see [6, 12])

1
k!

( ∞∑

j=1

aj
tj

j!

)k( ∞∑

i=0

bi+1
ti

i!

)r

=
∞∑

n=k

B(r)
n+r,k+r(a1, a2, . . . ; b1, b2, . . . )

tn

n!
. (1.9)

From (1.9), we note that

B(r)
n+r,k+r(a1, a2, . . . ; b1, b2, . . . )

=
∑

Λ(n,k,r)

[
n!

k1!k2!k3! · · ·
(

a1

1!

)k1(a2

2!

)k2(a3

3!

)k3

· · ·
]

×
[

r!
r0!r1!r2! · · ·

(
b1

0!

)r0(b2

1!

)r1(b3

2!

)r2

· · ·
]

, (1.10)

where Λ(n, k, r) denotes the set of all nonnegative integers (ki)i≥1 and (ri)i≥0 such that∑
i≥1 ki = k,

∑
i≥0 ri = r and

∑
i≥1 i(ki + ri) = n (see [6, 12]).
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Assume that {ai}i≥1 and {bi}i≥1 are sequences of positive integers. Then it can be shown
(see [6, 12]) that the number B(r)

n+r,k+r(a1, a2, . . . ; b1, b2, . . . ) counts the number of partitions
of a (n + r)-set into (k + r) blocks satisfying:

(1) The first r elements belong to different blocks,
(2) Any block of size i containing no elements from the first r elements can be colored

with ai colors,
(3) Any block of size i containing one element from the first r elements can be colored

with bi colors.
The complete r-Bell polynomials are given by

exp

( ∞∑

i=1

ai
ti

i!

)( ∞∑

j=0

bj+1
tj

j!

)r

=
∞∑

n=0

Bel(r)
n (a1, a2, . . . ; b1, b2, . . . )

tn

n!
, (1.11)

where we note that exp(t) = et .
Thus, by (1.9) and (1.11), we get

Bel(r)
n (a1, a2, . . . ; b1, b2, . . . ) =

n∑

k=0

B(r)
n+r,k+r(a1, a2, . . . ; b1, b2, . . . ). (1.12)

The degenerate Stirling, Bernoulli, and Euler numbers were introduced by Carlitz as
the first degenerate versions of some special numbers. Kim and his colleagues have been
studying degenerate versions of many special polynomials and numbers by making use of
various different tools. Indeed, they have been investigated by means of generating func-
tions, combinatorial methods, umbral calculus, differential equations, probability theory,
and p-adic analysis. We should note here that studying degenerate versions of some special
polynomials and numbers has been very fruitful and has potential to find many applica-
tions in diverse areas. For example, in [4] it is shown that the degenerate λ-Stirling poly-
nomials of the second kind appear in the expressions of the probability distributions of
appropriate random variables. Also, we would like to emphasize that studying degenerate
versions is not only applied to polynomials but also extended to transcendental functions.
In fact, the degenerate gamma functions were introduced and some interesting results
were derived in [1].

Multivariate versions of the Stirling numbers of the second kind and ordinary Bell poly-
nomials are, respectively, the incomplete and complete Bell polynomials. Degenerate ver-
sions of the incomplete and complete Bell polynomials are, respectively, the degenerate in-
complete and complete Bell polynomials. Extended versions of the degenerate incomplete
and complete Bell polynomials are, respectively, the degenerate incomplete and complete
r-Bell polynomials. We refer the reader to the Introduction in [13] for diverse applica-
tions of the complete and incomplete Bell polynomials. In addition, the central complete
and incomplete Bell polynomials were treated in the same paper [13]. They are ‘central’
analogues for the complete and incomplete Bell polynomials and generalizations of the
central Bell polynomials and the central factorial numbers of the second kind. We note
here, in passing, that the central factorial numbers are as important as the Stirling num-
bers, though the former received less attention than the latter [14].

In this paper, we will introduce the degenerate incomplete and complete r-Bell poly-
nomials, respectively, given in (2.1) and (2.3). We will investigate some properties and
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identities for these polynomials. In particular, we will give some explicit formulas for the
degenerate complete and incomplete r-Bell polynomials. Lastly, we mention that the ex-
tended degenerate r-central factorial numbers of the second kind and extended degener-
ate r-central Bell polynomials have been treated in [15].

2 Degenerate complete and incomplete r-Bell polynomials
Let us consider the following exponential degenerate incomplete r-Bell polynomials
B(r)

n+r,k+r(a1, a2, . . . ; b1, b2, . . . |λ) given by

B(r)
n+r,k+r(a1, a2, . . . ; b1, b2, . . . |λ)

= B(r)
n+r,k+r

(
a1(1)1,λ, a2(1)2,λ, . . . ; b1(1)0,λ, b2(1)1,λ, . . .

)

=
∑

Λ(n,k,r)

[
n!

k1!k2! · · ·
(

(1)1,λa1

1!

)k1( (1)2,λa2

2!

)k2

· · ·
]

×
[

r!
r0!r1! · · ·

(
(1)0,λb1

0!

)r0( (1)1,λb2

1!

)r1

· · ·
]

, (2.1)

where n, k ≥ 0, with n ≥ k.
By (1.9) and (2.1), we also see that

1
k!

( ∞∑

j=1

aj(1)j,λ
tj

j!

)k( ∞∑

i=0

bi+1(1)i,λ
ti

i!

)r

=
∞∑

n=k

B(r)
n+r,k+r

(
a1(1)1,λ, a2(1)2,λ, . . . ; b1(1)0,λ, b2(1)1,λ, . . .

) tn

n!

=
∞∑

n=k

B(r)
n+r,k+r(a1, a2, . . . ; b1, b2, . . . |λ)

tn

n!
. (2.2)

Also, we define the degenerate complete r-Bell polynomials by

Bel(r)
n (a1, a2, . . . ; b1, b2, . . . |λ) =

n∑

k=0

B(r)
n+r,k+r(a1, a2, . . . ; b1, b2, . . . |λ), (2.3)

where λ ∈R and n ∈N∪ {0}.
Note that

lim
λ→0

Bel(r)
n (a1, a2, . . . ; b1, b2, . . . |λ) = Bel(r)

n (a1, a2, . . . ; b1, b2, . . . ) (n ≥ 0).

In addition, the extended degenerate complete r-Bell polynomials are defined by the gen-
erating function

exp

(
u

∞∑

j=1

aj(1)j,λ
tj

j!

)( ∞∑

i=0

bi+1(1)i,λ
ti

i!

)r

=
∞∑

n=0

Bel(r)
n (u|a1, a2, . . . ; b1, b2, . . . |λ)

tn

n!
. (2.4)
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From (2.2), we note that

∞∑

n=0

Bel(r)
n (u|a1, a2, . . . ; b1, b2, . . . |λ)

tn

n!

=
∞∑

k=0

uk 1
k!

( ∞∑

j=1

aj(1)j,λ
tj

j!

)k( ∞∑

i=0

bi+1(1)i,λ
ti

i!

)r

=
∞∑

k=0

uk
∞∑

n=k

B(r)
n+r,k+r(a1, a2, . . . ; b1, b2, . . . |λ)

tn

n!

=
∞∑

n=0

n∑

k=0

ukB(r)
n+r,k+r(a1, a2, . . . ; b1, b2, . . . |λ)

tn

n!
. (2.5)

By (2.5), we obtain the following theorem.

Theorem 2.1 For n, r ≥ 0, we have

Bel(r)
n (u|a1, a2, . . . ; b1, b2, . . . |λ) =

n∑

k=0

ukB(r)
n+r,k+r(a1, a2, . . . ; b1, b2, . . . |λ). (2.6)

By (2.5) and (2.3), we get

Bel(r)
n (1|a1, a2, . . . ; b1, b2, . . . |λ) = Bel(r)

n (a1, a2, . . . ; b1, b2, . . . |λ). (2.7)

We now observe that

exp

( ∞∑

i=1

xi(1)i,λ
ti

i!

)

= 1 +
∞∑

k=1

( ∞∑

i=1

xi(1)i,λ
ti

i!

)k
1
k!

= 1 +
1
1!

∞∑

i=1

xi(1)i,λ
ti

i!
+

1
2!

( ∞∑

i=1

xi(1)i,λ
ti

i!

)2

+
1
3!

( ∞∑

i=1

xi(1)i,λ
ti

i!

)3

+ · · ·

= 1 +
x1

1!
(1)1,λt +

(
x2

2!
(1)2,λ +

1
2!

x2
1(1)2

1,λ

)
t2

+
(

x3

3!
(1)3,λ +

x1x2

2!
(1)1,λ(1)2,λ +

x3
1

3!
(1)3

1,λ

)
t3 + · · ·

=
∞∑

k=0

∑

m1+2m2+···+kmk =k

k!
m1!m2! · · ·mk !

(
x1

1!
(1)1,λ

)m1(x2

2!
(1)2,λ

)m2

× · · · ×
(

xk

k!
(1)k,λ

)mk tk

k!
, (2.8)

and
( ∞∑

j=0

(1)j,λbj+1
tj

j!

)r

=
∞∑

m=0

∑

l1+···+lr=m

m!
l1! · · · lr !

( r∏

i=1

(1)li ,λbli+1

)
tm

m!
. (2.9)
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From (2.8) and (2.9), we obtain the following theorem.

Theorem 2.2 For k ≥ 0 and λ ∈R, we have

exp

( ∞∑

i=1

xi(1)i,λ
ti

i!

)( ∞∑

j=0

(1)j,λbj+1
tj

j!

)r

=
∞∑

n=0

n∑

k=0

(
n
k

) ∑

m1+2m2+···+kmk =k

∑

l1+···+lr=n–k

k!
m1!m2! · · ·mk !

×
(

x1

1!
(1)1,λ

)m1(x2

2!
(1)2,λ

)m2

× · · · ×
(

xk

k!
(1)k,λ

)mk

× (n – k)!
l1! · · · lr !

( r∏

i=1

(1)li ,λbli+1

)
tn

n!
. (2.10)

From (2.4) and (2.7), we note that

exp

( ∞∑

j=1

xj(1)j,λ
tj

j!

)( ∞∑

i=0

bi+1(1)i,λ
ti

i!

)r

=
∞∑

n=0

Bel(r)
n (x1, x2, . . . ; b1, b2, . . . |λ)

tn

n!
. (2.11)

Using (2.10) and (2.11), we get

Bel(r)
n (x1, x2, . . . ; b1, b2, . . . |λ)

=
n∑

k=0

(
n
k

) ∑

m1+2m2+···+kmk =k

∑

l1+···+lr=n–k

k!
m1!m2! · · ·mk !

×
(

x1

1!
(1)1,λ

)m1(x2

2!
(1)2,λ

)m2

× · · · ×
(

xk

k!
(1)k,λ

)mk

× (n – k)!
l1! · · · lr !

r∏

i=1

(1)li ,λbli+1. (2.12)

From (2.1), (2.4), and (2.6), we note that

exp

(
x

∞∑

j=1

(1)j,λ
tj

j!

)( ∞∑

i=0

(1)i,λ
ti

i!

)r

=
∞∑

n=0

n∑

k=0

xkB(r)
n+r,k+r

(
(1)1,λ, (1)2,λ, . . . ; (1)0,λ, (1)1,λ, . . .

) tn

n!
. (2.13)

On the other hand,

exp

(
x

∞∑

j=1

(1)j,λ
tj

j!

)( ∞∑

i=0

(1)i,λ
ti

i!

)r
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= exp

(
x

∞∑

j=1

(
1
λ

)

j

(λt)j

j!

)( ∞∑

i=0

(
1
λ

)

i

(λt)i

i!

)r

= ex(eλ(t)–1)er
λ(t)

=
∞∑

n=0

Bel(r)
n (x|λ)

tn

n!
. (2.14)

Therefore, by (2.13) and (2.14), we get

n∑

k=0

xkB(r)
n+r,k+r

(
(1)1,λ, (1)2,λ, . . . ; (1)0,λ, (1)1,λ, . . .

)
= Bel(r)

n (x|λ). (2.15)

Thus, by (2.11), (2.13) and (2.14), we obtain the following theorem.

Theorem 2.3 For n, k, r ≥ 0 and λ ∈R, we have

B(r)
n (x, . . . , x; 1, 1, . . . |λ)

=
n∑

k=0

xkB(r)
n+r,k+r

(
(1)1,λ, (1)2,λ, . . . ; (1)0,λ, (1)1,λ, . . .

)

= Bel(r)
n (x|λ). (2.16)

From (2.2) and (1.6), we have

∞∑

n=k

B(r)
n+r,k+r

(
(1)1,λ, (1)2,λ, . . . ; (1)0,λ, (1)1,λ, . . .

) tn

n!

=
1
k!

( ∞∑

j=1

(1)j,λ
tj

j!

)k( ∞∑

i=0

(1)i,λ
ti

i!

)r

=
1
k!

(
eλ(t) – 1

)ker
λ(t) =

∞∑

n=k

S(r)
2,λ(n + r, k + r)

tn

n!
(k ≥ 0). (2.17)

Comparing the coefficients on both sides of (2.17), we obtain the following theorem.

Theorem 2.4 For n, k, r ≥ 0 and λ ∈R, we have

S(r)
2,λ(n + r, k + r) = B(r)

n+r,k+r
(
(1)1,λ, (1)2,λ, . . . ; (1)0,λ, (1)1,λ, . . .

)

=
∑

Λ(n,k,r)

[
n!

k1!k2! · · ·
(

(1)1,λ

1!

)k1( (1)2,λ

2!

)k2

· · ·
]

×
[

r!
r0!r1! · · ·

(
(1)0,λ

0!

)r0( (1)1,λ

1!

)r1

· · ·
]

. (2.18)

Now, we observe that

∞∑

n=0

Bel(r)
n (x|λ)

tn

n!
= ex(eλ(t)–1)er

λ(t)
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= e–xexeλ(t)er
λ(t) = e–x

∞∑

k=0

xk

k!
ek+r
λ (t)

= e–x
∞∑

k=0

xk

k!

∞∑

n=0

(k + r)n,λ
tn

n!
=

∞∑

n=0

(
e–x

∞∑

k=0

(k + r)n,λ

k!
xk

)
tn

n!
. (2.19)

From (2.19), we obtain the following Dobinski-type formula for the degenerate r-Bell
polynomials.

Theorem 2.5 For n, r ≥ 0 and λ ∈ R, we have

Bel(r)
n (x|λ) =

1
ex

∞∑

k=0

(k + r)n,λ

k!
xk . (2.20)

3 Conclusions
There are various means of studying special polynomials and numbers, for example,
generating functions, combinatorial methods, umbral calculus, p-adic analysis, differen-
tial equations, probability, orthogonal polynomials, and special functions, to cite a few
[7, 14, 16]. These ways of investigating special polynomials and numbers can be applied
also to degenerate versions of such polynomials and numbers. Indeed, in recent years,
many mathematicians have drawn their attention to studies of degenerate versions of quite
a few special polynomials and numbers by making use of the aforementioned methods
[2, 5, 11, 17]. Also, it is worth mentioning that one can study degenerate versions not only
of special polynomials but also of transcendental functions like gamma functions [1].

Here, we introduced the degenerate incomplete and complete r-Bell polynomials and
studied properties and identities of these polynomials. Indeed, we expressed the extended
degenerate complete r-Bell polynomials in terms of the degenerate incomplete r-Bell poly-
nomials. We also obtained an explicit expression for the complete r-Bell polynomials. We
noted that the degenerate r-Bell polynomials Bel(r)

n (x|λ) can be represented in terms of
the degenerate incomplete r-Bell polynomials. Likewise, it was shown that the degenerate
r-Stirling numbers of the second kind S(r)

2,λ(n + r, k + r) can be expressed in terms of the
degenerate incomplete r-Bell polynomials. Further, we obtained a Dobinski-type formula
for the degenerate r-Bell polynomials.

As one of our future projects, we would like to continue pursuing this line of research,
namely, by studying degenerate versions of some special polynomials and numbers, find
their applications in mathematics, physics, and engineering.
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